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Summary

Wright’s (1922) coalescence probabilistic method decomposes the average coancestry or the average
inbreeding of the population of interest into contributions of ancestors who are directly responsible
for coancestry. These ancestors are less numerous and younger than those given by Caballero &
Toro’s (2000) method. Then, Wright’s method yields a more parsimonious representation of the
origin of coancestry or inbreeding. Results of Wright’s method, called proximal because ancestors
are younger, can be obtained from the latter method using a simple matrix transformation. Detailed
algorithms are presented. Both methods can be used for assessing the overall efficiency of a breeding
scheme in balancing genetic gain and coancestry rate, yielding very similar results when generations

are discrete.

1. Introduction

Loss of genetic diversity or increase of inbreeding is
of special concern in either captive or selected popu-
lations. In order to monitor and manage genetic
diversity the genealogical information is usually
condensed into a few parameters such as average
inbreeding coefficients (F; Wright, 1922), average kin-
ship (Malécot, 1948) or coancestry (f; Cockerham,
1970), effective population size (Wright, 1931),
founder equivalents, founder genome equivalent
(Lacy, 1989), effective number of ancestors, and
founders and non-founders (Boichard et al., 1997,
Caballero & Toro, 2000). The most relevant indicator
of genetic variability is £, including self-coancestries
(Ballou & Lacy, 1995; Caballero & Toro, 2000;
Fernandez et al., 2003). Selection for minimum co-
ancestry has been shown to reduce the loss of genetic
variation or the rate of inbreeding in the long term
more effectively than other strategies such as equaliz-
ing the founder contributions or minimizing immedi-
ate inbreeding (Ballou & Lacy, 1995; Meuwissen,
1997, Caballero et al., 1996; Caballero & Toro, 2000;
Sanchez et al., 2003).
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Examination of detailed contributions of ancestors
gives a better understanding of the development of
inbreeding or coancestry over time, in terms of the
origin of genes, in general, or the origin of genetic
gains in selected populations. The expression ‘origin
of genes’ is sometimes misleading in the literature
when it refers to non-founder ancestors. Strictly
speaking, unless there are mutations, only founder
genes are segregating. Instead, ‘origin of breeding
values (BVs)’ may be preferred, where BVs concern a
hypothetical polygenic neutral trait. Throughout the
following text, the term ‘BV’ will refer to the BV for
this latent trait.

Some studies (e.g., Woolliams & Thompson, 1994)
have insisted on the prominent role played by
Mendelian sampling components of BVs. Basically,
considering such a trait is quite relevant because
covariances between individuals for this trait are
equal to twice the coancestry coefficient, when genetic
variance is 1. Following this rationale, inbreeding
coefficients can be expressed in terms of contributions
of parents and Mendelian sampling variances (MSVs)
over generations (Woolliams & Thompson, 1994;
Woolliams et al., 1999). Conceptually, contribution of
an ancestor to an individual quantifies the fraction
of ancestral Mendelian sampling components of BV
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passed to this individual (James & McBride, 1958).
In this context, Caballero & Toro (2000) gave the
expression of F or fin a population in terms of con-
tribution of MSVs from founders and subsequent
ancestors. Here contributors are common ancestors
(CAs). Later on, this approach will be denoted as
the ‘conventional’ approach.

Wright (1922) presented the first method to com-
pute coefficients of inbreeding and relationships. In
contrast to the conventional method, this coalescence
probabilistic method partitions inbreeding into con-
tributions of genes of ancestors, through a recursive
path counting process. This approach can be used
for partitioning F or fin a population, but it is time-
consuming. The most striking consequence of using
this approach is that the list of contributors is
modified, and basically shortened, because the up-
ward search can be stopped as soon as coalescence
is obtained (i.e., inbreeding in an intermediate ances-
tor is encountered). Then, Wright’s approach consists
of determining the most recent occurrences of
inbreeding, irrespective of the genes being inbred.
Remaining contributors can be called ‘nodal common
ancestors’ (NCAs). The other CAs can be considered
as ‘absorbed CAs’ (ACAs) because their genes con-
tribute to inbreeding or coancestry through the
NCAs. Probability of absorption increases when age
of ancestors increases, because probability of direct
access to inbreeding by older ancestors decreases.

In the present article, the results of Wright’s
method can be fully recovered by a non-probabilistic
method, analytically linked with Caballero & Toro’s
(2000) method, still considering the conventional
approach or MSVs. Wright’s decomposition is de-
noted ‘proximal’ because NCAs are usually younger
and less numerous than CAs in the conventional
analysis, due to a backward or coalescence decompo-
sition process. Finally, the efficiency of past man-
agement of simulated selected populations will be
examined by the conventional and the proximal
analyses.

2. Materials and methods

(1) Recovering Wright’s decomposition from
Caballero & Toro’s decomposition

Caballero & Toro’s decomposition method can be
shown to be obtained exactly after multiplication
of Wright’s decomposition by an upper triangular
matrix, and then that the reverse can be carried out
easily and very fast, due to this simplicity.

Statistics of interest are average pairwise coancestry
( fg) or average inbreeding (F,) for a group of
individuals. The relationship matrix (A) can be de-
composed as:

A=CDC,
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Fig. 1. Example pedigree.

where C={¢;} =(I—T) " is the contribution matrix,
a unit lower triangular matrix containing the frac-
tion of genes that individual j passed to descendant
i (contribution of j to i in the sense of James &
McBride, 1958), T is a unit lower triangular sparse
matrix consisting of only —0-5 at positions where
individual i is linked to its sire and dam, D=
diag{d;} is a diagonal matrix containing the
MSVs of individuals. The MSV for individual i is
di=1—0-25(ay,, +a4q)=0-5—0-25(F, + F;), where
F,, and F, are inbreeding coefficients of the sire and
dam of individual i, respectively (Quaas, 1976). Now
f_g can be decomposed into vector m= {m;}, where
my; is the contribution of MSV of ancestor j. Such a
decomposition is referred to as the m-decomposition.
Following Caballero & Toro (2000), vector m is:

2
e

where 7, is the size of the group. The term ) ,_;c; can
be readily obtained by the indirect method (Colleau,
2002), which requires tracing back the pedigree
only once. Figure 1 shows an example pedigree for
illustrating the method.

Let the group in question be individuals 9 and 10.
Then vector m for f is:

m’:[0-0703 0-0703 0-0313 0-0156 0-0625
0-0625 0-0547 0-0547 0-0586 0-0586].

The contribution of MSV of ancestor j to F, can be
derived in the same manner:

m;=0-5 ( D CojCdyj djj) ngl'

keG
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To obtain vector m for F, using the indirect
method, the pedigree should be traced back twice the
number of sires of the group considered, because the
sum corresponding to a given sire can be obtained
from two back explorations of the population pedi-
gree (Colleau, 2002 ; Sargolzaei et al., 2005). Vector m
for the F, of the group consisting of individuals 9 and
10 is then:

m'=[0-0703 0-0703 0-0313 0-0156 0-0625
0-0625 0-0000 0-0000 0-0000 0~0000].

The probabilistic approach of path counting
(Wright, 1922) is theoretically well suited to partition
the inbreeding coefficients into contributions of genes
of NCAs. An NCA can be defined as an ancestor who
connects the sire and dam lines that arise from the
individual of interest or from its NCA(s). The NCA
makes an inbreeding loop in which no individual
is present more than once. The details of the path
counting method are presented in Appendix A.
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the contribution of ancestor k to inbreeding in i, given
the contribution of elder ancestors. Because these
weights sum up to 1 (1;=1), they can be directly
interpreted as the relative probability of origin of
the inbreeding for a gene of a given individual, when
inbreeding is certain.

If inbreeding through a given individual has prob-
ability w;, then the contribution of individual i to
vector m is wap,; and finally:

m=Ww,

where the transition matrix W from w to m gathers all
the involved coefficients and is an upper triangular
matrix. Off-diagonal elements of column i of matrix
W are:

Y =025(2  +c& Odiu

and diagonal elements of matrix W are simply
di. Matrix W for the example pedigree is shown
below:

[1-0000 0-0000 0-0000 0-2500 0-3125 0-0000 0-1406 0-1406 0-0703 0-0703]
0-0000 1-0000 0-0000 0-2500 0-0625 0-2500 0-0781 0-0781 0-0703 0-0703
0-0000 0-0000 1-0000 0-0000 0-0000 0-2500 0-0625 0-0625 0-0313 0-0313
0-0000 0-0000 0-0000 0-5000 0-1250 0-0000 0-0313 0-0313 0-0156 0-0156

W 0-0000 0-0000 0-0000 0-0000 0-5000 0-0000 0-1250 0-1250 0-0625 0-0625
0-0000 0-0000 0-0000 0-0000 0-0000 0-5000 0-1250 0-1250 0-0625 0-0625
0-0000 0-0000 0-0000 0-0000 0-0000 0-0000 0-4375 0-0000 0-1094 0-1094
0-0000 0-0000 0-0000 0-0000 0-0000 0-0000 0-0000 0-4375 0-1094 0-1094
0-0000 0-0000 0-0000 0-0000 0-0000 0-0000 0-0000 0-0000 0-4688 0-0000

| 0-0000 0-0000 0-0000 0-0000 0-0000 0-0000 0-0000 0-0000 0-0000 0-4688 |

Now, let the results of the path counting method be
represented by the known vector w={w;}, where w;
indicates the contribution of genes of NCA i to the
statistics of interest to be partitioned. For simplicity,
in the following development, F, is used as the stat-
istic of interest. However, the derivation holds for fg
because f, can be considered as F, resulting from a
factorial mating design between members of the
group investigated.

The relation 1 =0-25(var(g,,)+var(g,))+0-5—0-25
(F,, + F,) is well known. Note that 0-5—0-25(F,, + F,;)
is the MSV of individual i. Then, recursive decompo-
sition of the genetic variances of parents of i across
generations, leads one to find that 1 is the sum of a
series involving MSVs of all the ancestors of
individual i. Appendix B shows that this development
is also the development of one certain occurrence of
inbreeding in individual i in terms of MSV.

The decomposition of parental variances is carried
out using corresponding rows of matrix C, which can
be computed by tracing back the pedigree of each
parent. Let column vector ;= {y,;} represent the
coefficients of this development, where 1; indicates
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A remarkable result is that for finding w, the equation
above does not involve MSVs, but only contributions.
This is apparent after dividing each row k of the linear
system by the corresponding dj.

Solve for w as w=W 'm. The inverse of matrix W
is sparse but cannot be readily obtained because
the distribution of non-null terms depends on the
unknown situation concerning vector w, the issue to
be solved. However, W is upper triangular and w can
be obtained efficiently from m by Gaussian elimin-
ation because each column of W can be formed sep-
arately by tracing back the pedigrees of the two
parents involved. Starting from the vector m pertain-
ing to decomposition of the average inbreeding co-
efficient of individuals 9 and 10,

w’=[0~0313 0-0313 0-0000 0-0000 0-1250
0-1250 0-0000 0-0000 0-0000 0-0000],

i.e., exactly the result obtained by the path counting
method (see Appendix A). For each individual, dis-
tinct computations of contribution vectors of sires
and dams are needed, which might be time-consuming
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in large populations. However, substantial com-
putation time can be saved if the number of sires is
much less than the number of dams (a very frequent
situation) and if the population is subdivided into
pseudo-generations (Colleau, 2002). In this situation,
solutions for w during Gaussian elimination can be
obtained simultaneously by blocks and updating
of the right-hand side needs only one trace back
per sire involved in this pseudo-generation. The m-
decomposition includes the effect of self-coancestries
of the individuals of the current population, when the
statistic considered is the average relationship. If
the weighted average coancestry between parents of

NCA 1 2 5 6 7 8
[1-000 0-000 0-000 0-000 0-000 0-000
0-000 1-000 0-000 0-000 0-000 0-000
0-750 0-250 1-000 0-000 0-000 0-000
CH o 0-000 0-500 0-000 1-000 0-000 0-000
0-375 0-375 0-395 0-433 1000 0-000
0-375 0-375 0-395 0-433 0-000 1-000
0-375 0-375 0-395 0433 0-331 0-331
L0-375 0-375 0-395 0433 0-331 0-331

the current population is preferred because this bias is
avoided, the corresponding modified w-decomposition
is easy to implement (see Appendix C).

(i1) Defining a proximal model of breeding values

In the conventional context, let g; be the BV of indi-
vidual i, c; is the contribution of ancestor k to
individual i and d; is the Mendelian sampling devi-
ation of ancestor k, then gizzkcikék. The model for
BVs is straightforward and leads one naturally to de-
composition of variances or covariances, as presented
above.

In the proximal context, introduced by Wright’s
decomposition, quite the reverse occurs: partitioning
of variances or covariances is obtained without ex-
plicitly defining the model for BVs. A model based
on the conventional model is proposed, where the
independent genetic variables are deviations of BVs of
proximal ancestors (or NCA) from their expectations
given BVs of all older proximal ancestors. In contrast,
in the conventional model, BVs are only conditioned
on parental BVs (two individuals) for providing
Mendelian sampling BV. Then, the corresponding
regression coefficients are the proximal contributions,
ie.,g; =chi’}§6;’f, where k is the rank number in the list
of proximal ancestors and J is the deviation of BV of
ancestor k from its expectation given BVs of proximal
ancestors 1,..., k—1. In this model, variances of the
random variables can be much more heterogencous
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than in the conventional model. Regression coeffi-
cients and conditional variances in this context cannot
be ecasily linked to terms of the w-decomposition, be-
cause proximal ancestors can have one or even both
parents not included in the list of proximal ancestors.
Basically, they should be obtained by a numerical
method, such as Cholesky decomposition of the re-
lationship matrix of the proximal ancestors.
A*=C*D*C*".

For the example pedigree, if the cohort of
interest contains individuals 9 and 10 then C*
matrix is:

10
0-0007
0-000
0-000
0-000
0-000
0-000
0-000
1-000 |

In selected populations, the origin of genetic gain
can be re-examined in a proximal perspective, anal-
ogously to Woolliams et al. (1999) for the conven-
tional model. The contribution of ancestor k to
genetic gain is equal to, €6, where ¢ and J; are
obtained based on the Cholesky decomposition.

When BVs of the trait under selection are estimated
by best linear unbiased prediction (BLUP), then we
also have o;. Finally, the estimated contribution
of ancestor k to genetic gain is equal to & o;.
Furthermore, the efficiency of the breeding scheme
can be examined in retrospect. In the next section, the
proximal decomposition is compared to the conven-
tional decomposition of f to assess the maximal esti-
mated genetic gain possible while constraining this
coancestry to the observed value.

(ii1) Measuring the retrospective efficiency
of a breeding scheme

The inefficiency of a selection breeding scheme for
balancing genetic gain and f can be measured by the
discrepancy between the observed genetic gain and
the maximum genetic gain that could have been gen-
erated considering the ancestors of the current popu-
lation and constraining f to its observed value. Ideal
contributions for producing maximum genetic gains
can be determined either by the conventional ap-
proach or by the proximal approach. Conventional
BLUP selection considers a fixed number of breeding
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individuals selected based only on their EBVs without
any other consideration. In contrast, optimized
schemes such as those defined by Meuwissen (1997)
allow contributions of selected breeding individuals
to fluctuate permanently according to the balance
between their EBVs and the extra coancestry they
could generate.

Simulation was carried out to assess the respective
potential of the conventional or proximal methods of
back-optimization when applied to breeding schemes
implementing various degrees of optimization. The
founder population consisted of 25 sires and 50 dams,
and 15 discrete generations were considered (founder
generation being generation 0). Selection was carried
out on a single trait with heritability of 0-2 (initial
genetic variance set to 1), expressed by both sexes. In
BLUP selection schemes, each sire is mated to two
dams at random according to a hierarchical design.
Each dam produces four progeny. In optimized
breeding schemes, a hierarchical design and random
mating were maintained, whereas the number of
progeny per sire and per dam was allowed to vary.
Four intermediate schemes were added starting with
BLUP and switching towards an optimized scheme
at generations 14, 11, 8 and 5. One hundred replicates
of the six schemes were simulated by sextuplets. For
increasing the efficiency of comparison between
schemes, the same set of founders was considered for
each member of a given sextuplet. Furthermore,
intermediate schemes were initiated from the data of
the BLUP member until the switch. Optimized and
intermediate breeding schemes of a given sextuplet
were constrained to produce, at each generation, the
same coancestry as their BLUP counterpart.

For each breeding scheme and each replicate, the
maximum genetic gain obtained in retrospect was
determined analytically by maximizing a Lagrange
function where unknowns were optimal contributions
as the main constraint, so the coancestry between
parents of generation 15 should be equal to that
observed. For the optimization in retrospect based
on conventional contributions, additional constraints
were introduced. Firstly, sums of contributions per
generation X sex combination should obviously equal
0-5. Secondly, contributions of CA with a single
progeny in the list of CAs were constrained to be
equal to 0-5 contributions of respective progeny: in
our simulations, because these CAs were always
found to be the ACAs. Detailed algorithms can be
found in Appendix D.

3. Results

Table 1 shows the results obtained in generation 15
for BLUP and optimized schemes. Coancestry coeffi-
cients were similar in both schemes as expected, 27-5
and 27-6%, respectively. Genetic gain (average of
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Table 1. Results of simulations (generation 15)
BLUP Optimized
schemes schemes
Average breeding value 6-31 8-80
Average coancestry (%) 275 27-6
Average inbreeding (%) 266 260
Number of ancestors
(founders)
Conventional 498 (28) 350 (14)
Proximal 296 (14) 200 (10)
Age of ancestors
Conventional 72 7-7
Proximal 62 68

true breeding values) was 39 % higher (8:8 vs 6:3) in
the optimized breeding scheme in comparison to
BLUP. In both schemes, the number of proximal
ancestors of the last generation was substantially
lower than the number of ancestors given by the
conventional approach, by about 42%. As expected,
ancestors found by the proximal approach were also
younger (by about 1 generation). Estimated genetic
gains were directly obtained based on the EBV for the
selected trait. They were 6-28 for BLUP schemes and
8:82 for optimized schemes, i.e., very close to the
true genetic gains. Maximum estimated genetic gains
obtained by optimizing in retrospect based on con-
ventional contributions were 7-61 (421 %) for BLUP
and 9-21 (+5%) for optimized. Using the proximal
approach would have yielded 7-79 (+24 %) for BLUP
and 9-02 (+2 %) for optimized. Results given by both
approaches were similar. The optimal genetic gain
obtained in retrospect was far from the gain exhibited
by permanent optimization, thus illustrating the
impact of drift and the loss of valuable ancestors
before the optimization in retrospect.

Intermediate schemes showed an interesting
pattern. At the generation corresponding to the
switch, a lift was observed (approximately doubling
the instantaneous genetic gain) and, afterwards, rates
of gain were quite similar to those of the optimized
schemes. The estimated genetic gains for these four
schemes (very close to the true genetic gains), of
increasing efficiency, were 67, 7-1, 7-7 and §-3.
Corresponding maximal genetic gains were 7-7
(+14%), 79 (+12%), 83 (+9%) and 87 (+5%)
according to the conventional decomposition and
77 (+14%), 79 (+12%), 8-2 (+8%) and 8:6 (+4 %)
according to the proximal decomposition. Once
again, both decompositions gave similar results. The
overall comparison of the six schemes confirmed that
the efficiency of a breeding programme can be safely
assessed by the discrepancy between the estimated
genetic gain and the one of back optimization: when
efficiency increased, discrepancy decreased.
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4. Conclusion

Wright’s (1922) method for decomposing inbreeding
and coancestry could be linked exactly with the
conventional approach summarized by Caballero &
Toro (2000). Wright’s decomposition led exactly to
the well-established conventional decomposition.
Analytical calculations were relatively straight-
forward. However, Wright’s coalescence approach
yielded fewer and younger ancestors, and hence was
called a ‘proximal’ approach. If the same information
was given by a smaller number of ancestors, then this
meant that information given by the absorbed ances-
tors was totally dependent on the information given
by the remaining ancestors, as a special consequence
of drift. In the general situation, involving overlap-
ping generations, identification of absorbed ancestors
required the full analytical calculations presented
above. Prediction of status (ACA vs NCA) by simple
methods would be highly desirable for understanding
the mechanisms involved and also to skip useless cal-
culations. However, early attempts failed and further
research is needed in this area.

Simulation showed that the discrepancy between
both approaches in terms of number of ancestors
could be substantial. Inbreeding and coancestry could
be explained parsimoniously by fewer ancestors
capturing the whole information due to genetic drift.
For selected populations, contributions of ancestors
to genetic gains should be considered too. Simulation
on discrete generations showed that evaluation of
the past efficiency of breeding schemes through
back-optimization was quite similar using both
decompositions. However, in the context of discrete
generations, constraints occurring on conventional
contributions could be identified clearly. For over-
lapping generations, in contrast, the proximal ap-
proach might be more robust in such a situation.
Research is needed in this area.

Appendix A. Tabular implementation of Wright’s
method

The basic formula for computing inbreeding coeffi-
cients, which is based on computation of contri-
butions of genes of NCAs, is:

1‘71'= z <Z 0_5i11k+n2k+1(1+Fj)>:>

JENCA; \ k€L

Fi: Z <z 0.5n1A+;12k+1+ Z O’Snll‘+’l2A+1E}>,

JENCA,; \ keL; keL;
(AT)
where F; and F; are inbreeding coefficients of in-

dividuals i and j, respectively, NCA; is a set of identi-
fication numbers of NCAs of individual i, and L; is a
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set of inbreeding loops for NCA j of individual i; nl,
and n2; are the number of generations from sire and
dam of individual i, respectively, to NCA j in loop k.
The first term is the contribution of genes of individ-
ual j regardless of its inbreeding and the second term
is the contribution of genes of NCAs of individual j
to inbreeding of individual i. Inbreeding coefficients
of the NCA can be expressed in the same way and
therefore (Al) can be expanded recursively. After
expansion, each term would be the contribution of
genes of the corresponding NCA (regardless of its
inbreeding) to the inbreeding of individual .

As an example, take the pedigree of individual 10
(Fig. 1). There are three NCAs for individual 10,
namely 5, 6 and 2. From these three, only individual 5
is inbred. So, in addition, we need to consider indi-
vidual 1, who is the only NCA of individual 5. The
NCAs 1, 2, 5 and 6 contribute 0-03125, 0-03125, 0-125
and 0-125 to the inbreeding coefficient of individual
10 (F1,=0-3125). Contributions of individuals 1 and 2
are marginal.

The same results as those by Wright’s method can
be recovered by using an upward exploration method,
faster but still storage-demanding. The method is
tabular and adapted to partition F, or fg for a speci-
fied group of individuals. The outline of the algorithm
is as follows:

The identifications (ID) should be consecutive in-
tegers and parents precede progeny.

1. Define a table of three columns and initialize all
elements to 0.

2. Set the first and the second columns for the m first
rows to the ID of two parents of m individuals in
question. Add the minimum ID in the first column.

3. Set the third column of the m rows to 0-5.

4. Process from the largest generation to 0.

For overlapping generations, consider

generations.

pseudo-

(1) For the 1st and 2nd columns, in turn, expand the
table by adding two parents of individuals be-
longing to the current generation to the end of
table while duplicating the corresponding ID in
other column and adding half of the correspond-
ing contribution to the 3rd column. Always place
the minimum ID in the 1st column and avoid re-
peated rows by summing their contributions.

(i1) If IDs in the 1st and the 2nd columns are identical,
then this is a NCA ; therefore add its ID and con-
tribution to the result table.

The resulting table will contain the ID and contri-
bution of NCAs to the inbreeding of the individuals
of interest. Table Al shows the steps of the tabular
algorithm applied to the example pedigree for
decomposing the average inbreeding of individuals
9 and 10.
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Table Al. Implementation of the tabular algorithm to decompose the
average inbreeding of individuals 9 and 10 of the example pedigree

Identification
Contribution
(3rd column)

Generation
processed

Ist column  2nd column

NCA  Contribution

4
3

0-5+0-5
0-25
0-5
0-25
0-125
0-25
0-25
0-25
0-1875
0-0625
0-25
0-1875
0-0625

RO = — = RO B = O\ — O\ L L
MW — WA L ®

5 0-25/2¢

6 0-25/2

1 0-0625/2

2 0-0625/2

¢ 2 is the number of individuals in the group considered.

Appendix B. Detailed proof that m-decomposition
can be recovered from w-decomposition

We partition one occurrence of inbreeding through
individual 7 at locus k into link probabilities with
inbred states of ancestors, given that the polygenic
neutral trait involves L unlinked loci.

Transform the probability problems into problems
of genetic variance decomposition. Sire of individual
i is s; and its dam is d; with genetic values at locus &
equal to gf,i and gf,, respectively. Genetic and gametic
variances at locus k are 1/L and 0-5/L, respectively.
A gene sampled from the sire has an expected genetic
value of O-ng’_ and of sampling variance equal to
0-25(1—F,)/L.

Then, conditioning on inbreeding occurring, the
same gene from the sire is sampled twice so that the
expectation of the sum of the genetic values is gﬁ and
its sampling variance is equal to (1 —Fj,)/L. Because
overall variance of the sum of the genetic values cor-
responding to these genes is equal to 2/L, we have:

2/L=var (gfj)—i—(l —F,)/L.

The same is true when the gene comes from the
dam. When the same gene is sampled twice, the
probability for paternal or maternal origin is 0-5.
Then, the conditioned variance of the BV at locus k&
is equal to 2/L and to

0-5(var (gfl) +var (gf‘,l)) +1/L—0-5(F,+F,)/L.

If w; is the probability that the gene sampled twice
comes from ancestor 7, then participation of ancestor
i to drift at locus k is

wi(0-5(var (g8 )+ var (¢4))+1/L—0-5(F, + F,)/L.
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Summing over all independent loci, with the same
probability of inbreeding, shows that the overall
contribution of ancestor i to drift is equal to

wi(0-5(var (g,,) +var (g,)) +1—0-5(F,, + F,)),

and after division by 2, because relationship coef-
ficient is twice coancestry coefficient, we have another
expression of the contribution of ancestor i to the
average coancestry, i.e.,

w;(0-25(var (g,)+var (g,)) +0-5—=0-25(F, + F;)).

Appendix C. Removing the effect of self-contributions
from vector m

Let g be the average BV of the current population, g,
and g, the average BVs of sires and dams. Then,
g=0~5(§,,+gm)+§=g*+8, where O is the average
Mendelian sampling BV. Drift due to parents is
equal to the variance of the parental mean, i.e., the
average weighted relationship coefficient between
parents, where weights are proportional to progeny
size and sum to 0-5 per sex. If we express drift in terms
of coancestry ( f), then this value should be multiplied
by 0-5. A direct adaptation of the m-decomposition
for fis possible but still complicates calculation.
Then, an indirect approach is proposed that is
much simpler, where the m-decomposition of fis still
carried out, but where the effect of d is easily removed.
If ¢, is the average contribution of ancestor k and
dy is his Mendelian sampling BV, then g=), &dy.
Index k includes the N indices / corresponding to
the current population. For these indices, the direct
impact of / is through ¢; equal to 1/N for any
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[ (self-contribution). Then,

**=g*—(1/N);6/= Y O+ Y (€ —1/N),.

k#1 i

The new m-decomposition is the decomposition
of 0.5var(g*) for /, and the new value is m) =
0-5(¢;—1/N)*di. Given that m;=0-5¢3d,, then m] =

)\ 2
(v~ (1/N/24F))".

Appendix D. Back-optimization of contributions
(1) Conventional contributions

The average coancestry between parents of the last
generation is constrained to be ¢. This coancestry is
equal to 0-5x'Dx, where x is the vector of contri-
butions of CA and where D is the diagonal matrix
involving their MSVs. The second constraint on the
sums per sex x generation can be written as P'x =0-51,
where P is the incidence matrix relating the ancestors
to the combined factor sex x generation, and the third
constraint on CAs with one progeny can be written
as K'x=0. For simplicity, we do not indicate the
sizes of matrices and vectors involved. Given these
constraints, the objective is to maximize the estimated
genetic gain, i.e., &'x, where 8 is the vector of the
estimated Mendelian deviations for the trait under
selection. Then, the Lagrange function to optimize is

d'x —2(0-5x'Dx —p)—0'(P'’x—0-51) —'K'x.

The solution is x=1"'D '(®—P0—Kn). Con-
straint 3 leads one to find that n=(KD'K)™"
(KD '0—P0) and then that, nK'x=8x—0PXx,
where =0—K(K'D 'K) 'K'D 'Pd and P=P—K
(K'D'K) 'K'D 'P. The solution for 0 is 0=
(PD~'P) " '(P’D'8—0-541) and the solution for 1
is+square root of the ratio (8D 'd—yHy)/
(2p—0-251'H1), where H=(P'D 'P)"' and y=
PD .

(i1) Proximal contributions

The Lagrange function to optimize is 3% 'x* —
A(0.5x*'D*x* — ), with only a single constraint be-
cause other constraints on the solutions cannot be
established analytically in the proximal model.

Solutions are  x*=A"'D*'3*  with A=

\/(6*’])**18*)/(2(0) and maximum genetic gain

equals 1/2p8*D* ~19*.
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