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Abstract

Some classical examples in vector integration due to Phillips, Hagler and Talagrand are revisited from the
point of view of the Birkhoff and McShane integrals.

2000 Mathematics subject classification: primary 28B05, 46G10.

Keywords and phrases: Pettis integral, McShane integral, Birkhoff integral, universal integrability.

1. Introduction and preliminaries

Nowadays vector integration is considered as a classical and fruitful branch of
functional analysis. While the Bochner and Pettis integrals have been the preeminent
notions in this context, recent studies make clear that others, such as the Birkhoff and
McShane integrals, play a relevant role and can be an interesting alternative to the
Pettis integral in several situations; see, for example, [1, 3–5, 8–10, 17–20, 22, 23].

In this note we revisit some classical examples which illuminated some aspects
of the Pettis integral theory, but now discussing their relevance to the Birkhoff and
McShane integrals. We pay attention to:
• Phillips’ example of a Pettis integrable function which is not Birkhoff integrable

[15, Example 10.2];
• Hagler’s example of a scalarly measurable `∞-valued function which is not

strongly measurable [6, p. 43];
• Talagrand’s example of a bounded Pettis integrable function having no

conditional expectation [24, Example 6-4-2].
Moreover, our discussion leads to several open questions which might stimulate further
research on vector integration.

The books [6] and [24] are two standard references on this topic. Let us recall the
definitions of the Birkhoff and McShane integrals. A function f :�→ X , defined on
a probability space (�, 6, µ) and taking values in a Banach space X , is called Birkhoff

Research partially supported by MEC and FEDER (project MTM2005-08379) and Generalitat
Valenciana (project GVPRE/2008/312).
c© 2009 Australian Mathematical Publishing Association Inc. 0004-9727/2009 $16.00

384

https://doi.org/10.1017/S0004972709000367 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972709000367


[2] Some examples in vector integration 385

integrable, with ‘integral’ x ∈ X , if for every ε > 0 there is a countable partition (Am)

of � in 6 such that, for any choice of points tm ∈ Am , the series
∑

m µ(Am) f (tm)
converges unconditionally in X and ‖

∑
m µ(Am) f (tm)− x‖X ≤ ε.

A function f : K → X , defined on a compact Radon probability space (K , 6, µ)
and taking values in a Banach space X , is called McShane integrable, with ‘integral’
x ∈ X , if for every ε > 0 there is a gauge δ on K (that is, a function that maps each
t ∈ K to some open set δ(t)⊂ K containing t) such that the inequality∥∥∥∥ p∑

i=1

µ(Ei ) f (ti )− x

∥∥∥∥
X
≤ ε

holds for every finite partition E1, . . . , E p of K in6 and every choice of points ti ∈ K
with Ei ⊂ δ(ti ) for all 1≤ i ≤ p; such a collection {(Ei , ti )}1≤i≤p is called a McShane
partition of K subordinate to δ.

The relationship between these notions of integrability is

Bochner H⇒ Birkhoff H⇒McShane H⇒ Pettis,

the corresponding ‘integrals’ coincide and none of the reverse arrows holds in general,
see for example [8–10].

As usual, the topological dual and the closed unit ball of a Banach space X are
denoted by X∗ and BX , respectively. The norm of X is denoted by ‖ · ‖X .

2. Phillips’ example

The first example of a Pettis integrable function which is not Birkhoff integrable was
given by Phillips in [15, Example 10.2]. His function (see Example 2.1 below) is of the
form f : [0, 1] → `∞([0, 1]), where [0, 1] is equipped with the Lebesgue measure λ.
Such a function cannot be strongly measurable, since Pettis and Birkhoff integrability
are always equivalent for strongly measurable functions, [14, Corollary 5.11].

Phillips’ example was revisited by Riddle and Saab [16] who proved that f is
universally Pettis integrable (that is, Pettis integrable with respect to every Radon
probability on [0, 1]) while the family of compositions of f with elements of B`1([0,1])

{〈 f, y〉 | y ∈ B`1([0,1])} ⊂ R[0,1]

fails the so-called Bourgain property with respect to λ. In fact, this failure is equivalent
to the non-Birkhoff integrability of f with respect to λ, as follows from the recent
results of Cascales and the present author [3].

We next present Phillips’ function and prove that, in fact, it satisfies a stronger
integrability condition. Given two sets A ⊂ B, a Banach space X and h : B→ X ,
we write hχA to denote the X -valued function on B which agrees with h on A and
vanishes on B \ A.
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EXAMPLE 2.1. The function f : [0, 1] → `∞([0, 1]) defined by

f (t)(s) :=

{
1 if t − s is a dyadic rational

0 otherwise

is universally McShane integrable.

PROOF. Let µ be a Radon probability on [0, 1]. Then we can find a countable set
(maybe empty) C ⊂ [0, 1] such that µ({s})= 0 for all s ∈ D := [0, 1] \ C . Since f χC
is bounded and C is countable, f χC is Bochner integrable and so McShane integrable
with respect to µ. Since f = f χC + f χD , it only remains to show that f χD is also
McShane integrable with respect to µ.

Define an equivalence relation ∼ on [0, 1] by saying that t ∼ s if and only if t − s
is a dyadic rational, and choose a set G ⊂ [0, 1] such that for each s ∈ [0, 1] there is
a unique t ∈ G with t ∼ s. For each t ∈ [0, 1], let At be the (countable) set made up
of all s ∈ [0, 1] for which t ∼ s. Thus, f (t)= χAt for every t ∈ [0, 1] and [0, 1] is the
disjoint union of {At | t ∈ G}. Write At = {at,1, at,2, . . . } for all t ∈ G.

Fix ε > 0. Given s ∈ D, we have s = at,n for some t ∈ G and n ∈ N, and we can
choose an open set δ(s)⊂ [0, 1] containing s such that µ(δ(s))≤ ε/2n . On the other
hand, given s ∈ C , we define δ(s) := [0, 1]. Then δ is a gauge on [0, 1].

Let {(Ei , si )}1≤i≤p be any McShane partition of [0, 1] subordinate to δ. Assume
without loss of generality that si 6= s j whenever i 6= j . For each t ∈ G, let It be the set
(maybe empty) of all i ∈ {1, . . . , p} such that si ∈ At ∩ D. Since [0, 1] is the disjoint
union of {At | t ∈ G}, we can write

p∑
i=1

µ(Ei ) f χD(si )=
∑
t∈G

(∑
i∈It

µ(Ei )χAsi

)
=

∑
t∈G

(∑
i∈It

µ(Ei )

)
χAt (2.1)

(bear in mind that At = As whenever t ∼ s). Fix t ∈ G. For each i ∈ It there is ni ∈ N
such that si = at,ni . Since ni 6= n j whenever i, j ∈ It are distinct, we have∑

i∈It

µ(Ei )≤
∑
i∈It

µ(δ(at,ni ))≤
∑
i∈It

ε

2ni
≤ ε.

From the previous inequality and (2.1) it follows that∥∥∥∥ p∑
i=1

µ(Ei ) f χD(si )

∥∥∥∥
`∞([0,1])

≤ ε.

As ε > 0 is arbitrary, f χD is McShane integrable (with integral 0 ∈ X ) with respect
to µ. 2

It should be mentioned that, if K is a compact Hausdorff topological space
and X is a separable Banach space, then a bounded function from K to X∗ is
universally scalarly measurable if and only if it is universally Birkhoff integrable,
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see [18, Corollary 2]. This result relies on the work by Bourgain, Fremlin and
Talagrand [2]. Without the separability assumption such equivalence fails in general
(just bear in mind Phillips’ example), but one might ask whether universal Pettis
integrability is equivalent to universal McShane integrability.

In general, this question has a negative answer. Indeed, under the Continuum
Hypothesis, the author has constructed in [20, Example 4.1] a bounded function
h : [0, 1] → Y (where Y is a Banach space) which is not McShane integrable with
respect to λ and such that, for each y∗ ∈ Y ∗, the composition 〈h, y∗〉 vanishes up to a
countable set. It is easy to check that such an h is universally Pettis integrable. Clearly,
when h is considered as a Y ∗∗-valued function, h is universally Pettis integrable but
not universally McShane integrable.

QUESTION 2.2. Is there a ZFC (Zermelo–Fraenkel with Choice) example of a
universally Pettis integrable function which is not universally McShane integrable?

Any Pettis integrable function (defined on a compact Radon probability space)
which is not McShane integrable would be a natural candidate to test the previous
question. The example of Fremlin and Mendoza [10, 3C] does not give information
about this matter, as their function takes values in `∞ ∼= (`1)∗. Recently, Deville and
the present author [4] have given another ZFC example of a Pettis integrable function
which is not McShane integrable, now taking values in `1(c+) (as usual c+ denotes the
smallest cardinal greater than the continuum).

3. Hagler’s example

Hagler’s example [6, p. 43] exhibits a ‘nontrivial’ scalarly measurable `∞-valued
function which we denote by g (see Example 3.1 below). A suitable modification
of the range space allowed Edgar to construct a scalarly bounded function which is
not scalarly equivalent to a bounded function, see [24, Example 3-3-5]. Recently, the
present author [21] benefited from Edgar’s ideas to provide, for instance, a negative
answer to [13, Problem 4] by showing that the real-valued function ‖g(·)‖ is not
measurable for some equivalent norm ‖ · ‖ on `∞.

We next present Hagler’s function and point out that it is not only Pettis integrable
(as shown in [24, Example 4-2-4]) but also universally Birkhoff integrable. We
first give an elementary proof of its integrability with respect to the usual product
probability on {0, 1}N (denoted by µc). We write T :=

⋃
n∈N{0, 1}n and, given u =

(ui )i∈N ∈ {0, 1}N, we write Bu := {u|n : n ∈ N} ⊂ T , where u|n := (ui )
n
i=1 ∈ {0, 1}n .

For each m ∈ N and each τ ∈ {0, 1}m , set

Vτ := {u ∈ {0, 1}N : u|m = τ }.

EXAMPLE 3.1. The function g : {0, 1}N→ `∞(T ) defined by

g(u) := χBu

is Birkhoff integrable with respect to µc.
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PROOF. Fix ε > 0. We can choose n ∈ N large enough such that 2−n
≤ ε. Observe

that {Vσ | σ ∈ {0, 1}n} is a partition of {0, 1}N into finitely many clopen (so Borel) sets.
Take arbitrary points tσ , t ′σ ∈ Vσ for every σ ∈ {0, 1}n . We claim that∥∥∥∥ ∑

σ∈{0,1}n
µc(Vσ )g(tσ )−

∑
σ∈{0,1}n

µc(Vσ )g(t
′
σ )

∥∥∥∥
`∞(T )

≤ ε. (3.1)

Indeed, fix τ ∈ T and let πτ ∈ B`∞(T )∗ be the associated ‘evaluation functional’.
Observe that

〈g, πτ 〉(u)= χBu (τ )= χVτ (u) for every u ∈ {0, 1}N,

hence ∣∣∣∣πτ( ∑
σ∈{0,1}n

µc(Vσ )(g(tσ )− g(t ′σ ))

)∣∣∣∣≤ 1
2n

∑
σ∈{0,1}n

|χVτ (tσ )− χVτ (t
′
σ )|.

Take any σ ∈ {0, 1}n . Then |χVτ (tσ )− χVτ (t
′
σ )| is either 0 or 1. In the second case we

would have tσ ∈ Vτ and t ′σ 6∈ Vτ or vice versa, so that Vσ ∩ Vτ 6= ∅ and Vσ \ Vτ 6= ∅,
hence Vτ ⊂ Vσ . Since Vτ can be contained at most in one of the Vσ , it follows that∣∣∣∣πτ( ∑

σ∈{0,1}n
µc(Vσ )(g(tσ )− g(t ′σ ))

)∣∣∣∣≤ 1
2n ≤ ε.

As τ ∈ T is arbitrary, (3.1) holds. Therefore, g is Birkhoff integrable with respect
to µc (see [3, Proposition 2.6]). 2

To prove that g is universally Birkhoff integrable (Proposition 3.3 below) we need
the result isolated in Lemma 3.2, whose proof was kindly suggested by A. Avilés.
Recall that a bounded sequence (xn) in a Banach space X is called an `1-sequence if
there is a constant C > 0 such that

N∑
n=1

|an| ≤ C

∥∥∥∥ N∑
n=1

anxn

∥∥∥∥
X

for every sequence (an) in R and every N ∈ N.

LEMMA 3.2. The set {χVτ | τ ∈ T } ⊂ C({0, 1}N) does not contain `1-sequences.

PROOF. For τ = (ui )
n
i=1 and τ ′ = (vi )

m
i=1 in T , we write τ ≺ τ ′ if n < m and ui = vi

for all 1≤ i ≤ n. Given any set A, the symbol [A]2 stands for the set of all subsets
of A with cardinality two.

Fix an infinite set S ⊂ T . Define a function F : [S]2→ {0, 1} as follows. Given
{τ, τ ′} ∈ [S]2, set

F({τ, τ ′}) :=

{
0 if τ ≺ τ ′ or τ ′ ≺ τ ,

1 otherwise.

Ramsey’s theorem (see [11, Theorem 9.1]) ensures the existence of an infinite set
M ⊂ S such that F is constant on [M]2. There are two cases to be considered.
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(a) For any τ, τ ′ ∈ M with τ 6= τ ′, we have either τ ≺ τ ′ or τ ′ ≺ τ . This implies
that M can be written as M = {τn | n ∈ N} with τn ≺ τn+1 for all n ∈ N. Hence,
Vτn+1 ⊂ Vτn for all n ∈ N and, therefore, we have∥∥∥∥ n∑

k=1

(−1)kχVτk

∥∥∥∥
∞

= 1 for all n ∈ N

(as usual, ‖ · ‖∞ denotes the supremum norm on C({0, 1}N)). It follows that
{χVτ | τ ∈ S} is not an `1-sequence.

(b) The relationship τ ≺ τ ′ fails whenever τ, τ ′ ∈ M. This means that {Vτ | τ ∈ M}
are pairwise disjoint and so∥∥∥∥∑

τ∈P

χVτ

∥∥∥∥
∞

= 1 for every finite set P ⊂ M.

Hence, {χVτ | τ ∈ S} is not an `1-sequence.

The proof of the lemma is complete. 2

Following [16], we say that a family H of real-valued functions defined on a
probability space (�, 6, µ) has the Bourgain property if for every ε > 0 and every
A ∈6 with µ(A) > 0 there are A1, . . . , An ∈6, Ai ⊂ A with µ(Ai ) > 0, such that:
for each h ∈H there is at least one Ai on which the oscillation of h is smaller than ε.
Recently, this property has been used by Cascales and the present author [3, 19] to
characterize the Birkhoff integrability of vector-valued functions.

PROPOSITION 3.3. The function g (defined in Example 3.1) is universally Birkhoff
integrable.

PROOF. Since the family {χVτ | τ ∈ T } ⊂ C({0, 1}N) is bounded and contains no
`1-sequence (Lemma 3.2), it has the Bourgain property with respect to any Radon
probability µ on {0, 1}N, see [13, Proposition 12.2]. Now, since 〈g, πτ 〉 = χVτ for
all τ ∈ T (as we observed in the proof of Example 3.1) and {πτ | τ ∈ T } ⊂ B`∞(T )∗ is
norming, an appeal to [3, Corollary 2.5] establishes that g is Birkhoff integrable with
respect to µ. 2

REMARK 3.4. According to the comments following Example 2.1, another approach
to Proposition 3.3 is to check directly that g is universally scalarly measurable (and we
note that this fact is proved implicitly in Hagler’s arguments). However, this alternative
approach is less elementary since it appeals to the deep work of [2].

Observe that g takes its values in the Johnson–Lindenstrauss space

JL0 := span(c0(T ) ∪ {χBu | u ∈ {0, 1}N})⊂ `∞(T ),

see [12, Example 2] and [25] for its basic properties. Since JL0 is a subspace of `∞,
we know that every McShane integrable JL0-valued function defined on a compact
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Radon probability space is Birkhoff integrable, see [9, Theorem 10]. A question arises
as follows.

QUESTION 3.5. Let X be a subspace of `∞ satisfying Corson’s property (C)
(like JL0). Are Pettis and Birkhoff integrability equivalent for X -valued functions?

Recall that a Banach space satisfies Corson’s property (C) if every family of convex
closed subsets with empty intersection contains a countable subfamily with empty
intersection. Every weakly Lindelöf Banach space fulfills this property. By a well-
known result of Edgar [7] (see [24, Theorem 3-4-5]), every scalarly measurable
function taking values in a weakly Lindelöf Banach space is scalarly equivalent to a
strongly measurable function. Therefore, the previous question has affirmative answer
when X is a weakly Lindelöf subspace of `∞.

4. Talagrand’s example

It is well known that conditional expectations always exist within the Bochner
integral theory (see, for example, [6, Ch. 3]). However, in general this is not the case
for the Pettis integral, as Talagrand made clear in [24, Section 6-4]. This pathology
might appear even for bounded functions defined on ‘reasonable’ probability spaces,
such as that in Example 4.1 below, which is taken from [24, Example 6-4-2].

It is natural to ask whether conditional expectations exist within the Birkhoff
integral theory. This question was kindly brought to our attention by J. Diestel.
We next provide a negative answer by showing that, in fact, Talagrand’s function in
Example 4.1 is Birkhoff integrable.

We first need to introduce some terminology. Let (An) be the sequence of
all clopen subsets of {0, 1}N such that µc(An)= 1/2. Let θ : {0, 1}N→ `∞ be
the w∗-continuous function given by the formula θ(u) := (χAn (u))n∈N. Then L :=
θ({0, 1}N)⊂ B`∞ is w∗-compact. We consider the associated image probability
ν := µcθ

−1 on Borel(L). For each n ∈ N, we denote by ρn ∈ B(`∞)∗ the nth coordinate
projection.

EXAMPLE 4.1. The function ϕ : {0, 1}N × L→ `∞(T ) defined by

ϕ(u, v)(τ ) :=

{
ρn(v) if τ = u|n for some n ∈ N
0 if τ 6∈ Bu

is Birkhoff integrable with respect to the product probability µc ⊗ ν.

PROOF. It suffices to check that the family {〈ϕ, πτ 〉 | τ ∈ T } has the Bourgain property
with respect to µc ⊗ ν, because ϕ is bounded and {πτ | τ ∈ T } ⊂ B`∞(T )∗ is norming,
see [3, Corollary 2.5].

Observe first that for each m ∈ N and each τ ∈ {0, 1}m , we have

0≤ 〈ϕ, πτ 〉(u, v)= ρm(v)χVτ (u)≤ χVτ (u) (4.1)

for all (u, v) ∈ {0, 1}N × L . Note also that 〈ϕ, πτ 〉 is measurable.
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Fix ε > 0 and A ∈ Borel({0, 1}N)⊗ Borel(L) with (µc ⊗ ν)(A) > 0. Then there
exist n ∈ N and τ1, τ2 ∈ {0, 1}n with τ1 6= τ2 such that

(µc ⊗ ν)(A ∩ (Vτi × L)) > 0 for i = 1, 2.

Take m ≥ n and τ ∈ {0, 1}m . Then Vτ ∩ Vτi = ∅ for some i ∈ {1, 2}, so that χVτ
vanishes on Vτi . From (4.1) it follows that 〈ϕ, πτ 〉 vanishes on A ∩ (Vτi × L). On
the other hand, since any finite family of measurable functions has the Bourgain
property, we can find sets A1, . . . , Ap ⊂ A, A j ∈ Borel({0, 1}N)⊗ Borel(L) with
(µc ⊗ ν)(A j ) > 0, such that: for each m < n and each τ ∈ {0, 1}m , there is at least
one A j for which the oscillation of 〈ϕ, πτ 〉 on A j is smaller than ε.

This shows that {〈ϕ, πτ 〉 | τ ∈ T } has the Bourgain property with respect to µc ⊗ ν

and the proof is complete. 2

Let A be the σ -algebra on {0, 1}N × L made up of all sets U × L with U ∈
Borel({0, 1}N). It was shown in [24, Example 6-4-2] that the range of ϕ is contained
in a subspace E of `∞(T ) such that ϕ does not admit a Pettis integrable E-valued
conditional expectation with respect to A. That is, there is no Pettis integrable function
ψ from ({0, 1}N × L , A, µc ⊗ ν) to E such that

∫
A ψ d(µc ⊗ ν)=

∫
A ϕ d(µc ⊗ ν)

for all A ∈A. Of course, the same can be said if ‘Pettis’ is replaced by ‘Birkhoff’.
This fact and Example 4.1 open a door for future research.

QUESTION 4.2. When do Birkhoff integrable functions admit Birkhoff integrable
conditional expectations?
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