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Abstract

We solve a flexible model that captures transactions costs and infrequencies of trading
opportunities for illiquid assets to better understand the shadow costs of illiquidity for
different origins of asset illiquidity and heterogeneous investor types. We show that illiquid-
ity that results in suboptimal asset allocation carries low shadow costs, whereas these costs
are high when illiquidity restricts consumption. As a result, the shadow costs are high for
short-term investors, investors who face substantial liquidity shocks, and investors who
desire to allocate a large fraction of their wealth to illiquid assets.

I. Introduction

Illiquid assets increasingly have a role in investors’ portfolios. For instance,
they account for 55% of the total portfolios of U.S. endowment funds in 2015
(Dimmock, Wang, and Yang (2019)). Moreover, the seven largest pension funds in
theworld have increased their average allocations of illiquid assets from4% in 1997
to 25% in 2017 (Watson (2018)). One potential reason for investing in illiquid assets
is to capture liquidity premiums (OECD (2014), Watson (2019)). In other words,
investing in illiquid assets might compensate the investor for bearing liquidity risk.
Yet, there is no consensus in the empirical literature on the questionwhich asset classes
have first-order liquidity premiums. In this study, we ask a related question, namely,
howcostly is illiquidity from the perspective of the investor for different origins of asset
illiquidity? We answer this question by computing shadow costs of illiquidity. We
define the shadow costs as the decrease in the expected return on the illiquid asset that a
price-taking investor is willing to pay to convert the illiquid asset into a liquid one.
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Studies have either modeled illiquidity as proportional transactions costs (e.g.,
Constantinides (1986) andVayanos (1998)) or as the inability to trade illiquid assets
for random time periods (e.g., Ang, Papanikolaou, and Westerfield (2014)). We
combine these two dimensions of illiquidity here for two reasons. First, several
asset classes exhibit both aspects of illiquidity simultaneously. For instance, inves-
tors in corporate bonds face transaction costs, yet sometimes specific bondsmay not
trade for several weeks. Similarly, selling real estate may take several years, and it
obviously carries transaction costs as well. Second, combining both sources of
illiquidity allows us to capture the heterogeneity across asset classes by adjusting
the prominence of both effects.

We solve for shadow costs of illiquidity in a partial equilibrium power utility
framework. The investor decides to optimally allocate his wealth to three assets:
a risk-less asset, a liquid risky assets, and an illiquid risky asset. The investor
optimizes utility over a stream of consumption and is exposed to exogenous liquidity
shocks. The investor cannot borrow against the illiquid asset, which implies that
consumption and liquidity shocks must be financed out of liquid wealth by selling
risk-less and/or liquid risky assets.We then analyze the shadow costs of illiquidity for
two different interpretations of the liquidity shock. The first interpretation models
the liquidity shock as a sudden random decline in liquid wealth, whereas the second
one models the liquidity shock as a forced increase in temporary consumption.

Our model’s flexibility allows us to quantify the magnitude of the shadow
costs for different origins of asset illiquidity and heterogeneous investor types. This
flexibility is important as the costs of illiquidity highly depend on the characteristics
of illiquid assets such as the frequency of trade and potential income returns on
illiquid assets, aswell as the characteristics of the investor types that hold these assets.

We show that the cost of illiquidity involves two aspects: suboptimal
asset allocation and suboptimal consumption. If the cost of liquidating the illiquid
asset is too high and the investor prefers not to trade the illiquid asset, or the illiquid
asset cannot be traded at all, then illiquidity leads to suboptimal portfolio alloca-
tions. Yet, deviating from the optimal asset allocation generally only induces small
utility costs (Constantinides (1986)). At the same time, illiquidity may lead to
suboptimal consumption levels due to insufficient holdings of liquid assets, com-
pared to the case where the illiquid asset can always be tradedwithout costs. That is,
if liquid wealth is too low to finance (optimal) consumption and the investor is
unable to sell the illiquid asset or only at high costs, they may face a negative
consumption shock. Shocks to consumption carry a high utility cost which, in turn,
generates substantial shadow costs of illiquidity. Hence, we find that the shadow
costs are large for short-term investors, investors who face substantial liquidity
shocks, and investors who desire to allocate over 60% of their wealth to illiquid
assets if the illiquid asset would also be liquid.

We perform back-of-the-envelope calculations to shed light on the shadow
costs of illiquidity for several asset classes. Even though private equity is the most
illiquid asset that we analyze, we find annual shadow costs in the range of 0–55
basis points only. Private equity investors have to lock up their money for long
periods of time, and mainly for that reason, only long-term investors are present in
this market. For these investors, illiquidity is unlikely to substantially harm con-
sumption patterns. For direct real estate, we find annual shadow costs in the range of
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0–71 basis points. Direct real estate can often not be traded for a substantial amount
of time, the timing of the trading opportunities is uncertain, and the transaction costs
are high. Yet, the threat of illiquidity is dampened because of the liquid return
component (rents) of real estate investments and the typical long investment
horizons for investors in this market. For corporate bonds, the annual shadow cost
is in the range of 26–85 basis points. The transaction costs are small, but uncertainty
in trading opportunities and its high price of risk amplify shadow costs. For illiquid
stocks, we find annual shadow costs in the range of 0–108 basis points. Stocks trade
very often and therefore the source of illiquidity is transaction costs. Transaction
costs generate small shadow costs for long-term investors, but substantial ones for
short-term investors.

A potential shortcoming of our approach is that we are not able to model
investors’ preferences perfectly. However, wemake two assumptions that are likely
to overestimate rather than to underestimate shadow costs of illiquidity. First, we
assume that the investors cannot borrow against the illiquid assets. This caveat may
be a realistic assumption for some asset classes, but not for others. For instance, real
estate investors are typically able to borrow a substantial amount using the property
as collateral. However, taking this borrowing into account decreases shadow costs
because the investors can partially undo the illiquidity of the asset. Second, we
allow for liquidity shocks as large as 50% of the investors’ total wealth. Even
though larger wealth shocks are in practice possible, our model shows that investors
substantially reduce their risky asset allocation if faced with such shocks also in
the fully liquid case. As a result, large liquidity shocks do not necessarily amplify
shadow costs of illiquidity.

Our study contributes to the theoretical literature on liquidity premiums. The
early theoretical literature did not find evidence for the existence of sizeable
liquidity premiums. Constantinides (1986) and Vayanos (1998) show that transac-
tion costs only have a second-order effect on prices (i.e., a 1% higher transaction
cost increases the liquidity premiums by only a few basis points per year). After
their work, a great deal of literature was developed that studies illiquidity or trans-
actions costs by using assumptions more in line with real-world investment prob-
lems. This work finds that illiquidity can have first-order effects on prices. For
instance, theoretical work fromHuang (2003) andGarleanu (2009) shows that first-
order effects on prices may arise when investors face borrowing constraints. Jang,
Koo, Liu, and Loewenstein (2007) add return predictability to the investor’s prob-
lem in a market with transactions costs and find a slight increase in liquidity
premiums. Lynch and Tan (2011) solve a model that comprises labor income,
wealth shocks, return predictability, and transaction costs and are able to generate
liquidity premiums for stocks in the same order of magnitude as the early empirical
literature. We contribute to this literature by i) combining two aspects of illiquidity:
transactions costs and nontrading periods and ii) setting up a flexible model that
allows to study these dimensions of illiquidity for investors that differ in investment
horizons and liquidity needs.

Our study also contributes to the literature on optimal portfolio choice in the
presence of jump risk (e.g., Liu, Longstaff, and Pan (2003), Das and Uppal (2004),
Jin and Zhang (2012), and Liu and Loewenstein (2013)). For instance, Liu et al.
(2003) study optimal asset allocations in the presence of jump risk in prices and
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volatility. They show that the asset allocation implications are equivalent to a setting
where part of the portfolio is treated as being illiquid as in Longstaff (2001). The
liquidity shock we model is comparable to a type of jump risk and has similar
implications when looking at totalwealth only: jump risks or liquidity shocks imply
lower wealth which leads to lower optimal consumption levels. However, in our
setting the liquidity shock can lead to suboptimal consumption levels as compared
to the case with only liquid assets. As we explicitly model liquid and illiquid assets,
our constraint that consumption and liquidity shocks can only be financed out of
liquid wealth leads to the shadow cost of illiquidity.

Our study also relates to the empirical literature on liquidity premiums.The early
empirical literature found significant effects of illiquidity on stock prices. For
instance, Amihud and Mendelson (1986) and Brennan and Subrahmanyam (1996)
show that a 1%higher transaction costmeans a 1.5% to 2%higher expected return for
stocks. Yet, some recent studies have challenged the empirical evidence for liquidity
premiums in stocks. For instance, Ben-Rephael, Kadan, and Wohl (2015) show that
liquidity premiums have become insignificant in recent decades for public US
equities, except for very small stocks. First-order liquidity premiums also exist for
corporate bonds (e.g., Chen, Lesmond, andWei (2007), Bao, Pan, andWang (2011),
and Bongaerts, De Jong, and Driessen (2017)). In particular, Bongaerts et al. (2017)
find an average (level) liquidity premium equal to 0.54% for corporate bonds that
carry 0.52% transaction costs. Yet, Palhares and Richardson (2019) find only limited
evidence for liquidity premiums for corporate bonds after using illiquidity-factor
portfolios (i.e., a strategy that goes long in illiquid bonds and short in the liquid ones).1

Similarly, for private equity, there is no clear consensus regarding the existence
of a liquidity premium, although the evidence is more indirect. Franzoni, Nowak,
and Phalippou (2012) report no out-performance of private equity relative to
public equity, while Harris, Jenkinson, and Kaplan (2014) find a substantial out-
performance of 3% annually.2 Finally, opposing indirect evidence also exists for
real estate investments. Qian andLiu (2012) find a somewhat higher expected return
for direct compared to indirect real estate, while Ang, Nabar, and Wald (2013) find
comparable performance for direct and indirect real estate investments. Although
our model implied shadow costs are not directly comparable to the empirically
estimated liquidity premiums that are the result of general equilibrium outcomes,
our model gives perspective on the order of magnitude of shadow costs that
investors require for the illiquid asset to become liquid in these four asset classes.

The remainder of the study is organized as follows: Section II shows the
theoretical framework of the model and describes the corresponding optimal strat-
egies and the partial equilibrium implications for the shadow costs. We compute the
model implied shadow costs for a range of different parameter values and provide
simple calculations for shadow costs in several asset classes in Section III. Section IV
concludes. The code for this project is included as Supplementary Material.

1Note that we refer here to the level of the liquidity premium. There are also studies on the liquidity
risk premium (e.g., Pastor and Stambaugh (2003)).

2These findings do not necessarily imply a contradiction, because the reported out-performance in
Franzoni et al. (2012) is corrected for the exposure to a liquidity risk factor, whereas the reported out-
performance in Harris et al. (2014) is not.
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II. Shadow Costs of Illiquidity: Theory

In this section, we model illiquidity as the inability to trade an asset frequently
and by the cost that occurs when trading. This is formalized in Section II.A. In
Section II.B, we describe the optimization problem of the investor and its solution is
presented in Section II.C. Section II.D describes the numerical solution technique
and Section II.E shows how we derive shadow costs of illiquidity.

A. Financial Market

The financial market consists of 3 assets: a risk-free assetB, a liquid risky asset
S, and an illiquid risky asset denoted by X . The risk-free asset has a constant annual
rate of return rf andwe denote its return over period h by r

hð Þ
f ¼ rf h. The liquid risky

asset earns a nominal return rSt over the period t�h, tð �, while we denote the
nominal return on the illiquid asset over the same period by rXt . All returns are
continuously compounded. Further, we assume that the price of the illiquid asset is
observed, even though it cannot be traded every period.

The prices of risk of the liquid and illiquid assets are denoted by λS and λX ,
respectively. Their volatilities are similarly denoted by σS and σX ; their correlation
by ρSX. The returns r

S
t and rXt are jointly normally distributed:

rSt
rXt

" #
�N

rf þ λSσS �1

2
σ2S

� �

rf þ λX σX �1

2
σ2X

� �
2
6664

3
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h

0
BBB@
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The differences between the liquid and the illiquid risky asset are the trading
opportunities and transaction costs. While the investor can always trade the liquid
risky asset S at no cost, the illiquid asset X can only be traded at infrequent points
in time and at a cost. We denote the trading indicator for time t with 1Tt and
interpret 1Tt ¼ 1 as a trading opportunity that arises for illiquid asset X , while 1Tt ¼
0 indicates that the illiquid asset cannot be traded during that period. We assume
throughout that the trading indicators are IID Bernoulli random variables. We
determine the trading probability by assuming that trading opportunities arrive
according to a Poisson process with intensity η. The probability that the investor is
able to trade in a given period then equals p¼ℙ 1Tt ¼ 1

� �¼ 1� exp �ηhð Þ. If a
trading opportunity occurs (1Tt ¼ 1) and the investor decides to trade, then the
proportional transaction costs ϕmust be paid, 0 ≤ ϕ ≤ 1. We allow for two types of
return components on the illiquid asset: income return and capital gains. That is,
we separate rXt into a liquid part d (income return) and an illiquid part rXt �d
(capital gains).

B. The Investors’ Consumption and Investment Problem

Preferences are represented by a standard constant relative risk aversion
(CRRA) expected utility function. The investor has an investment horizon equal
to T . We assume that the illiquid asset can be traded (and thus liquidated) against
transaction costs ϕ at the final date T . Notice that under the assumption that the
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illiquid asset might not be liquidated atT , the shadow costs are obviously amplified.
We do not consider this because, in that case, the investor is better off postponing the
liquidation of the illiquid asset until a trading opportunity arises.

We introduce the following notation to distinguish liquid and illiquid wealth.
We denote liquid wealth as available at time t by Wt. This wealth consists of
investments in both the risk-free asset B and the liquid risky asset S. The value of
the investment in the illiquid asset at time t is denoted by X t. Therefore, total wealth
equals WtþX t. We denote the fraction of liquid wealth Wt that is invested in the
liquid risky asset S by θt, and 1�θt is invested in the risk-free assetB. Consumption
at time t is denoted by Ct and must be financed from liquid wealth Wt.

Illiquid wealth X t can only be converted into liquid wealth (and, if desired,
immediately consumed) if a trading opportunity arises (i.e., if 1Tt ¼ 1). We denote
the transfer from liquid to illiquid wealth by ΔX t. Thus, ΔX t > 0 means that at time
t, an additional amountΔX t of the illiquid asset is bought, and thus liquid wealthWt

decreases by ΔX tþϕΔX t. If no trading opportunity arises, then 1Tt ¼ 0; and we
automatically have ΔX t ¼ 0.

Furthermore, we assume that the investor may face a liquidity shock Lt that is
assumed to be a nonrandom fraction l of total wealthWtþX t that can occur at most
once during the interval t�h, tð �, where 0 ≤ l< 1 (the size of the liquidity shock is
strictly smaller than total wealth). We denote the liquidity shock indicator for time t
with 1Lt and interpret 1Lt ¼ 1 as the occurrence of a liquidity shock, while 1Lt ¼ 0
indicates that no liquidity shock arises during that period. We assume throughout
that the liquidity shock indicators are IID Bernoulli random variables. We
determine the liquidity shock probability by assuming that the liquidity
shocks arrive according to a Poisson process with intensity υ. The probability that
the investor faces a liquidity shock in a given period then equals
q¼ℙ 1Lt ¼ 1

� �¼ 1� exp �υhð Þ. If a liquidity shock arises, the investor has to
pay the liquidity shock out of liquid wealth, even though the size of the liquidity
shock depends on its total wealth. This means that the investor cannot avoid the
liquidity shock by investing a large fraction of his wealth in the illiquid asset.

We provide two examples to motivate why we model the liquidity shock as a
fraction of total wealth, but assume that the liquidity shock has to be financed from
the liquid part of the portfolio. The first example concerns awealthy private investor
that faces a sudden raise in wealth taxes.3 Awealth tax is generally imposed on the
total value of all assets and, hence, on total wealth. Although the (additional) tax
amount is a fraction of total wealth, these taxes have to be financed from the liquid
part of the investor’s portfolio. Put differently, the investor has to pay the taxes with
cash, and cannot use illiquid assets to pay the tax invoice. The investor must use his
liquid wealth by either selling the risk-less asset B or the liquid risky asset S. Only if
a trading opportunity in the illiquid assets arises at exactly the same time this wealth
tax is due, the investor is also able to sell the illiquid asset and use the proceeds to
pay the tax invoice. The lower the trading probability of the illiquid asset, the lower
the likelihood that the investor is able to use illiquid wealth to pay the tax invoice.

3For instance, in 2001, the wealth tax in the Netherlands went up from 0.7 to 1.2 percentage points:
https://www.cpb.nl/sites/default/files/publicaties/download/cpb-discussion-paper-273-saving-behavior-
and-risk-taking.pdf.
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The second example concerns an institutional investor facing margin calls,
resulting from the use of derivatives.4 For instance, pension funds can (partly)
hedge their interest rate risk that results from the long-term nature of the pension
liabilities. Typically, pension funds define their interest rate hedge as a fraction of
the total liabilities which is thus related to total assets. Suppose a pension fund
desires to hedge 50% of its interest rate risk, then the total notional to achieve this
hedge is higher when the fund hasmore (total) liabilities. Because pension funds are
typically net receiver swap holders, an increase in interest rates may result inmargin
calls. That is, the pension fund has to post cash (or highly liquid assets) on a margin
account. The larger the notional amount of the receiver swap, the larger the amount
of cash that is needed to finance themargin. Thus, margin calls occur as a fraction of
the pension fund’s total assets, but they can be financed out of liquid wealth only.
Again, the investor would have to either sell the risk-less asset B or the liquid risky
asset S. Only if a trading opportunity in the illiquid asset occurs at the time of the
margin call, the pension fund is able to sell the illiquid asset as well and use the
proceeds to finance the margin. The exact same mechanism holds for other types of
derivatives (e.g., currency and credit derivatives).

Furthermore, we consider two different interpretations of the liquidity shock.
First, the interpretation of the liquidity shock as a sudden random decrease in liquid
wealth (i.e., the investor does not receive utility from the liquidity shock). For retail
investors, one example is again a raise in wealth taxes or another example could be
extreme weather events. For institutional investors, a possible random shock to
liquid wealth is a margin call on derivative positions as just described. Second, the
liquidity shock can be interpreted as a forced increase in temporary consumption
and hence in utility. Examples include some health care costs and unforeseen
expenditures for retail investors. For long-term investors such as pension funds,
mortality shocks can be interpreted as temporary increases in utility, assuming that
utility is measured by lifetime consumption. In these examples, the investor faces a
temporary increase in consumption ofwhich it benefits during the period these costs
materialize. Our baseline model assumes the first interpretation, but we also study
the implications of the alternative setting in Section III.

We now turn to the optimization problem of the investor. The investor optimizes
its utility of a stream of consumption levelsCt over a horizon t¼ 0,h,2h,…,T . Thus,
the criterion function is

E0

X
t∈ 0,h,2h,…,Tf g

βt
C1�γ

t

1� γ

2
4

3
5,(2)

4The importance of margin requirements has substantially increased over the past decade. In
response to the aftermath of the financial crisis, the European Union agreed on a new legislative
framework to mitigate systemic risk for over-the-counter derivatives in 2012, the European Market
Infrastructure Regulation (EMIR). The EMIR legislation is relevant in the context of illiquid assets, as
EMIR requires central clearing of derivative contracts. Central clearing implies that each counterparty of
an OTC derivative contract should post an initial margin at the clearing house on entry of the contract,
and a variationmarginwhen the value of the derivative contract changes (https://www.bis.org/bcbs/publ/
d317.pdf).
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where β denotes the time-preference discount factor and γ> 1 is the risk-aversion
parameter.

The investor faces two budget constraints: one for liquidwealthWt and one for
illiquid wealth X t. Formally, we have

Wt ¼ Wt�h�ΔX t�h�ϕ ΔX t�hj j�Ct�h�Lt�hð Þ
exp r hð Þ

f

� �
þθt�h exp rSt

� 	� exp r hð Þ
f

� �h i� �
þ X t�hþΔX t�hð Þexp dð Þ,

(3)

X t ¼ X t�hþΔX t�hð Þ exp rXt
� 	� exp dð Þ� 	

:(4)

We assume that the investor cannot borrow against the illiquid asset. The effect
of illiquidity would be strongly reduced if this borrowing was possible, as the
investor could always undo the illiquidity by borrowing against the illiquid asset
if needed. Thus, we impose

Ct ≤Wt�Lt, t¼ 0,h,2h,…,T :(5)

The borrowing constraint implies that the investor can only finance consump-
tion out of liquid wealth, after liquidity shocks. This means that consumption can
only be generated from selling the risk-less bond B and/or selling the liquid risky
stock S. Only if a trading opportunity arises for the illiquid asset when the investor
desires to consume, the investor can also use the illiquid asset to finance consump-
tion at exactly the same moment in time. Hence, illiquidity impacts the investor
because he may not be able to attain the desired consumption level due to insuffi-
cient holdings of liquid assets. Furthermore, the borrowing constraint implies that
the investor’s liquid wealth will always be larger than the liquidity shock Lt
(i.e., Wt > Lt for all t, as zero consumption leads to negative infinite utility in
(2)). In other words, if the investor locks up a substantial amount of its wealth in
the illiquid asset and a liquidity shock occurs, the investor faces the risk of not
having sufficient liquid wealth left to consume, a scenario the investor avoids at all
times.

The optimal consumption problem can now be stated as follows:

Problem II.1. The investor maximizes

max
θt ,ΔX t ,Ctf gTt¼0

E0

X
t∈ 0,h,2h,…,Tf g

βt
C1�γ

t

1� γ

2
4

3
5(6)

subject to the budget constraints (3) and (4) and the borrowing constraint (5).
Moreover, when 1Tt ¼ 0, we must have ΔX t ¼ 0.

The decision variables Ct, θt, and ΔX t are nonanticipative. Formally,
Ct,θt,ΔX tf g is adapted to the filtration F¼ F tf gTt¼1, where F t is the natural

filtration generated by rSt ,r
X
t ,1

T
t ,1

L
t

� �
.

In the setting where we assume that the liquidity shock results in a utility gain,
the optimization problem of the investor becomes as follows.
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Problem II.2. The investor maximizes

max
Ct ,θt ,ΔX tf gTt¼0

E0

X
t∈ 0,h,2h,…,Tf g

βt
CtþLtð Þ1�γ

1� γ

2
4

3
5(7)

subject to the budget constraints (3) and (4) and the borrowing constraint (5).
Moreover, when 1Tt ¼ 0, we must have ΔX t ¼ 0.

To summarize, illiquidity limits the investor’s consumption and investment
decisions in three ways compared to the case where the illiquid asset is fully liquid,
that is, the two risky asset Merton case (Merton (1969)): the inability to trade the
illiquid assets for uncertain periods of time; transaction costs of the illiquid asset
when a trading opportunity arises; and the investor cannot borrow against the
illiquid assets. All three assumptions are important characteristics of (most) illiquid
assets.

C. Optimal Strategies

The optimization in Problem II.1 cannot be solved analytically, so we resort to
numerical methods. For these problems, the numerical complexity is well-known to
strongly increase with the number of endogenous state variables. In the formulation
of Problem II.1, there are two: Wt and X t. Yet, in line with Ang et al. (2014), a
simple transformation leads to a partly analytical result due to the homogeneity of
the CRRA utility function we consider, see Theorem II.3 below.

More precisely, we consider as endogenous state variables the total wealth
WtþX t and the fraction of total wealth invested in the illiquid asset, that is,

ξ t ¼
X t

W tþX t
:(8)

With this reparametrization, we define the value function using the Bellman
principle as

V t W tþX t,ξ tð Þ¼ max
Ct ,θt ,ξ t

βt
C1�γ

t

1� γ
þEtV tþh W tþhþX tþh,ξ tþhð Þ,(9)

with the boundary condition at time T given by

VT WT þXT ,ξTð Þ¼ βT
WT þ 1�ϕð ÞXTð Þ1�γ

1� γ
:(10)

The boundary condition means that we assume that all assets can be traded (and
thus liquidated) at time T against transaction costs ϕ. Moreover, the optimal invest-
ment decision concerning illiquid wealth (i.e., ΔX ∗

t ) is determined by the choice ξ∗t

ΔX ∗
t ¼

ξ∗t � ξ t
� 	

WtþX tð Þ if 1Tt ¼ 1

0 if 1Tt ¼ 0:

(
(11)

Jansen and Werker 2701

https://doi.org/10.1017/S0022109022000473  Published online by Cam
bridge U

niversity Press

https://doi.org/10.1017/S0022109022000473


With the above-introduced change of variables, that is, the pair (Wt,X t) is
replaced by the pair (WtþX t,ξ t), the solution to the investor’s problem satisfies the
following theorem. A proof is provided in Appendix A.

Theorem II.3. There are time-dependent (deterministic) functions αt, θt, and Ht

such that the optimal solution C∗
t ,θ

∗
t ,ξ

∗
t

� �
to Problem II.1 can be written as:

V t W tþX t,ξ tð Þ¼ βt
W tþX tð Þ1�γ

1� γ
Ht ξ tð Þ,(12)

C∗
t ¼ αt ξ tð Þ WtþX tð Þ,(13)

θ∗t ¼ θt ξ tð Þ,(14)

ξ∗t ¼ argmin
ξ t

H t ξ tð Þ:(15)

The function Ht ξ tð Þ can be viewed as a penalty function, which is minimized
at the optimal fraction of total wealth invested in the illiquid asset ξ∗t . If the investor
is able to trade the illiquid asset at time t, then they will rebalance their portfolio
toward the optimal ratio of illiquid wealth to total wealth ξ∗t , if the decrease in the
penalty function is sufficient to outweigh the transaction cost ϕ. Thus, in line with
Constantinides (1986), there is a no-trading region where the investor will not
rebalance their portfolio.

Theorem II.3 furthermore indicates that the optimal consumption choice and
the optimal investment strategy in the liquid risky asset depend on the fraction of
total wealth invested in the illiquid asset ξ t. As we show in Section III, if illiquid
wealth is substantial relative to liquid wealth, for instance after a liquidity shock Lt
occurs; then the investor might have to cut their consumption relative to the case
where the illiquid asset can always be traded. Moreover, to compensate for the
increased risk exposure that results from the high fraction invested in illiquid
wealth, the investor reduces their allocation to the liquid risky asset.

D. Solving the Model

The model is solved by means of backward induction, where we start solving
the problem at the final date t¼ T and solve the model backward for each period
until arriving at time t¼ 0: The advantage of Theorem II.3 is that the dependence of
the value function on total wealth WtþX t is known analytically. The fact that the
value function is proportional to WtþX tð Þ1�γ simplifies the numerical optimiza-
tion to a 1-dimensional grid search over ξ t only. Details on howwe solve the model
are provided in Appendix B.

E. Willingness to Pay for Liquidity

To understand why illiquidity is costly in some cases but not in others, we
analyze the willingness to pay for liquidity. We define the investor’s willingness
to pay δt as the decrease in the expected return on the illiquid asset over period
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t�h, tð � that they are willing to pay to convert the illiquid asset into a liquid one. In
other words, δt can be interpreted as a shadow cost and is the compensation the
investor demands for holding the illiquid asset. To formalize the willingness to
pay, denote the value function for Problem II.1 by assuming that the asset X is
actually also liquid by VLIQ

t W tþX tð Þ. In other words, we solve Problem II.1
subject to the budget constraints (3) and (4), where η!∞, ϕ¼ 0. This value
function factorizes as:

VLIQ
t W tþX tð Þ¼ βt

W tþX tð Þ1�γ

1� γ
HLIQ

t ,(16)

for a deterministic constantHLIQ
t , whereHLIQ

t no longer depends on ξ t as the illiquid
asset is tradeable as well.

The value function VLIQ
t depends on the expected return

rf þ λX σX �0:5σ2X
� 	

h of asset X . Subtracting δt from this expected return leads
to a (lower) value function that we denote by VLIQ

t W tþX tjδtð Þ. We then define the
willingness to pay as the value of δt that solves

VLIQ
t W tþX tjδtð Þ¼V t W tþX t,ξ tð Þ:(17)

Given (12) and (16), we can find δt by solving

HLIQ
t δtð Þ¼Ht ξ tð Þ,(18)

where HLIQ
t δtð Þ denotes the penalty function when the illiquid asset is actually

liquid at a risk premium reduced by δt. This willingness to pay or shadow cost
depends on the actual allocation to the illiquid asset: ξ t. To determine the shadow
cost, we assume that an investor with horizon T chooses the optimal allocation to
the illiquid asset when entering the investment, so the actual allocation at time t¼ 0
equals ξTt¼0 ¼ ξT ,∗t¼0.

III. Shadow Costs of Illiquidity: Comparative Statics

We now turn to the qualitative and quantitative implications of the model.
First, we show how illiquidity affects the asset allocation and consumption patterns
of the investor. We then compute the shadow costs of illiquidity depending on
different parameter configurations.We end the section by computingmodel implied
shadow costs for different asset classes. For ease of interpretation, all the shadow
costs are annualized in the subsequent sections.

A. Parameter Values Baseline Model

With respect to the investor’s preferences, we assume the investor faces a
liquidity shock with intensity υ¼ 10%, which implies the liquidity shock occurs on
average once in 10 years and the probability of a shock each month equals
q¼ 0:83%. The magnitude of the liquidity shock is equal to l¼ 30% of total wealth
(i.e., liquid and illiquid wealth combined). The investor has a risk-aversion
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parameter equal to γ¼ 5 and the time-preference discount factor equals β¼ 0:91.5

We assume that the investor can consume and trade eachmonth and hence h¼ 1=12.
With respect to the financial market, we assume the liquid asset has a price

of risk λS ¼ 38% and volatility σS ¼ 18:5%, and the risk-free rate is rf ¼ 2%. These
parameter values result in an optimal risky asset allocation of approximately 40%
and a risk-free bond allocation of 60%. The parameter values of the illiquid asset are
set equal to the parameter values of the liquid risky asset: λX ¼ 38% and
σX ¼ 18:5%. In this way, we isolate the effect of illiquidity instead of relying on
a higher Sharpe ratio for the illiquid asset. In line with this reasoning, we also
assume no correlation between the liquid and illiquid risky assets in the baseline
model; ρSX ¼ 0. We also assume no income return for the illiquid assets
(i.e., dt ¼ 0). For the illiquidity parameters, we assume that the investor can trade
the illiquid asset on average once in 2 years, or in other words trading opportunities
occur with intensity η¼ 50%, which implies a trading probability each month equal
to p¼ 4:08%. If the investor decides to trade the illiquid asset when a trading
opportunity arises, then the proportional transactions costs equal ϕ¼ 1%. At the
final date, the investor has to pay transaction costs ϕ¼ 1% in all states of the world.
Table 1 summarizes the parameter values for the baseline model.

B. Optimal Consumption and Asset Allocation Baseline Model

We now describe the optimal consumption pattern and asset allocation deci-
sions for the baseline model described in Section II. Both consumption and the
allocation to the liquid risky assets are functions of the investment horizon and the
fraction invested in the illiquid asset, as derived in Theorem II.3.

Figure 1 shows that the optimal consumption decreases as a function of time
and the fraction of wealth invested in the illiquid asset. To smooth consumption
over time, the shorter the investment horizon, the larger the fraction the investor
optimally desires to consume out of his total wealth. Moreover, the larger the
fraction of illiquid wealth relative to total wealth, the less room for the investor
to consume, because of the constraint that consumption and liquidity shocks can
only be financed out of liquid wealth.

The allocation to the liquid risky asset (after consumption) is stable over time,
because investment opportunities are constant.6 However, Figure 2 shows that the
liquid risky asset allocation is decreasing as a function of the allocation to illiquid
wealth. If the fraction allocated to illiquid wealth is high, the investor reduces its
total exposure to market risk by investing less in the liquid risky asset. When the
fraction invested in illiquid wealth gets closer to 1, zero liquid wealth might be left
after consumption and potential liquidity shocks, and hence the allocation to the
liquid risky asset turns zero as well.

The optimal allocation to the illiquid asset (after consumption) is in Figure 3
and is found by minimizing the penalty functionHt ξ tð Þ, as shown in Theorem II.3.
We compare this allocation to the case where the illiquid asset is fully liquid, that is,
the two risky asset Merton case (Merton (1969)). Generally, the shorter the

5A lower value for the time-preference discount factor has a negligible effect on shadow costs.
6Because we simulate the returns each month, the optimal allocation to the liquid risky asset varies

slightly from month to month.
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investment horizon, the lower the optimal allocation to the illiquid asset relative
to the Merton case. The kink in the illiquid asset allocation for horizons between
4 to 12 months results from the way we model the final date. At horizons of 4 to
6 months, the investor knows for sure he is able to liquidate illiquid wealth at the
final date, with a very small probability of facing liquidity shocks. Even though he
has to pay transaction costs to liquidate illiquid wealth at the final date, the period is
sufficiently long to earn investment returns that outweigh these transaction costs in
expectation. On the other hand, at horizons between 7 and 12 months, the risk of
facing liquidity shocks before the final date increases, resulting in a lower allocation
to the illiquid asset.

TABLE 1

Parameter Values

Table 1 summarizes the parameter values of our baseline model.

Parameters Symbol Value

Trading frequency risky assets h 1/12
Liquidity shock l 30%
Intensity liquidity shock υ 10%
Risk aversion parameter γ 5
Time-preference discount factor β 0.91
Risk-free rate r f 2%
Price of risk liquid risky asset λS 38%
Volatility liquid risky asset σS 18.5%
Price of risk illiquid asset λX 38%
Volatility illiquid asset σX 18.5%
Correlation coefficient ρ 0
Income return d 0
Intensity trading opportunity illiquid asset η 50%
Transaction costs illiquid asset ϕ 1%

FIGURE 1

Optimal Consumption

Figure 1 shows the optimal consumption as a function of the investment horizon T and fraction invested in the illiquid asset that
uses the following parameter values: the risk-aversion parameter γ¼ 5, the time-preference discount factor β¼ 0:91, a liquidity
shock l ¼ 30% with intensity υ¼ 10%, the return on the risk-free rate r f ¼2%, the average return on the liquid and illiquid risky
asset μS ¼ μX ¼ 9%, the volatility of the liquid and illiquid risky asset σS ¼ σX ¼ 18:5%, the correlation coefficient ρSX ¼ 0, the
income return d ¼ 0, the trading intensity of the illiquid asset η¼ 50%, and the transactions costs ϕ¼ 1%.
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The no-trading region induced by transaction costs is in Figure 4. The solid
line represents the optimal allocation to the illiquid assets given transaction costs ϕ,
and the dashed lines represent the boundaries of the no-trading region. As long as
the illiquid asset allocation is within the no-trading region (i.e., the area within the
two dashed lines), the investor does not trade if a trading opportunity arises, while

FIGURE 2

Optimal Liquid Risky Asset Allocation

Figure 2 shows the optimal liquid risky asset allocation as a function of the investment horizon T and fraction invested in the
illiquid asset that uses the following parameter values: the risk-aversion parameter γ¼ 5, the time-preference discount factor
β¼0:91, a liquidity shock l ¼ 30%with intensity υ¼ 10%, the return on the risk-free rate r f ¼ 2%, the average return on the liquid
and illiquid risky asset μS ¼ μX ¼ 9%, the volatility of the liquid and illiquid risky asset σS ¼ σX ¼ 18:5%, the correlation
coefficient ρSX ¼ 0, the income return d ¼ 0, the trading intensity of the illiquid asset η¼ 50%, and the transactions costs
ϕ¼ 1%.
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FIGURE 3

Optimal Illiquid Asset Allocation

Figure 3 shows the optimal illiquid asset allocation as a function of the investment horizon T that uses the following parameter
values: the risk-aversion parameter γ¼5, the time-preference discount factor β¼ 0:91, a liquidity shock l ¼ 30%with intensity
υ¼ 10%, the return on the risk-free rate r f ¼ 2%, the average return on the liquid and illiquid risky asset μS ¼ μX ¼ 9%, the
volatility of the liquid and illiquid risky asset σS ¼ σX ¼ 18:5%, the correlation coefficient ρSX ¼ 0, the income return d ¼ 0, the
trading intensity of the illiquid asset η¼50%, and the transactions costs ϕ¼ 1%.
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the investor rebalances back to the optimal allocation when outside of the no-
trading region. Compared to Constantinides (1986), the upper bound of the no-
trading region is lower in ourmodel; an over-investment in the illiquid asset relative
to the optimal amount may prevent the investor from smoothing consumption due
to the borrowing constraints and/or potential liquidity shocks. In order to avoid
these states of theworld, they re-balance back to the optimal illiquid asset allocation
more quickly as opposed to under-investment in the illiquid asset.

In the next subsections, we convert the suboptimal consumption and
asset allocation patterns resulting from illiquidity to implications for shadow costs
of holding illiquid assets.

C. Shadow Costs and the Investment Horizon

Perhaps the most straightforward, but nevertheless important result, is that the
willingness to pay depends on the investment horizon. Figure 5 shows that the
shorter the investor’s investment horizon amplifies the shadow cost. Illiquidity is
typically a bigger threat for short-term investors as they want to consume or payout
a large part of their total wealth compared to long-term investors. Under the baseline
parameters, the shadow cost demanded by an investor with a horizon equal to a
month equals 490 basis points, while this cost converges to only a few basis points
as the horizon T becomes large. The steep decline in shadow costs at the 1 to
3 months horizons results from transaction costs: At the 1 and 2 months investment
horizons, the expected excess return on the illiquid asset is below the 1% transaction
costs, making the illiquid asset unattractive. On the other hand, for an investor with
a horizon equal to 3 months, the expected excess return exceeds the transaction
costs.

FIGURE 4

No-Trading Region

Figure 4 shows the no-trading region of the investor with an investment horizon T ¼ 10 (in years) that uses the following
parameter values: the risk-aversion parameter γ¼ 5, the time-preference discount factor β¼ 0:91, a liquidity shock l ¼ 30%
with intensity υ¼10%, the return on the risk-free rate r f ¼ 2%, the average return on the liquid and illiquid risky asset
μS ¼ μX ¼ 9%, the volatility of the liquid and illiquid risky asset σS ¼ σX ¼ 18:5%, the correlation coefficient ρSX ¼ 0, the income
return d ¼ 0, the trading intensity of the illiquid asset η¼ 50%, and the transactions costs ϕ¼ 1%.
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D. Shadow Costs and Trading Opportunities

Higher trading opportunities decrease the willingness to pay for illiquidity.
Figure 6 shows that for the short-term investor (T ¼ 1 year) the shadow cost equals
60 basis points if the investor is unable to trade the illiquid asset before the final date
and decreases to 31 basis points when the probability to trade each month is high.
For long-term investors (T ¼ 10 years), the shadow cost equals 20 basis points if the
investor is unable to trade the illiquid asset before the final date and converges to
zero if the probability to trade each month is high. The relation between the trading
probability and the shadow cost is approximately linear for the short-term investor
but decreases exponentially for the long-term investor. The short-term investor
knows for sure that they are able to trade in 12 months from now on, so the trading
probability only affects trading opportunities in the upcoming 11months. However,
the inability to trade lengthens with a lower trading probability for the long-term
investor. As a result, the probability of scenarios where illiquid wealth grows too
fast relative to liquid wealth increases more rapidly at low trading probabilities for
the long-term investor compared to the short-term investor.

E. Shadow Costs and Transaction Costs

Figure 7 shows that rising transaction costs increase the willingness to pay for
both short-term (T ¼ 1 year) and long-term (T ¼ 10 year) investors. Nevertheless,
the increase is more substantial for the short-term investor, such that a 1 percentage
point increase in transaction costs increases the shadow cost demanded by approx-
imately 10 basis points. Short-term investors always liquidate their illiquid wealth
12 months from now, and they can only do so at cost ϕ. Long-term investors only

FIGURE 5

The Shadow Costs As a Function of the Investment Horizon

Figure 5 shows the shadow costs as a function of the investment horizon T (in months) that assumes the following parameter
values: the risk-aversion parameter γ¼5, the time-preference discount factor β¼ 0:91, a liquidity shock l ¼ 30%with intensity
υ¼ 10%, the return on the risk-free rate r f ¼ 2%, the average return on the liquid and illiquid risky asset μS ¼ μX ¼ 9%, the
volatility of the liquid and illiquid risky asset σS ¼ σX ¼ 18:5%, the correlation coefficient ρSX ¼ 0, the income return d ¼ 0, the
trading intensity of the illiquid asset η¼50%, and the transactions costs ϕ¼ 1%.
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liquidate their illiquid wealth at proportional cost ϕ if the realized illiquid
asset allocation deviates too much from the optimal level. As a result, the shadow
cost increases by only 1–2 basis points when transaction costs increase by 1 per-
centage point. This increase confirms earlier results from Constantinides (1986),

FIGURE 6

The Shadow Costs As a Function of the Trading Probability

Figure 6 shows the shadow costs as a function of the monthly trading probability p ¼ 1� exp �ηhð Þð Þ for the investor at
horizons T ¼ 1 and T ¼ 10 (in years) that assumes the following parameter values: the risk-aversion parameter γ¼5, the time-
preference discount factor β¼ 0:91, a liquidity shock l ¼ 30%with intensity υ¼ 10%, the return on the risk-free rate r f ¼ 2%, the
average return on the liquid and illiquid risky asset μS ¼ μX ¼ 9%, the volatility of the liquid and illiquid risky asset
σS ¼ σX ¼18:5%, the correlation coefficient ρSX ¼ 0, the income return d ¼ 0, and the transactions costs ϕ¼1%.
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FIGURE 7

The Shadow Costs As a Function of the Transaction Costs

Figure 7 shows the shadow costs as a function of the transaction costs ϕ for the investor at horizons T ¼1 and T ¼ 10 (in years)
that assumes the followingparameter values: the risk-aversionparameter γ¼ 5, the time-preferencediscount factor β¼ 0:91, a
liquidity shock l ¼ 30% with intensity υ¼ 10%, the return on the risk-free rate r f ¼ 2%, the average return on the liquid and
illiquid risky asset μS ¼ μX ¼9%, the volatility of the liquid and illiquid risky asset σS ¼ σX ¼ 18:5%, the correlation coefficient
ρSX ¼ 0, the income return d ¼ 0, and the trading intensity of the illiquid asset η¼ 50%.
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where the investor has an infinite horizon and transactions costs endogenously
decrease their trading frequency in the illiquid asset. The larger the transaction
costs, the larger the investor’s no-trading region. As the investor’s value function is
fairly insensitive to small deviations from the optimal (nontransaction) portfolio
allocation, the transaction costs lead to second-order effects on shadow costs.

F. Shadow Costs and Liquidity Shocks

Figure 8 shows that the shadow cost is hump-shaped in the level of the
liquidity shock. This hump-shaped relation means that the shadow cost is amplified
when the level of the liquidity shock increases up to a shock of l¼ 50% for the short-
term investors and l¼ 60% for the long-term investors, but decreases again for
larger shocks. Because a liquidity shock can only be financed out of liquid wealth, a
shock increases the probability that liquid wealth becomes insufficient to fulfill
consumption needs. In order to prevent these states of the world, the investor
reduces their optimal allocation to the illiquid asset substantially as compared to
the liquid case and shadow costs increase. However, when the liquidity shock gets
too severe, the allocation to the illiquid asset if it were fully liquid also gets closer to
zero. Such large liquidity shocks make risky assets unattractive also in the fully
liquid case, and as a result, shadow costs drop.

For the baseline parameter values, Figure 9 shows that the shadow costs are
slightly lower when we model the liquidity shock as a temporary increase in
consumption (Problem II.2). To remain able to smooth consumption, the optimal
consumption level decreases if the liquidity shock results in a temporary increase in
consumption (Panel A of Table 2). Hence, the budget constraint for liquid wealth,
equation (3), becomes less stringent and shadow costs drop.

This effect becomes more apparent if we increase the occurrence of the
liquidity shock compared to the baseline where the liquidity shock occurs only
once in 10 years. A high probability of facing liquidity shocks reduces shadow
costs in general, because consumption decreases more substantially also if the
illiquid asset is fully liquid and the budget constraint for liquid wealth becomes
less binding. As a result, both the dashed red and the dotted-dashed purple line
that represent a monthly liquidity shock probability of q¼ 90% are below the
lines of the cases where the liquidity shock occurs with probability q¼ 0:83%.
Yet, if the liquidity shock occurs frequently, the optimal consumption level
decreases more substantially to ensure consumption smoothing over time in
case the liquidity shocks increase temporary consumption, reducing the shadow
costs (Table 2, Panel B).7 If the liquidity shock occurs with probability q¼ 90%
each month, the shadow costs equal to 38 basis points for the interpretation of
the liquidity shock as a sudden decrease in liquid wealth for the investor with a
1-year horizon, but reduce to 16 basis points when the liquidity shock increases
temporary consumption.

7For a high probability of facing liquidity shocks, consumption turns on average negative if the
liquidity shock increases temporary consumption, however, Lt þCt remains positive and the objective
function in Problem II.2 is identified.
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FIGURE 8

The Shadow Costs As a Function of the Level Liquidity Shock

Figure 8 shows the shadowcosts as a function of the level liquidity shock l for the investor at horizon T ¼ 1 andT ¼ 10 (in years)
that assumes the following parameter values: the risk-aversion parameter γ¼ 5, the time-preference discount factor β¼ 0:91,
intensity of the liquidity shock υ¼ 10%, the return on the risk-free rate r f ¼ 2%, the average return on the liquid and illiquid risky
asset μS ¼ μX ¼ 9%, the volatility of the liquid and illiquid risky asset σS ¼ σX ¼ 18:5%, the correlation coefficient ρSX ¼ 0, the
income return d ¼ 0, the trading intensity of the illiquid asset η¼ 50%, and the transactions costs ϕ¼ 1%.
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FIGURE 9

The Shadow Costs and Two Interpretations for the Liquidity Shock

Figure 9 shows the shadow costs as a function of the investment horizon T (≥2), comparing the liquidity shock modeled as a
temporary increase in consumption to the baseline specification. We show the results for monthly liquidity shock probabilities
q¼ 0:83% and q¼90%. We use the following parameter values: the risk-aversion parameter γ¼ 5, the time-preference
discount factor β¼ 0:91, a liquidity shock l ¼ 30%, the return on the risk-free rate r f ¼ 2%, the average return on the liquid
and illiquid risky asset μS ¼ μX ¼ 9%, the volatility of the liquid and illiquid risky asset σS ¼ σX ¼ 18:5%, the correlation
coefficient ρSX ¼ 0, the income return d ¼ 0, the trading intensity of the illiquid asset η¼ 50%, and the transactions costs
ϕ¼ 1%.
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G. Shadow Costs and Income Return

Figure 10 shows that the shadow costs are decreasing in the level of income
return, although the magnitude of the effects is relatively small. For the short-term
investor (T ¼ 1 year), returns on the illiquid asset that consist of capital gains only
result in shadow costs equal to 61 basis points, and this cost decreases to 41 basis
points if the return on the illiquid asset is fully paid as income. For the long-term
investor, the shadow cost of illiquiditywithout income return equals 12 basis points,
and this decreases to 5 basis points if the return consists fully of income. For the
levels of income return we consider, its effect on reducing the shadow costs is
limited, because the income return is a fairly small fraction of the total return on
liquid and illiquid assets combined.

H. Shadow Costs and Price of Risk

Figure 11 shows that a higher price of risk for the illiquid asset strongly
amplifies shadow costs. A higher price of risk increases the illiquid asset’s attrac-
tiveness so that the optimal fraction of wealth allocated to it increases in case the
illiquid asset becomes fully liquid. The higher the fraction of total wealth that the

TABLE 2

Optimal Strategies Two Interpretations for the Liquidity Shock

Table 2 shows the optimal allocation to the illiquid asset and the corresponding optimal consumption level for the baseline
specification and when the liquidity shock is modeled as a temporary increase in consumption, for an investor with horizon
T (in months). We show the results for monthly liquidity shock probabilities of q¼ 0:83% and q¼ 90%. We use the following
parameter values: the risk-aversion parameter γ¼ 5, the time-preference discount factor β¼ 0:91, a liquidity shock l ¼ 30%,
the return on the risk-free rate r f ¼ 2%, the average return on the liquid and illiquid risky asset μS ¼ μX ¼ 9%, the volatility of the
liquid and illiquid risky asset σS ¼ σX ¼ 18:5%, the correlation coefficient ρSX ¼ 0, the income return d ¼ 0, the trading intensity
of the illiquid asset η¼ 50%, and the transactions costs ϕ¼ 1%. The optimal consumption level is determinedwhen the investor
can trade the illiquid asset and asa result, it does not dependon the endogenous state variable ξ t . All values are in percentage
points.

Baseline Increase Consumption Lt
T ξ∗t α∗t ξ∗t α∗t Diff. α∗t
Panel A. Monthly Liquidity Shock Probability q¼ 0:83%

1 5.75 47.74 5.80 47.69 �0.05
2 17.22 32.32 18.18 32.21 �0.12
3 21.15 24.34 23.76 24.24 �0.09
4 22.36 19.51 28.53 19.38 �0.12
5 27.48 16.29 27.44 16.17 �0.12
6 26.73 13.96 26.69 13.83 �0.14
7 26.20 12.22 26.16 12.09 �0.13
8 25.81 10.87 25.77 10.74 �0.13
9 25.49 9.78 25.46 9.66 �0.12
10 25.25 8.90 25.21 8.75 �0.15
11 25.04 8.16 25.00 8.02 �0.14
12 24.87 7.53 24.84 7.41 �0.12

Panel B. Monthly Liquidity Shock Probability q¼ 90%

1 6.19 35.42 5.13 21.99 �13.43
2 19.90 19.61 16.92 5.45 �14.15
3 23.97 12.39 21.40 �2.78 �15.17
4 20.74 8.38 23.22 �7.68 �16.06
5 22.31 5.89 24.33 �10.99 �16.88
6 21.93 4.25 25.59 �13.32 �17.57
7 24.77 3.11 26.09 �14.99 �18.10
8 24.57 2.31 26.61 �16.48 �18.79
9 24.42 1.73 27.22 �17.54 �19.27
10 24.32 1.30 27.02 �18.41 �19.71
11 25.25 0.98 27.69 �19.19 �20.17
12 25.19 0.75 28.38 �19.81 �20.56
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investor optimally wants to invest in the illiquid asset, the stronger the threat
of illiquidity. Because the investor cannot borrow against the illiquid asset and to
remain able to smooth consumption, the gap between the optimal allocation to the
illiquid asset compared towhen it is fully liquidwidens as the illiquid asset becomes

FIGURE 10

The Shadow Costs As a Function of Income Return

Figure 10 shows the shadow costs as a function of the income return d for the investor at horizon T ¼ 1 and T ¼10 (in years)
that assumes the followingparameter values: the risk-aversionparameter γ¼ 5, the time-preferencediscount factor β¼ 0:91, a
liquidity shock l ¼ 30% with intensity υ¼ 10%, the return on the risk-free rate r f ¼ 2%, the average return on the liquid and
illiquid risky asset μS ¼ μX ¼9%, the volatility of the liquid and illiquid risky asset σS ¼ σX ¼ 18:5%, the correlation coefficient
ρSX ¼ 0, the trading intensity of the illiquid asset η¼ 50%, and the transactions costs ϕ¼ 1%.
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FIGURE 11

The Shadow Costs As a Function of the Price of Risk

Figure 11 shows the shadow costs as a function of the expected return of the illiquid asset for the investor at horizon T ¼1 and
T ¼10 (in years) that assumes the following parameter values: the risk-aversion parameter γ¼ 5, the time-preference discount
factor β¼ 0:91, a liquidity shock l ¼ 30%with intensity υ¼ 10%, the return on the risk-free rate r f ¼ 2%, the average return on the
liquid risky asset μS ¼ 9%, the volatility of the liquid and illiquid risky asset σS ¼ σX ¼ 18:5%, the correlation coefficient ρSX ¼ 0,
the income return d ¼ 0, the trading intensity of the illiquid asset η¼ 50%, and the transactions costs ϕ¼ 1%.
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more attractive. These findings are consistent with Kahl, Liu, and Longstaff (2003)
and Longstaff (2009) who show that the welfare effects of illiquidity are much
larger whenmorewealth is tied up in the illiquid asset. For ease of interpretation, we
show the shadow costs as a function of the expected return as the driver of the price
of risk. However, we obtain similar results if we adjust the standard deviation. A
lower standard deviation increases the optimal allocation to the illiquid asset if its
also liquid and hence shadow costs are amplified. Similarly, a low correlation
between the illiquid and the liquid risky asset increases the optimal allocation to
the illiquid asset, leading to higher shadow costs of illiquidity.

I. Shadow Costs in Four Asset Classes

The previous subsections show that the shadow costs are high for short-term
investors, investors who face substantial liquidity shocks, and investors who desire
to allocate a large fraction of their wealth to illiquid assets. Next, to provide
perspective on the quantitative and qualitative implications of the model, we
compute rough estimates of the shadow costs of illiquidity in different asset
classes. The asset classes we consider are private equity, real estate, corporate
bonds, and stocks. To quantify shadow costs of illiquidity in each asset class, we
use parameter values that we feel are representative for the asset class in consid-
eration. We provide these as stylized examples to illustrate the effect of illiquidity
in different markets.

Throughout, we assume that the liquid risky asset S represents a liquid stock
index.We use the annualizedmean and the standard deviation of the S&P500 Index
to model the diversified liquid stock index. Calibrated over the last 25 years, the
average return is μS ¼ 11:3% and the standard deviation σS ¼ 17:8%. Moreover, we
use as the risk-free rate the annualized 1-year Treasury yield over the last 25 years
that gives us rf ¼ 2:8%.

The preferences of investors in each market are less well-known, as
researchers only have a very rough idea about investors’ investment horizons
and their liquidity needs that are usually represented as holdings periods (e.g.,
Atkins and Dyl (1997)) or investors’ funding constraints (e.g., Chen, Huang,
Sun,Yao, andYu (2020)). Thesemeasures are generally incomplete as these proxies
do not measure other liquidity risks such as margin calls on derivative positions or
rare disasters that investors potentially face. For this reason, we provide qualitative
indicators of investors’ preferences for each asset class.

Despite this drawback, we argue that our findings can be interpreted as upper
bounds on the shadow costs of illiquidity in each of the asset classes. We make two
assumptions that are more likely to overestimate rather than to underestimate the
shadow costs. First, we assume that the investors cannot borrow against the illiquid
assets. This constraint may be a realistic assumption for some asset classes but not
for others. For instance, real estate investors are typically able to borrow a substan-
tial amount using the property as collateral. However, taking this borrowing into
account decreases shadow costs because the investors can partially undo the illi-
quidity of the asset. Second, we allow for liquidity shocks as large as 50% of the
investors’ total wealth. Even though larger wealth shocks are in practice possible,
our model shows that investors substantially reduce their risky asset allocation if
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faced with such shocks also in the fully liquid case. As a result, large liquidity
shocks do not necessarily have a positive effect on shadow costs (Figure 8).

1. Private Equity

To assess the shadow costs for private equity, we use the mean and standard
deviation of the S&P500 Index tomodel the liquid counterpart of the illiquid private
equity investment in our model, as the S&P500 Index is generally taken as the
benchmark for private equity (see, e.g., Franzoni et al. (2012) and Harris et al.
(2014)). This benchmarkmeans that μX ¼ 11:3% and σX ¼ 17:8%.We do not take a
stance on the correlation between private equity and the S&P500 Index. The
performance of private equity varies substantially across investments, as for
instance noted by Phalippou and Gottschalg (2009) (and as a result the correlation
coefficient varies across the specifications as well). We therefore analyze the results
for the correlation coefficients of ρSX ¼ 0:25 (baseline) and ρSX ¼ 0:60.

Private equity contracts generally run for 10 years, and trading is unusual
before a contract expires (Metrick and Yasuda (2010)). Therefore, we set η¼ p¼ 0
over the first 10 years of the investment horizon.8 We furthermore assume that the
transaction cost at exiting the contract is ϕ¼ 1%. A study by Dechert and Preqin
(2011) shows that transaction fees at completion of a private equity contract vary
between 0.84% and 1.25% depending on the size of the investment.

Turning to investors’ preferences in the private equity market, we posit that
they likely have a low demand for liquidity, as the lock-up period of private equity is
long and known beforehand. Indeed, Harris et al. (2014) report that for the Burgiss
database that covers $1 trillion of committed capital to private equity over 20% is
held by endowment funds and 60% by pension funds. Hence, we analyze the
shadow costs for horizons equal to T ¼ 10 (baseline) and T ¼ 15. Finally, we assess
the shadow cost for long-term investors who face different liquidity shocks. Across
these specifications, Panel A of Table 3 shows that the shadow costs for private
equity vary between 0 and 55 basis points.

2. Real Estate

To model a direct investment in real estate, we use the first two moments
of the S&P US Real Estate Investment Trust (REIT) Index to model the liquid
counterpart of a direct real estate investment: μX ¼ 12:22% and σX ¼ 18:31%. The
correlation coefficient between the liquid and illiquid asset is calibrated as the
correlation between the S&P500 Index and S&P US REIT Index, which equals
ρSX ¼ 0:4.

The return on real estate includes both the income return and capital gains.
The income return refers to the rent on properties, so the real estate returns are
partially liquid. Following Hardin III, Liano, and Huang (2002) we assume that
the income return or rent payments explain the majority of the total investment
returns for REITs. In the model, we therefore set the income return equal to
d¼ μX � rf . The volatility is instead largely defined by the volatility in the capital

8Another distinct feature of private equity is that they usually involve capital commitment agree-
ments. The investor agrees to provide a preset amount of capital over the first 3–5 years of the project.
Yet, the capital commitment is preset, so we treat it as an upfront investment in our model.
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gains, and we therefore assume that the volatility relates to volatility in capital
gains only.

To describe the illiquidity parameters for real estate, we set transaction costs
equal to ϕ¼ 6%, in line with estimates by Ommeren (2008). The typical time
between transactions for residential housing is 4–5 years and 8–11 years for institu-
tional real estate (see, e.g., Hansen (1998) and Miller, Peng, and Sklarz (2011)). We
thus assume trading intensities η in the range of 10% and 20% (baseline), which
equals amonthly trading probability of p¼ 0:83% or p¼ 1:65%.We are not aware of
public holdings data on real estate. However, pension funds are large investors in
real estate markets worldwide (Watson (2018)). We therefore conjecture that the
majority of investors are either medium term (T ¼ 5) or long term (T ¼ 10, baseline).
Across these specifications, we find that shadow costs are in the range of 0–71 basis
points (Table 3, Panel B).

TABLE 3

Shadow Costs in Four Asset Classes

Table 3 shows the shadowcosts in basis points for investorswho face liquidity shock l in four asset classes: private equity, real
estate, corporate bonds, and stocks. In all asset classes we assume the following parameter values: risk-aversion parameter
γ¼ 5, time-preference discount factor β¼ 0:91, return on the risk-free rate r f ¼2:8%, average and standard deviation of the
return on the liquid risky asset μS ¼ 11:3% and σS ¼ 17:8%. For each asset class we then use different parameter values to
characterize that asset class. Private equity: horizon T ¼10 year, average and standard deviation of the return on the illiquid
asset μX ¼ 11:3% and σX ¼ 17:8%, the correlation coefficient ρSX ¼ 0:25, the income return d ¼ 0, the trading intensity of the
illiquid asset η¼ 0 (p¼0), and the transaction costs equal to ϕ¼ 1%. Real estate: horizon T ¼ 10 year, average and standard
deviation of the return on the illiquid asset μX ¼ 12:2% and σX ¼ 18:3%, the correlation coefficient ρSX ¼ 0:4, the income return
d ¼ 9:4%, trading intensity η¼ 0:2 (p¼ 1:65%), and the transaction costs ϕ¼6%. Corporate bonds: horizon T ¼ 10 year,
average and standard deviation of the return on the illiquid asset μX ¼ 7:0% and σX ¼ 6:6%, the correlation coefficient
ρSX ¼ 0:35, the income return d ¼4:2%, the trading intensity of the illiquid asset η¼ 28 p¼90%ð Þ, and transaction costs
ϕ¼ 0:46%. Stocks: horizon T ¼ 1 year, average and standard deviation of the return on the illiquid asset μX ¼ 11:3% and
σX ¼ 17:8%, the correlation coefficient ρSX ¼0:8, the income returnd ¼ 0, the trading intensity of the illiquid asset η¼∞ (p¼ 1),
and transaction costs ϕ¼ 4:0%.

Panel A. Private Equity

Baseline ρ¼ 0:6 T ¼ 15 ρ¼ 0:6, T ¼ 15

Liquidity shock
0:0 4 0 0 0
0:3 23 12 8 4
0:5 55 29 24 9

Panel B. Real Estate

Baseline η¼ 10% T ¼ 5 η¼ 10%, T ¼ 5

Liquidity shock
0:0 0 1 4 6
0:3 16 16 28 33
0:5 36 39 51 71

Panel C. Corporate Bonds

Baseline ϕ¼0:58% T ¼ 1 ϕ¼0:58%, T ¼1

Liquidity shock
0:0 80 85 74 79
0:3 64 65 50 59
0:5 35 38 26 32

Panel D. Stocks

Baseline ϕ¼ 8% T ¼ 10 ϕ¼ 8%, T ¼ 10

Liquidity shock
0:0 54 108 0 0
0:3 50 100 6 11
0:5 46 83 12 17
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3. Corporate Bonds

Weuse the first twomoments of the Bloomberg Barclays U.S. Corporate Bond
Index to model the liquid counterpart of corporate bonds: μX ¼ 7:0% and
σX ¼ 6:6%. We calibrate the correlation coefficient as the correlation between the
Bloomberg Barclays US Corporate Bond Index and the S&P500 Index, which
equals ρSX ¼ 0:35. Finally, we assume fixed coupon payments, and as for real
estate, we assume that the income return equals d¼ μX � rf .

Turning to the illiquidity parameters, we set transaction costs equal to ϕ¼
0:46% (baseline) and ϕ¼ 0:58% (Bongaerts et al. (2017)). We translate the periods
between trades found in Bao et al. (2011) and Bongaerts et al. (2017) to monthly
trading probabilities that equal p¼ 90%, which means trades occur on average
slightly less than once a month.9

The Financial Accounts of the United States (Fed (2020)) reports the holdings
of several asset classes within the United States by investor type. We define long-
term investors as the insurance companies, pension funds, and the government. The
short-term investors are the banks, broker-dealers, households, and mutual funds.
The Fed (2020) reports that for 2019, 38% of corporate bonds were held by long-
term investors and 34%by short-term investors. The remaining 28%of the holdings
are unspecified. We therefore analyze the shadow costs for investors with horizons
equal to T ¼ 1 year and T ¼ 10 years (baseline). Across these specifications, we
find shadow costs in the range of 26–85 basis points for corporate bonds (Panel C of
Table 3).

4. Stocks

For our model, we again use the first two moments of the S&P500 Index to
model the liquid counterpart of the illiquid stock, so μX ¼ 11:3% and σX ¼ 17:8%.
Equity asset classes, such as small-growth stocks, are highly correlated with the US
stockmarket, so we set ρSX ¼ 0:8:Given the improved liquidity of U.S. equities, we
assume that the monthly trading probability equals p¼ 100%. The transaction costs
for stocks range from 0.25% for the most liquid stocks to 8% for the least liquid
stocks (Beber, Driessen, Neuberger, and Tuijp (2021)). We therefore assess the
shadow cost for transaction costs equal to 4% (baseline) and 8%.

The Fed (2020) reports that for 2019, 13% of U.S. corporate equity is held by
long-term investors and 70% by short-term investors. The remaining 17% of the
holdings are unspecified. We therefore again assess shadow costs for investment
horizonsT ¼ 1 year (baseline) andT ¼ 10 years.Across these specifications, PanelD
of Table 3 shows shadow costs in the range of 0–108 basis points for illiquid stocks.

IV. Conclusion

In this study, we solve a flexible model that captures transactions costs
and infrequencies of trading opportunities for illiquid assets to achieve better

9For instance, Bao et al. (2011) show an annualized turnover of corporate bonds that varies between
25% and 35% and Bongaerts et al. (2017) show that 15% to 25% of corporate bonds are not traded in a
given week.
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understanding of the shadow costs of illiquidity. The cost of illiquidity may be
twofold: suboptimal asset allocation and suboptimal consumption smoothing. We
show that only the illiquidity that results in suboptimal consumption smoothing is
able to generate substantial shadow costs, while the illiquidity that leads to sub-
optimal asset allocations does not. Hence, we find that the shadow costs are larger
for short-term investors, investors who face substantial liquidity shocks, and inves-
tors who desire to allocate a large fraction of their wealth to illiquid assets if the
same illiquid asset would otherwise be liquid. Looking at separate asset classes,
back-of-the-envelope calculations suggest low average shadow costs for private
equity and direct real estate, but these costs can become substantial for illiquid
stocks and corporate bonds.

Appendix A. Proof of Optimal Consumption and
Investment Strategies

Proof of Theorem II.3. Instead of the endogenous variables (Wt, X t), we use the
pair WtþX t,ξ tð Þ as endogenous state variables. That is, we write

Ct ¼ αt W tþX t,ξ tð Þ WtþX tð Þ,(A-1)

θt ¼ θt W tþX t,ξ tð Þ:(A-2)

Now, rewrite the evolution of total wealth WtþX t using budget constraints
(3) and (4) as:

WtþX t ¼ Wt�hþX t�hð Þ
� 1� ξ t�h�αt�h�ϕ Δξ t�hj j�lt�hð Þ½
� exp r hð Þ

f

� �
þθt�h exp rSt

� 	� exp r hð Þ
f

� �� �� �
þξ t�h exp dð Þþ ξ t�h exp rXt

� 	� exp dð Þ� 	�,(A-3)

ξ t ¼
ξ t�h exp rXt

� 	� exp dð Þ� 	
1� ξ t�h�αt�h�ϕ Δξ t�hj j�lt�hð Þ� exp r hð Þ

f

� �
þθt�h exp rSt

� 	� exp r hð Þ
f

� �� �� �
þ ξ t�h exp dð Þþ ξ t�h exp rXt

� 	� exp dð Þ� 	
,(A-4)

where Δξ t�h ¼ ξ∗t�h� ξ t�h if 1
T
t�h ¼ 1 and Δξ t�h ¼ 0 if 1Tt�h ¼ 0.

The proof is by backward induction. At the final horizon t¼T , the claim is
obviously correct with αT � 1 and HT ξTð Þ� 1�ϕξTð Þ1�γ. At time T , θT is irrelevant.
Now, for the induction argument, assume that (12)–(15) holds at time t. Then, we need to
show that (12)–(15) also holds at time t�h. From the value function (9), evaluated at
time t�h and substituting (12), we find:
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(A-5) V t�h W t�hþX t�h,ξ t�hð Þ

¼ max
θt ,ξ t ,Ct

βt�h C
1�γ
t�h

1� γ
þEt�hV t W tþX t,ξ tð Þ

¼ max
θt ,ξ t ,Ct

βt�h αt�h W t�hþX t�hð Þð Þ1�γ

1� γ

þEt�h βt
W tþX tð Þ1�γ

1� γ
Ht ξ tð Þ

" #

¼ max
θt ,ξ t ,Ct

βt�h W t�hþX t�hð Þ1�γ

1� γ

� α1�γ
t�h þβEt�h 1� ξ t�h�αt�h�ϕ Δξ t�hj j� lt�hð Þf½

�
� exp r hð Þ

f

� �
þθt�h exp rSt

� 	� exp r hð Þ
f

� �� �� �
þ ξ t�h exp dð Þ

þξ t�h exp rXt
� 	� exp dð Þ� 	g1�γHt ξ tð Þ�Þ

¼ max
θt ,ξ t ,Ct

βt�h W t�hþX t�hð Þ1�γ

1� γ
Ht ξ tð Þ:

At time t�h, the penalty function Ht�h ξ t�hð Þ equals:

(A-6) Ht�h ξ t�hð Þ¼ α1�γ
t�h þβEt�h

h
1� ξ t�h�αt�h�ϕjΔξ t�hj� lt�hð Þf

� exp r hð Þ
f

� �
þθt�h exp rSt

� 	� exp r hð Þ
f

� �� �� �
þξ t�h exp dð Þþ ξ t�h exp rXt

� 	� exp dð Þ� 	g1�γHt ξ tð Þ
i
:

Therefore, the function Ht�h ξ t�hð Þ is a function of t�h and ξ t�h only and hence
(12) holds for all t. We continue with proving (13) and (14) at time t�h. The first-order
conditions of the decision variables αt�h and θt�h equal

αUC∗t�h ¼ argmax
αt�h

αt�h W t�hþX t�hð Þð Þ1�γ

1� γ
þEt�hV t W tþX t,ξ tð Þ,(A-7)

θ∗t�h ¼ argmax
θt�h

αt�h W t�hþX t�hð Þð Þ1�γ

1� γ
þEt�hV t W tþX t,ξ tð Þ,(A-8)

where αUC∗t�h is the solution if the investor were unconstrained (i.e., when constraint
(5) does not bind). Because we assume that the investor cannot borrow against the
illiquid asset the constrained solution becomes

αC∗t�h ¼
αUC∗t�h if αUC∗t�h ≤ 1� ξ t�h� l

1� ξ t�h� l if αUC∗t�h > 1� ξ t�h� l:

(
(A-9)

We can now rewrite (A-7) and (A-8) as

Jansen and Werker 2719

https://doi.org/10.1017/S0022109022000473  Published online by Cam
bridge U

niversity Press

https://doi.org/10.1017/S0022109022000473


∂V t�h

∂αt�h
¼ βt�h αt�h W t�hþX t�hð Þð Þ�γ

�Et�h
∂V t

∂WtþX t
exp r hð Þ

f

� �
þθt�h exp rSt

� 	� exp r hð Þ
f

� �� �� �
 �

þEt�h
∂V t

∂ξ t
ξ t

1

WtþX t
exp r hð Þ

f

� �
þθt�h exp rSt

� 	� exp r hð Þ
f

� �� �� �
 �
¼ 0,

(A-10)

∂V t�h

∂θt�h
¼Et�h

∂V t

∂WtþX t
exp rSt

� 	� exp r hð Þ
f

� �� �
 �

þEt�h
∂V t

∂ξ t
ξ t

1

WtþX t
exp rSt

� 	� exp r hð Þ
f

� �� �
 �
¼ 0:

(A-11)

To see that both α∗t�h and θ
∗
t�h depend only on ξ t�h, we solve (A-10) and (A-11) and

substitute (A-3) into (A-10) and (A-11), we get

(A-12)
∂V t�h

∂αt�h
= α�γ

t�hþβEt�h 1� ξ t�h�αt�h�ϕ Δξ t�hj j�lt�hð Þf½

exp r hð Þ
f

� �
þθt�h exp rSt

� 	� exp r hð Þ
f

� �� �
Þþ ξ t�h exp dð Þ

�
þξ t�h exp rXt

� 	� exp dð Þ� 	g�γ

� Ht
0 ξ tð Þ

1� γ
ξ t�Ht ξ tð Þ

� �
exp r hð Þ

f

� �
�= 0,

(A-13)
∂V t�h

∂θt�h
=Et�h 1� ξ t�h�αt�h�ϕ Δξ t�hj j� lt�hð Þ exp r hð Þ

f

� ��nh
þθt�h exp rSt

� 	� exp r hð Þ
f

� �� �
Þþ ξ t�h exp dð Þ

þξ t�h exp rXt
� 	� exp dð Þ� 	g�γ

� Ht ξ tð Þ�Ht0 ξ tð Þ
1� γ

ξ t

� �
exp rSt

� 	� exp r hð Þ
f

� �� �
�= 0:

The first-order conditions (A-12) and (A-13) depend only on time t�h and the
fraction invested in the illiquid asset ξ t�h. In this way, the optimal consumption and the
fraction invested in the liquid risky assets can indeed be written as in (13) and (14), so
(13) and (14) from (12)–(15) holds for all t.We finish the proof by showing that (15) also
holds at time t�h. When a trading opportunity arises at t�h, the investor chooses ξ t�h

such that the value function at t�h is optimized:

ξ∗t�h ¼ argmax
ξ t�h

V t�h W t�hþX t�h,ξ t�hð Þ

¼ argmax
ξ t�h

βt�h W t�hþX t�hð Þ1�γ

1� γ
Ht�h ξ t�hð Þ

¼ argmax
ξ t�h

Ht�h ξ t�hð Þ:

(A-14)

□
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Appendix B. Numerical Implementation

Appendix B provides an outline of the numerical method to solve the baseline
model. First, we describe the sequence of making decisions. Second, we explain the
numerical solution technique to solve the decision variables.

Figure B1 depicts the sequence of making decisions. The endogenous variables,
liquid wealthWt and illiquid wealth X t, are defined as total wealth before consumption,
liquidity shocks, and returns earned in period t, tþhð �. Based on the actual fraction
allocated to the illiquid asset ξ t, the investor chooses the optimal fraction of total wealth
to be consumed in period t, tþhð �, α∗t ξ tð Þ, and the optimal allocation toward the liquid
risky asset, θ∗t ξ tð Þ. If a trading opportunity arises at time t, the investor chooses
simultaneously ξ∗t , α

∗
t ξ∗t
� 	

and θ∗t ξ∗t
� 	

. Further, by the assumption X 0≥0 and the
inability to borrow against the illiquid asset, the possible values for ξ t are restricted
to the interval 0,1½ �.

The model is solved by means of backward induction, where we start solving the
problem at the final date t¼T and solve the model backward for each period until
arriving at time t¼ 0: At the final horizon t¼T , the investor can always liquidate
illiquid wealth and we have αT � 1 and HT ξ tð Þ� 1�ϕξTð Þ1�γ. To solve for ξ∗T�h,
αt ξT�hð Þ, and θt ξT�hð Þ, we construct a grid for ξT�h∈ 0,1½ �. We simulate M ¼ 10,000
trajectories for the exogenous state variables, the returns on the liquid and illiquid risky
asset in period T �h,Tð �, rST and rXT , from a multinormal distribution with mean and
variance–covariance matrix as described in Section II. We also simulate M ¼ 10,000
trajectories for the liquidity shock indicator 1LT�h from a Bernoulli distribution as
described in Section II.

For each grid point, by using nonlinear least squares, we solve the first-order
conditions with respect to consumption (A-12) and the allocation toward the liquid
risky asset (A-13) by usingHT ξTð Þ� 1�ϕξTð Þ1�γ, rST , r

X
T , and 1

L
T�h to find α

∗
T�h ξT�hð Þ

and θ∗T�h ξT�hð Þ. Then we are able to compute HT�h ξT�hð Þ and solve for ξ∗T�h ¼
argmin ξT�h

HT�h ξT�hð Þ with the corresponding consumption level α∗T�h ξ∗T�h

� 	
and

the allocation to the liquid risky asset θ∗T�h ξ∗T�h

� 	
. This gives us the optimal solution

at time T �h.
We then solve for the optimal solution at time T �2h in the same way, except that

we also simulateM ¼ 10,000 trajectories for the trading indicator 1TT�h from a Bernoulli
distribution as described in Section II. In the scenarios the investor is able to trade
(1TT�h ¼ 1), we use HT�h ξ∗T�h

� 	
and in the scenarios the investor is unable to trade

(1TT�h ¼ 0), we use HT�h ξT�hð Þ. Together with rST�h, rXT�h, and 1LT�2h we find
α∗T�2h ξT�2hð Þ and θ∗T�2h ξT�2hð Þ. We again compute HT�2h ξT�2hð Þ and solve for
ξ∗T�2h ¼ argmin ξT�2h

HT�2h ξT�2hð Þ with the corresponding consumption level
α∗T�2h ξ∗T�2h

� 	
and the allocation to the liquid risky asset θ∗T�2h ξ∗T�2h

� 	
. We can continue

this approach until we arrive at t¼ 0.

FIGURE B1

Timeline

Figure B1 depicts the investor’s sequence of decision making.
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Supplementary Material

Supplementary Material for this article is available at https://doi.org/10.1017/
S0022109022000473.
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