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Département de Mathématiques et de Statistique, Université Laval,
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1. Introduction. The problem of studying whether or not the local spectral
properties such as the single-valued extension property, Dunford’s condition (C),
Bishop’s property (β), the decomposition property (δ), or decomposability are
preserved under sums and products of commuting operators has been considered
by several authors, and remains an open problem; see for instance [3], [6], [9] and the
references therein. Partial positive answers were obtained but only in certain special
cases. In [9], T. L. Miller and M. M. Neumann showed that the sum and the product
of two commuting operators with Dunford’s condition (C) have the single-valued
extension property. They also proved that the product of two commuting operators
has this property provided that one of them is non-invertible and has fat local spectra.

In this note, we show that the single-valued extension property is not preserved,
in general, under the sums and products of commuting operators, and prove that the
product of two commuting operators has this property provided that the intersection
of their analytic cores is trivial. Our counter-examples are provided by tensor products
of backward and forward unilateral weighted shifts, and our arguments and ideas are
influenced by the ones given in [9].

We now gather together some basic facts about the single-valued extension
property and local spectrum. Our reference is the excellent book of K. Laursen and
M. M. Neumann [6].

Let X be a complex Banach space, and let L(X) be the algebra of bounded linear
operators on X . For an operator T ∈ L(X), we denote as usual its spectrum and its
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spectral radius by σ (T) and r(T) := max{|λ| : λ ∈ σ (T)}. By Gelfand’s formula for the
spectral radius r(T) = limn→+∞ ‖Tn‖ 1

n for all T ∈ L(X).
An operator T ∈ L(X) is said to have the single-valued extension property provided

that for every open subset U of � the only analytic solution φ : U → X of the equation

(T − λ)φ(λ) = 0, (λ ∈ U)

is the zero function. The local resolvent set, ρT (x), of an operator T ∈ L(X) at a point
x ∈ X is the union of all open subsets U of � for which there is an analytic function
φ : U → X that satisfies (T − λ)φ(λ) = x (λ ∈ U). The local spectrum of T at x is
defined by σT (x) := �\ρT (x), and is obviously a closed subset of σ (T).

We conclude this introduction by providing some basic definitions about tensor
products quoted from [6, Chapter 2]. Let H1 and H2 be complex Hilbert spaces with
the scalar products 〈 , 〉1 and 〈 , 〉2, respectively. Let H = H1 ⊗ H2 be the Hilbert
tensor product of H1 and H2 whose scalar product is determined by the formula

〈h1 ⊗ h2, k1 ⊗ k2〉 := 〈h1, k1〉1〈h2, k2〉2, (h1, k1 ∈ H1, h2, k2 ∈ H2).

The tensor product of two operators A ∈ L(H1) and B ∈ L(H2) is determined by the
formula (A ⊗ B)(h1 ⊗ h2) := Ah1 ⊗ Bh2, (h1 ∈ H1, h2 ∈ H2), and its spectral radius is
given by

r(A ⊗ B) = lim
n→+∞ ‖(A ⊗ B)n‖ 1

n = lim
n→+∞ ‖An ⊗ Bn‖ 1

n

= lim
n→+∞(‖An‖‖Bn‖)

1
n = r(A)r(B).

Thus, if either A or B is quasinilpotent, then so is A ⊗ B.

2. Counter-examples. Let l2(�+) be the usual Hilbert space of all square
summable complex sequences. For a positive bounded sequence α := (αn)n≥0, let Sα be
the corresponding weighted unilateral shift on l2(�+) defined by

Sαx := (0, α0x0, α1x1, α2x2, ...), x = (xn)n≥0 ∈ l2(�+).

Its adjoint is given by

S∗
αx := (α0x1, α1x2, α2x3, ...), x = (xn)n≥0 ∈ l2(�+).

It has the single-valued extension property if and only if

R(Sα) := lim inf
n→+∞ (α0α1...αn−1)

1
n = 0;

see for instance [8, Proposition 2.5].
We need the following elementary lemma.

LEMMA 2.1. Assume that α := (αn)n≥0 and β := (βn)n≥0 are two positive bounded
sequences. The following hold.

(a) The operator S∗
β ⊗ 1 has the single-valued extension property if and only if

R(Sβ) = 0.
(b) {λ ∈ � : |λ| ≤ R(Sα)} ⊂ σ1⊗Sα

(z) for all nonzero elements z of l2(�+) ⊗ l2(�+).
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Proof. Observe that S∗
β ⊗ 1 and 1 ⊗ Sα are unitarily equivalent to

∑
n≥0 ⊕S∗

β

and
∑

n≥0 ⊕Sα, respectively, and use for instance [4, Proposition 3.1] or
[8, Proposition 2.6]. �

THEOREM 2.2. For two positive bounded sequences α := (αn)n≥0 and β := (βn)n≥0,
the operator S∗

β ⊗ (Sα − a) has the single-valued extension property for all a ∈ �, |a| ≤
R(Sα).

Proof. If S∗
β is quasinilpotent then so is S∗

β ⊗ (Sα − a). Thus, we may assume that
S∗

β is not quasinilpotent. Dividing S∗
β by r(S∗

β), if necessary, we can also suppose that
r(S∗

β) = 1. Now, let φ : U → l2(�+) ⊗ l2(�+) be an analytic function such that

(S∗
β ⊗ (Sα − a) − λ)φ(λ) = 0, (λ ∈ U),

and let us prove that φ is identically zero in U . Pick a nonzero λ0 ∈ U , and let D :=
{λ ∈ � : |λ| < |λ0|}. Let

�(λ) := ((λ0 − λS∗
β)−1S∗

β ⊗ 1)φ(λ0), (λ ∈ D).

For every λ ∈ D, the operators (S∗
β ⊗ (Sα − a) − λ0), ((λ0 − λS∗

β)−1 ⊗ 1) and S∗
β ⊗ 1

commute with each other, and

φ(λ0) = 0 + (λ0 − λS∗
β ⊗ 1)

(
(λ0 − λS∗

β)−1 ⊗ 1
)
φ(λ0)

= [[(S∗
β ⊗ (Sα − a) − λ0) + (λ0 − λS∗

β ⊗ 1)]((λ0 − λS∗
β)−1 ⊗ 1)]φ(λ0)

= [[(S∗
β ⊗ (Sα − a) − λS∗

β ⊗ 1)]
(
(λ0 − λS∗

β)−1 ⊗ 1
)
]φ(λ0)

= (1 ⊗ (Sα − a) − λ)(S∗
β ⊗ 1)((λ0 − λS∗

β)−1 ⊗ 1)φ(λ0).

This shows that

(1 ⊗ (Sα − a) − λ)�(λ) = φ(λ0)

for all λ ∈ D, and a ∈ {a} + D ⊂ ρ1⊗Sα

(
φ(λ0)

)
. As |a| ≤ R(Sα), we see that φ(λ0) = 0 by

Lemma 2.1-(b). Since λ0 is an arbitrary nonzero element of U , we see that φ ≡ 0, and
S∗

β ⊗ (Sα − a) has the single-valued extension property; as desired. �
Assume that α := (αn)n≥0 and β := (βn)n≥0 are two positive bounded sequences

such that R(Sα) ≥ 1 and R(Sβ) > 0. Let

R := S∗
β ⊗ (Sα + 1) and T := S∗

β ⊗ (1 − Sα).

Obviously, R and T commute, and have the single-valued extension property by
Theorem 2.2. But

R + T = 2S∗
β ⊗ 1

is without this property (see Lemma 2.1-(a)).
Note that R1 := exp(R) and T1 := exp(T) commute and have the single-valued

extension property as well since this property is invariant under the analytic functional
calculus; see [6, Theorem 3.3.9]. But R1T1 = exp(R + T) does not have this property
since R + T does not.
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3. The role of the analytic core. For an operator T ∈ L(X), the analytic core is
defined by

K(T) := {x ∈ X : there exist a > 0 and a sequence (xn)n≥1 ∈ X such that

Tx1 = x, Txn+1 = xn and ‖xn‖ ≤ an‖x‖ for all n ≥ 1}.
It easily follows from the definition that K(T) is a linear subspace of X and that
T(K(T)) = K(T); see [7].

The following lemma is needed.

LEMMA 3.1. For every operator T ∈ L(X), we have

K(T) = {x ∈ X : 0 ∈ ρT (x)}.
Proof. See [7, Proposition 1.3-(a)]. �
The following result generalizes [9, Theorem 3].

THEOREM 3.2. Assume that T, S ∈ L(X) are two commuting operators. If K(T) ∩
K(S) = {0}, then TS has the single-valued extension property.

Proof. Note that, since r(TS) ≤ r(T)r(S), the product TS is quasinilpotent
provided that either T or S is quasinilpotent. Thus, we may and shall assume that
r(T) = r(S) = 1. Let φ : U → X be an analytic function such that

(TS − λ)φ(λ) = 0, (λ ∈ U),

and let us prove that φ is identically zero in U . Pick a nonzero λ0 ∈ U , and set
D := {λ ∈ � : |λ| < |λ0|}. Let us consider the following X-valued analytic function
in D,

�(λ) := (λ0 − λT)−1Tφ(λ0), (λ ∈ D).

For every λ ∈ D, we have

(S − λ)�(λ) = (λ0 − λT)−1(ST − λT)φ(λ0)

= (λ0 − λT)−1[(ST − λ0) + (λ0 − λT)]φ(λ0)

= φ(λ0).

This shows that D ⊂ ρS (φ(λ0)), and φ(λ0) ∈ K(S) by Lemma 3.1.
A similar argument shows that φ(λ0) ∈ K(T) as well. As K(T) ∩ K(S) = {0}, we

see that φ(λ0) = 0 and φ vanishes, in fact, on the whole of U . This proves that TS has
the single-valued extension property. �

The following corollaries are immediate consequences of Theorem 3.2.

COROLLARY 3.3. Assume that S ∈ L(X) satisfies the abstract shift condition; i.e.,⋂
n≥0 SnX = {0}. Then, for every operator T ∈ L(X) commuting with S, the product TS

has the single-valued extension property.

Proof. As S(K(S)) = K(S), we see that K(S) ⊂ ⋂
n≥0 SnX = {0}. �

An operator T ∈ L(X) is said to have fat local spectra provided that σT (x) = σ (T)
for all nonzero x ∈ X .
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COROLLARY 3.4 ([9, Theorem 3]). Let S ∈ L(X) be a non-invertible operator with
fat local spectra. Then, for every operator T ∈ L(X) commuting with S, the product TS
has the single-valued extension property.

Proof. We have 0 ∈ σ (S) = σS (x) for all nonzero x ∈ X , and K(S) = {0}. �
We finally note that under the conditions of Theorem 3.2, the sum T + S need not

have the single-valued extension property. Indeed, assume that α := (αn)n≥0 and β :=
(βn)n≥0 are two positive bounded sequences such that limn→+∞ αn = 0 and R(Sβ) > 0,
and let T := 1 ⊗ Sα and let S := S∗

β ⊗ 1. The following facts hold trivially:
(a) TS = ST .
(b) T is quasinilpotent and K(T) = {0} since limn→+∞ αn = 0.
(c) S is without the single-valued extension property since R(Sβ) > 0.

By (a) and (b), we see that T + S and S are quasinilpotent equivalent; see [6, Page 253].
As quasinilpotent equivalence preserves the single-valued extension property, it follows
that T + S is without this property; see [6, Proposition 3.4.11].

4. Remarks and open problems. The question of which properties are preserved
under tensor products has been studied by many authors and turns out to be very
complicated. It is known that the tensor product A ⊗ B of two operators A ∈ L(H1) and
B ∈ L(H2) is normal (resp. quasinormal, subnormal, hyponormal, p-hyponormal, log-
hyponormal) if and only if so are A and B; see [5], [10], [11], [12]. However, it may happen
that A ⊗ B has a property but A and B do not mainly because A ⊗ B = (cA) ⊗ (c−1B)
for all nonzero c ∈ �. It may also happen that both A and B have a property while A ⊗ B
does not. For example this happens in the case when both A and B are paranormal
operators; see [10, Page 629].

A similar natural problem for local spectral properties suggests itself.

PROBLEM 1. Asumme that A ∈ L(H1) and B ∈ L(H2) are two operators
satisfying a local spectral property such as the single-valued extension property,
Dunford’s condition (C), Bishop’s property (β), the decomposition property (δ), or
decomposability. Does A ⊗ B satisfy the same property?

It may happen that A ⊗ B has a local spectral property though A or B do not
mainly because A ⊗ B is quasinilpotent provided that one of them is quasinilpotent.
However, it was shown in [2, Corollary 2.5] that if A and B are decomposable, then
so is A ⊗ B. This result together with [6, Theorem 2.4.4 and Theorem 2.5.5] shows, in
fact, that even Bishop’s property (β) and the decomposition property (δ) are preserved
under Hilbert tensor product of two operators. But the question of whether A ⊗ B
has the single-valued extension property or Dunford’s condition (C) whenever A and
B have the same property is far away from being clear. However, if A ⊗ B has the
single-valued extension property then either A or B has this property. Indeed, assume
by the way of contradiction that there is an analytic Hi-valued function φi in an open
subset Ui of �, (i = 1, 2), such that

(A − λ)φ1(λ) = 0, (λ ∈ U1), and (B − λ)φ2(λ) = 0, (λ ∈ U2).

Pick a nonzero λ1 ∈ U1 for which x := φ1(λ1) �= 0, and set

φ(z) := x ⊗ φ2(z/λ1), (z ∈ U := λ1U2).
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It is an analytic H1 ⊗ H2-valued function in the open subset U . For every z ∈ U , we
have

(A ⊗ B − z)φ(z) = (A ⊗ B − z)x ⊗ φ2(z/λ1)

= [(A − λ1)x] ⊗ Bφ2(z/λ1) + λ1x ⊗ [(B − z/λ1)φ2(z/λ1)]

= 0 + 0 = 0.

This contradicts the fact that A ⊗ B has the single-valued extension property.
To close this paper with the final remark, we need to fix some notation. For an

operator T ∈ L(X), we denote by �(T) the set of all complex numbers where T fails to
have the single-valued extension property; see [1]. It is an open subset of � contained
in the point spectrum σp(T) of T , and is empty precisely when T has the single-valued
extension property.

REMARK 4.1. For two subsets 	1 and 	2 of �, we denote 	1.	2 := {λ1λ2 : λi ∈
	i, (i = 1, 2)}. The above arguments show, in fact, that

{
σp(A)\{0}}.�(B) ∪ �(A).

{
σp(B)\{0}} ⊂ �(A ⊗ B)

for all A ∈ L(H1) and B ∈ L(H2).
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