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This article presents a modelling approach to predict the low-frequency sound generated
by entropy fluctuations interacting with isolated aerofoils. A model of the acoustic field
is obtained based on a linearisation of the compressible Euler equations about a steady,
potential, compressible mean flow. Mean flow variations of velocity and density are
accounted for in the source term, but are neglected in the sound propagation. Using a
Lorentz-type transformation, the problem is reduced to solving a Helmholtz equation.
This equation is recast in integral form and a solution is obtained using a compact
Green’s function method. This approach places no restrictions on the entropy wavelength,
while assuming that the acoustic wavelength is large compared to the profile chord and
spacing. The source term is further simplified by assuming that the steady flow is a
small perturbation to a uniform flow. The model is illustrated using a symmetric aerofoil
and its performance is assessed against numerical simulations of the compressible Euler
equations. Good agreement is found for all the frequencies of validity of the theory and for
all the range of subsonic Mach numbers. The solution for a symmetric aerofoil interacting
with plane entropy waves corresponds to the combination of a dipole along the horizontal
axis and a monopole. The dipole originates from the unsteady drag experienced by the
aerofoil owing to the fluctuations of density and the monopole from the strong local
acceleration of the flow at the leading edge. The monopole term becomes negligible for
low Mach numbers.

Key words: aeroacoustics

1. Introduction

Combustors in gas turbine engines present two sources of noise associated with the
combustion process (Dowling & Mahmoudi 2015; Ihme 2017; Tam et al. 2019): (i) direct
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combustion noise and (ii) indirect combustion noise. The first component designates the
generation of pressure fluctuations arising from unsteady heat released by the flame.
Unsteady combustion also generates flow perturbations in the form of temperature,
vorticity and mixture-composition inhomogeneities. These perturbations, which are silent
while advected by a uniform flow (Chu & Kovásznay 1958), generate further sound
when accelerated/decelerated (Marble & Candel 1977; Bake et al. 2009). This second
source of noise is termed indirect combustion noise and can be further classified into
three subcomponents depending on the flow perturbation causing it: (i) entropy noise
(Marble & Candel 1977; Bake et al. 2009), (ii) vortex noise (Kings & Bake 2010)
and (iii) compositional noise (Strahle 1976; Magri, O’Brien & Ihme 2016; Ihme 2017).
Entropy noise is believed to be the dominant component (Morgans & Duran 2016) and,
consequently, has been the focus of most research on indirect combustion noise. The
present paper deals with entropy noise as the main component of indirect combustion
noise.

Indirect combustion noise contributes to the total exhaust noise of aeroengines, via the
downstream propagating component (Leyko, Nicoud & Poinsot 2009; Duran et al. 2014;
Tam, Li & Schuster 2016). It also modifies the stability of the combustor, via the upstream
propagating component (Goh & Morgans 2013; Morgans & Duran 2016). Thermoacoustic
instabilities (Candel 2002; Lieuwen 2003) arise from the two-way coupling between
acoustic disturbances and heat release within the combustion chamber. They lead to large
amplitude self-excited oscillations which have the potential to cause severe structural
damage to the combustion chamber and the turbine. Therefore, predicting and suppressing
combustion instabilities at an early design stage is a priority. To correctly assess the
stability of a combustor, indirect combustion noise generated by flow inhomogeneities
going through the nozzle guide vanes (NGVs) at the exit of the combustion chamber must
be accurately described.

The generation of entropy noise comprises three stages that can be studied and
modelled separately. First, incompressible temperature fluctuations, the so-called entropy
waves, are generated at the flame by an unsteady heat release rate (Bragg 1963; Strahle
1978; Dowling 1995). Karimi, Brear & Moase (2008) showed that one-dimensional,
non-diffusive flows with heat communication behave as low-pass filters when excited by
an unsteady heat release rate: an effective cutoff frequency exists, below which significant
entropy generation occurs and above which entropy generation diminishes. Yoon (2020)
found that the entropic cutoff frequency is inversely proportional to the flame residence
time. Entropy generation has been the subject of recent investigations using low-order
models (Chen, Bomberg & Polifke 2016), numerical simulations (Semlitsch et al. 2019)
and experimental measurements (Wang et al. 2019; Weilenmann et al. 2020a).

Second, entropy waves advect towards the combustor exit and are dissipated and
dispersed in the process (Sattelmayer 2003; Morgans, Goh & Dahan 2013). At low
frequencies, diffusion was found to be negligible and shear dispersion arising from the
velocity profile was found to be the main mechanism in the decay of entropy waves
(Morgans et al. 2013; Giusti et al. 2017; Xia et al. 2018). Fattahi, Hosseinalipour & Karimi
(2017) studied numerically the dissipation of entropy waves in a turbulent channel flow and
showed that the high-frequency components are always strongly damped. This result was
further supported by experimental results in a circular duct (Hosseinalipour et al. 2020).
The latter study also showed that the components of the entropy wave with convective
wavelengths longer than the duct-diameter remain highly coherent throughout the duct,
which supports the use of one-dimensional entropy noise models. At higher frequencies,
the spatial correlation of the waves was lost. Christodoulou et al. (2020) developed a
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low-order model that accounts for variable shapes and amplitudes of entropy waves. The
recent experimental work of Weilenmann, Xiong & Noiray (2020b) suggests the need
for low-order models that also describe dispersion effects owing to turbulent coherent
structures. This was shown numerically by Xia et al. (2018).

A common conclusion of the studies on both generation and transport is the
low-frequency nature of the waves reaching the end of the combustor. In a recent
experiment by Greifenstein et al. (2020), the combined effect of both phenomena in
a realistic combustor was studied. The study revealed the strong influence of a central
precessing vortex core on the entropy profiles measured at the exit of the combustor.

Finally, the entropy waves that reach the exit of the combustor are accelerated and
generate noise in the process. In gas turbines and aeroengines, the acceleration occurs
through the turbine blade rows, while in lab-scale experiments, the acceleration is often
provided by a nozzle flow. The case of interest for this paper is the former, but for the
sake of completeness we offer a brief review of the state-of-the-art of entropy noise
generated by nozzle flows. The seminal theory of Marble & Candel (1977) presents
analytical transfer functions for the entropy noise generated in the zero-frequency limit
assuming a quasi-one-dimensional and isentropic flow. This model was extended to
higher frequencies by Moase, Brear & Manzie (2007), Giauque, Huet & Clero (2012),
Stow, Dowling & Hynes (2002) and Goh & Morgans (2011). Finally, the Magnus
expansion of Duran & Moreau (2013) generalised the model to be valid at any frequency.
This was later extended to circumferential waves by Duran & Morgans (2015). In the
mid-frequencies, three-dimensional effects become apparent and must be described by the
model (Emmanuelli et al. 2020; Huet, Emmanuelli & Le Garrec 2020). Further extensions
of the quasi-one-dimensional theory include nonlinear effects (Huet & Giauque 2013),
compositional inhomogeneities (Magri et al. 2016; Magri 2017) and non-isentropic effects
(De Domenico, Rolland & Hochgreb 2019).

We now turn our attention to the entropy noise generated by blades. To solve this
problem, Cumpsty & Marble (1977b, a) proposed an actuator disk method which considers
flow fluctuations to be plane both upstream and downstream of the blade row undergoing
a discontinuous jump of strength through it. This approach is based on the assumption
that the entropy wavelength is large compared to the length of the blade and neglects the
details of the mean flow (compact assumption). Mishra & Bodony (2013) and Leyko et al.
(2014) compared the results of this theory with numerical simulations, which showed that
disk actuator theory is only valid at low frequencies. Despite this limitation, disk actuator
theory represents the current state-of-the-art for predicting the sound field generated by
the interaction of entropy waves with blades. The theory was further extended to rotor
cascades by Bauerheim et al. (2016).

In parallel to disk actuator models, a theory of entropy noise was developed using
acoustic analogies combined with the Green’s function method (Morfey 1973; Ffowcs
Williams & Howe 1975; Howe 1975, 2010; Yang, Guzmán-Iñigo & Morgans unpublished
observations). This approach however is intrinsically limited to low-Mach-number flows,
with entropy noise being important in the high-Mach-number regime. As an alternative
to acoustic analogies, Bodony (2009) proposed a model based on rapid distortion theory
(Goldstein 1978) and the Green’s function method. Rapid distortion theory, which recast
the problem as an inhomogeneous wave equation with a source term, is an exact
rearrangement of the linearised compressible Euler equations. It has been widely used to
describe high-frequency vortical noise for isolated aerofoils (Kerschen & Myers 1987; Tsai
1992; Myers & Kerschen 1995, 1997) and cascades (Peake & Kerschen 1997, 2004). The
aforementioned models account for entropy perturbations, but the low-frequency nature

923 A10-3

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

56
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.569


J. Guzmán-Iñigo, I. Durán and A.S. Morgans

of entropy noise renders them of no use in practice. Recently, Baddoo & Ayton (2020)
developed a solution for cascades of blades valid at low-to-moderate frequencies. This
approach was extended to account for compositional perturbations by Guzmán-Iñigo et al.
(2019). The Baddoo and Ayton model assumes that the mean flow is a small perturbation
to a uniform flow. This assumption, which is valid for compressor and fan cascades, is too
restrictive for turbine cascades where the favourable pressure gradient allows for larger
angles of attack, cambers and thickness of the aerofoils.

In this paper, we build on Bodony’s approach and combine rapid distortion theory with
a compact Green’s function (Howe 1975). Bodony (2009) assumed the Mach number to
be small and neglected the effect of the mean flow in the propagation of sound. The
model was then used to propose a qualitative interpretation of the underlying physical
mechanism, but no quantitative validation was provided. The contributions of this paper
are twofold. First, we introduce the Born approximation (Snieder & Van Wijk 2015, Ch.
23) to simplify the governing equations. This simplification allows a Green’s function to
be obtained that, using a Lorentz-type transformation, accounts for the effect of the mean
flow even at subsonic Mach numbers close to unity. For thin aerofoils, this solution is
valid for low-to-moderate frequencies and any subsonic Mach number. If the aerofoil is
thicker or its camber or angle of attack is large, the proposed solution is still valid at the
expense of the range of validity in frequency and Mach number. Second, we simplify the
source term using thin-aerofoil theory and obtain a closed form solution by numerically
integrating the different terms. This solution is compared with numerical simulations of
the Euler equations, and show a very good agreement for a wide range of frequencies and
Mach numbers.

This paper is organised as follows. In § 2, we introduce the governing equations of
the problem. The acoustic propagation operator is simplified and an integral solution is
proposed using the compact Green’s function method in § 3. In § 4, the source term is also
simplified using thin-aerofoil theory and a solution is obtained for a symmetric Joukowsky
aerofoil in § 5. A summary of the results and conclusions are given in § 6.

2. Problem formulation

2.1. Configuration and governing equations
We consider the flow past a two-dimensional single aerofoil of semi-chord b = c/2,

as sketched in figure 1. The flow is taken to be inviscid, non-heat-conducting and a
compressible perfect gas. Neglecting volumetric forces, as well as thermal and mass
diffusion the conservation of mass, momentum and energy can be written, respectively,
as

∂ρ

∂t
+ ∇ · (ρU) = 0,

∂U
∂t

+ U · ∇U = − 1
ρ

∇p,
∂s
∂t

+ U · ∇s = 0, (2.1a–c)

where ρ is the density, p is the pressure, U is the velocity, s is the specific entropy and t is
the time.

We suppose that the flow upstream consists of a uniform component of velocity U∞,

density ρ∞ and speed of sound a∞, on which there is superimposed a small unsteady
motion. Consequently, the flow can be decomposed into a steady mean, denoted by (·)0,
and a perturbation component, denoted by (·)′.

The equations governing the mean flow are

∇ · (ρ0U0) = 0, ρ0U0 · ∇U0 = −∇p0. (2.2a,b)
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U∞

x2

x1

α

2b

s′
∞

Wake

Figure 1. Aerofoil of semi-chord b at incidence angle α encountering a convected entropy disturbance.

The mean flow is also assumed homentropic, i.e. s0 = 0, and irrotational, i.e. ∇ × U0 = 0.
Under the irrotational assumption, there exists a potential function such that U0 = ∇Φ.
Furthermore, and because the flow is two-dimensional, we can define a compressible
stream function Ψ as

∇ × (ρ∞Ψ e3) = β∞ρ0U0, (2.3)

where the factor β∞ = √
1 − M2∞ (M∞ = U∞/a∞) corresponds to a Prandtl–Glauert

transformation (Ashley & Landahl 1985) and e3 is the unit vector perpendicular to the
x1–x2 plane.

We assume that small-amplitude entropic disturbances are superimposed on the uniform
flow (infinitely far upstream). These disturbances are convected downstream by the mean
flow and interact with the aerofoil, which produces sound. Similar approaches have been
employed (Myers 1987; Tsai 1992; Myers & Kerschen 1995, 1997) in modelling gust–blade
interaction. Neglecting squares of small quantities and subtracting out the mean flow
equations, we obtain that the dynamics of the perturbation part is governed by

D0ρ
′

Dt
+ ρ′∇ · U0 + ∇ · (ρ0u′) = 0, (2.4a)

D0u′

Dt
+ u′ · ∇U0 + ρ′

ρ0
U0 · ∇U0 = − 1

ρ0
∇p′, (2.4b)

D0s′

Dt
= 0, (2.4c)

where D0/Dt = ∂/∂t + U0 · ∇ is the material derivative with respect to the local mean
flow. The perturbation density, pressure and entropy are related by the Gibbs equation,
which leads to

ρ′

ρ0
= p′

γ p0
− s′

cp
, (2.5)

where γ is the ratio of the specific heat capacities of the gas at constant pressure cp and
constant volume cv, i.e. γ = cp/cv.

2.2. Rapid distortion theory formulation
The generalisation of rapid distortion theory proposed by Goldstein (1978) provides a
well-suited framework for solving (2.4). Goldstein (1978) showed that the analysis of the
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perturbation dynamics can be reduced to solving a single inhomogeneous wave equation
by introducing the following splitting of the perturbation velocity and pressure:

u′ = ∇φ + u(H) + s′

2cp
U0, (2.6)

and

p′ = −ρ0
D0φ

Dt
. (2.7)

The perturbation velocity is represented as the sum of a component that is the gradient of
an acoustic potential φ, a homogeneous component u(H) and a term proportional to the
perturbation entropy s′. The homogeneous component, u(H), satisfies a modified form of
the linearised momentum equation:

D0u(H)

Dt
+ u(H) · ∇U0 = 0, (2.8)

and s′ satisfies the energy equation (2.4c). These equations can be integrated exactly using
the method of characteristics if appropriate boundary conditions are provided (see § 2.3).

To determine the acoustic potential φ, (2.6), (2.7) and (2.5) are substituted into (2.4a)
to obtain the following inhomogeneous, convective wave equation:

D0

Dt

(
1
a2

0

D0φ

Dt

)
− 1

ρ0
∇ · (ρ0∇φ) = 1

ρ0
∇ ·

(
ρ0u(H)

)
− 1

2cp

∂s′

∂t
, (2.9)

subject to boundary conditions

∇φ · n = −u(H) · n, on Σ, (2.10a)

φ → 0, as x1 → −∞, (2.10b)

where Σ is the surface of the aerofoil and a0 is the local speed of sound of the mean flow.
The decomposition given by (2.6) and (2.7) greatly simplifies the problem: a coupled

system of four partial differential equations (PDEs) is transformed into three fully
decoupled PDEs ((2.8) and (2.4c)) together with a wave equation (2.9) coupled to the
aforementioned ones only through the source term. The former equations can be integrated
analytically, as explained in § 2.3, and an approximated solution to the latter is proposed
in § 3.

2.3. Time-periodic entropy fluctuations
Equations (2.8) and (2.4c) can be integrated exactly using the method of characteristics
if appropriate boundary conditions are provided. Here, we set a time-periodic entropic
perturbation far upstream of the form:

s′
∞/cp = As exp (i [k1x1 + k2x2 − ωt]), (2.11)

where k1 and k2 are the wavenumbers of the perturbation in x1 and x2, respectively, and
ω is the angular frequency. The relation k1 = ω/U∞ is satisfied. Equation (2.4c) can be
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integrated to yield:

s′

cp
= As exp (i (k · X − ωt)) , (2.12)

where k = (k1, k2)
� and X = (XΦ, XΨ )� are vectors containing, respectively, the entropy

wavenumbers and mean-flow Lagrangian coordinates:

XΦ = Φ + g(Φ, Ψ )

U∞
, XΨ = Ψ

β∞U∞
, (2.13a,b)

with

g(Φ, Ψ ) =
∫ Φ

−∞

[
U2∞

U0(ξ, Ψ )2 − 1
]

dξ (2.14)

as the drift function and U0 is the magnitude of the velocity vector U0. Note that the drift
function g is singular along any streamline passing through a stagnation point.

Additionally, we assume that the disturbances of the mean flow far upstream of the body
are purely entropic (u′∞ = 0). Using this assumption, the homogeneous components of the
perturbation velocity, u(H), are directly obtained in Lagrangian coordinates (Kerschen &
Balsa 1981) as

u(H)
t

U∞
= −As

2
U∞
U0

exp(i (k · X − ωt)), (2.15a)

u(H)
n

U∞
= −β∞

As

2
ρ0U0

ρ∞U∞
∂g
∂Ψ

exp(i (k · X − ωt)), (2.15b)

with u(H)
t and u(H)

n denoting the velocity components parallel and normal to a streamline,
respectively.

The source term of (2.9) can now be obtained as

S(x, t) = − 1
ρ0

∇ ·
(
ρ0u(H)

)
− iω

2cp
s′ = Ŝ(x;ω) exp (−iωt), (2.16)

where

Ŝ(Φ, Ψ ;ω) = As

2

[
−2

U2∞
U0

∂U0

∂Φ
+ 2β2

∞
ρ0U2

0
ρ2∞

∂ρ0

∂Ψ

∂g
∂Ψ

+ β2
∞

ρ2
0U2

0
ρ2∞

∂2g
∂Ψ 2 + ik1U∞

×
(

U2∞
U2

0
− 1 + β2

∞
ρ2

0U2
0

ρ2∞U2∞

∂g
∂Ψ

∂g
∂Ψ

)
+ ik2β∞

ρ2
0U2

0
ρ2∞U∞

∂g
∂Ψ

]
exp(ik · X ).

(2.17)

The time-harmonic dependence of the source term and boundary conditions of (2.9)
allow us to write a solution in the form φ(x, t) = φ̂(x) exp (−iωt). Introducing now the
acoustic wavenumber κ0 = ω/a0 and local Mach number M0 = U0/a0, this equation can
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be rewritten as [
∇2 + (κ0 + iM0 · ∇)2

]
φ̂ + L0

(
φ̂
)

= Ŝ, (2.18)

with

L0

(
φ̂
)

= ∇φ̂ · (−M0 · ∇M0 + ∇ ln ρ0 + M0(M0 · ∇ ln a0))

+ iφ̂ (M0 · ∇κ0 − κ0M0 · ∇ ln a0) . (2.19)
Note that the sign of (2.9) has been reversed in (2.18), hence the definition of the source
term in (2.16) as minus its right-hand side.

To set the context of the analysis, we now summarise the assumptions used up to this
point. Viscous effects and, thus, the presence of boundary layers are neglected. Boundary
layers are expected to enhance the shear of entropy waves close to the walls, especially
in confined flows. Second, the magnitude of the entropic and acoustic waves is assumed
to be small compared to the mean flow so that the governing equations can be linearised.
The mean flow is assumed homentropic and irrotational. Finally, the mean flow is taken to
be two-dimensional so that a streamfunction can be defined. This allows us to obtain the
entropy distribution as in (2.12) and, thus, the source term given by (2.17).

3. Solution using the compact Green’s function

In this section, we obtain an approximate solution to (2.18) using the Green’s
function method (Howe 1975, 2003). This equation has variable coefficients and further
simplifications are required. In § 3.1, we simplify the acoustic propagation operator on
the left-hand side using the Born approximation. An integral solution is then proposed in
§ 3.2.

3.1. Born approximation
Let us decompose the local Mach number and acoustic wavenumber on the left-hand side
of (2.18) into an homogeneous and inhomogeneous part, such as

M0(x) = M∞e1 + MΔ(x), κ0(x) = κ∞ + κΔ(x), (3.1a,b)
where e1 denotes the unit vector in the x1-direction and κ∞ = ω/a∞ is the acoustic
wavenumber in the far field. Equation (2.18) can now be recast as[

∇2 +
(

κ∞ + iM∞
∂

∂x1

)2
]

φ̂ + LΔ

(
φ̂
)

= Ŝ, (3.2)

where the operator LΔ is given by

LΔ (·) =
[
(κΔ + iMΔ · ∇)2 + 2 (κ∞ + iM∞∂/∂x1) (κΔ + iMΔ · ∇)

]
(·) + L0 (·) .

(3.3)
This operator captures the effect of the mean-flow inhomogeneity on the acoustic
propagation. If its effect is weak, we can neglect it and assume that the source term acts
on the uniform portion of the mean flow, such that[

∇2 +
(

κ∞ + iM∞
∂

∂x1

)2
]

φ̂∞ = Ŝ. (3.4)

This approximation can be further improved by considering the effect of the
inhomogeneity on the acoustic field as a second-order source term correction,
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i.e. φ̂ = φ̂∞ + φ̂Δ, where φ̂Δ satisfies[
∇2 +

(
κ∞ + iM∞

∂

∂x1

)2
]

φ̂Δ = −LΔ

(
φ̂∞

)
. (3.5)

The above is known as the first-order Born approximation (Snieder & Van Wijk 2015, Ch.
23). Chew (1995, Ch. 8) established the regime of validity of the Born approximation for
the Helmholtz equation, and showed that it was especially pertinent at low frequencies.
In Appendix A, we use a similar approach to show that the Born approximation limits of
validity for (3.2) are given by

He2 δκ2 � 1, He M∞ δκ δM � 1, M2
∞ δM2 � 1, He2 δκ � 1,

He M∞ δM � 1, He M∞ δκ � 1 and M2
∞ δM � 1, (3.6a–g)

where δκ and δM represent the order of the normalised wavenumber and Mach number
inhomogeneity, respectively, and He = ωb/a∞ is the Helmholtz number. This shows that
the Born approximation is perfectly suited to problems at low frequencies, low Mach
numbers and with weak mean-flow inhomogeneities. In § 4, we simplify the source term by
assuming that the mean flow is a small perturbation to a uniform flow. Equation (3.6a–g)
shows that if this condition holds, the Born approximation is valid for any subsonic Mach
number and for low-to-moderate frequencies. At high frequencies, the Born approximation
is not suitable even for weak scatterers. This conclusion, which was obtained using simple
dimensional analysis, was already postulated by Myers & Kerschen (1997) who showed the
importance of accurately capturing the vortical-sound coupling between the leading and
trailing edges to correctly predict the radiated far field at high frequencies. The present
analysis also shows that this methodology can be used for aerofoils with larger thickness,
camber or incoming angle of attack than those considered in the aforementioned studies,
provided that the frequency and Mach number are sufficiently low.

To illustrate the solution method, we now consider the zeroth-order approximation,
i.e. φ̂ = φ̂∞. The first-order correction, φ̂Δ, can be obtained equivalently by accordingly
replacing the source term in the following procedure. A Lorentz-type transformation of
the form:

x̃1 = x1/β∞, x̃2 = x2, β∞ =
√

1 − M2∞,

κ̃∞ = κ∞/β∞, φ̃ = φ̂ exp(iκ̃∞M∞x̃1),

⎫⎬
⎭ (3.7)

is now used to transform (3.4) into the Helmholtz equation, that is[
∇̃2 + κ̃2

∞
]
φ̃ = S̃, S̃ = Ŝ exp(iκ̃∞M∞x̃1). (3.8a,b)

Equation (3.8a,b) has been widely studied and can be solved using techniques available in
the literature. Here, we propose a solution using the compact Green’s function approach
(Howe 1975, 2003) as outlined in § 3.2.

3.2. Integral solution using the compact Green’s function method
Consider the Green’s function G(x̃, ỹ) satisfying[

∇̃2 + κ̃2
∞
]

G(x̃, ỹ) = δ(x̃ − ỹ),
∂G
∂ñ

− iκ̃∞M∞ñ1G = 0, on Σ, (3.9a,b)

where δ is the Dirac delta function. The physical meaning of this Green’s function is the
solution owing to a point source of unit strength at a point ỹ, influenced by the surface Σ.
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V

Σ+

Σ− W +

W −

S∞

n
n

Figure 2. Schematic of the region V used in the derivation of the integral equation (3.10). Here, S is the
surface bounding V: S = Σ ∪ S∞ ∪ W.

In an unbounded fluid, this Green’s function must also satisfy the radiation condition that
energy delivered to the fluid by the source radiates away from the source, i.e. the solution
must exhibit outgoing wave behaviour.

Consider the closed surface S bounding the spatial domain V , as depicted in figure 2.
This surface comprises three subsurfaces: S = Σ ∪ S∞ ∪ W, where Σ and W are surfaces
surrounding the aerofoil and the wake (the portion of the streamline that goes from the
trailing edge to infinity downstream), respectively, and S∞ is a surface very far from the
aerofoil. We denote by n the inward unit normal to S. Multiplying (3.8a,b) by the Green’s
function defined by (3.9a,b) and integrating over the domain V, we obtain after some
manipulations (see Appendix B) the following integral solution for the acoustic potential:

φ̃(x̃) =
∫

V
G(x̃, ỹ)S̃( ỹ) dV( ỹ) +

∫
Σ+W

G(x̃, ỹ)
∂φ̂

∂ñ
( ỹ) exp(iκ̃∞M∞ỹ1) dS( ỹ)

−
∫

W
φ̃( ỹ)

(
∂G
∂ñ

(x̃, ỹ) − iκ̃∞M∞ñ1G(x̃, ỹ)
)

dS( ỹ). (3.10)

The integrals in S∞ vanish (see Wu & Lee 1994). Along the wake, the source term can be
singular, hence the acoustic potential can become discontinuous. The line integrals along
the wake are retained to ensure the continuity of the pressure and normal velocity across it,
as well as the Kutta condition at the trailing edge. In § 4, we show that in the thin-aerofoil
limit this integral disappears. For simplicity’s sake, we neglect it hereafter. The integral
term over Σ represents the contribution to the acoustic field generated to satisfy the slip
boundary condition on the body. For convenience, the surface Σ is further decomposed
into two surfaces : Σ = Σ+ ∪ Σ−, where Σ+ and Σ− denote the upper and lower side
of the aerofoil, respectively, going from the leading to the trailing edge.

An approximate solution to (3.9a,b) (to order (κ̃∞b)2) is given by the compact Green’s
function approach of Howe (1975, 2003) as

G(x̃, ỹ;ω) = − i
4

[
H(1)

0 (κ̃∞|x̃|) + H(1)
1 (κ̃∞|x̃|)κ̃∞

x̃jYj( ỹ)
|x̃|

]
, (3.11)

for an observer at x̃ and source at ỹ. Here, H(1)
0 and H(1)

1 are the Hankel functions
of the first kind for the zeroth and first order, respectively. The double index j = 1, 2
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implies summation. The Kirchhoff vector Yj ≡ yj − ϕ∗
j ( ỹ) satisfies

∇̃2Yj = 0, (3.12)

subject to
∂Yj

∂ñ
− iκ̃∞M∞Yjñ1 = 0, on Σ. (3.13)

The function ϕ∗
j ( ỹ) represents the effect of the solid boundary on the acoustic response

(see Howe 2003 for a detailed description). Any acoustic source placed far from the
aerofoil will be virtually not affected by it. To reflect this, we require that ϕ∗

j ( ỹ) decays
with distance from Σ.

The acoustic potential field is then obtained by substituting the compact Green’s
function given by (3.11) into (3.10) to yield:

φ̃(x̃) = −i
4

[
H(1)

0 (κ̃∞|x̃|)
(∫

V
S̃( ỹ) dV( ỹ) +

∫
Σ

∂φ̂

∂ñ
( ỹ) exp(iκ̃∞M∞ỹ1) dS( ỹ)

)

+ κ̃∞
x̃j

|x̃|H
(1)
1 (κ̃∞|x̃|)

(∫
V

Yj( ỹ)S̃( ỹ) dV( ỹ) +
∫

Σ

Yj( ỹ)
∂φ̂

∂ñ
( ỹ) exp(iκ̃∞M∞ỹ1) dS( ỹ)

)]
.

(3.14)

All the terms involving the observer position are moved outside of the integrals in (3.14)
and, thus, the acoustic potential can be expressed as a linear combination of three basic
components:

φ̂(x̃) = α0 φ0(x̃) + α1 φ1(x̃) + α2 φ2(x̃), (3.15)

with

α0 =
∫

V
S̃( ỹ) dV( ỹ) +

∫
Σ

∂φ̂

∂ñ
( ỹ) exp(iκ̃∞M∞ỹ1) dS( ỹ), (3.16a)

αj = κ̃∞

(∫
V

Yj( ỹ)S̃( ỹ) dV( ỹ) +
∫

Σ

Yj( ỹ)
∂φ̂

∂ñ
( ỹ) exp(iκ̃∞M∞ỹ1) dS( ỹ)

)
, (3.16b)

and

φ0(x̃) = − i
4

[
H(1)

0 (κ̃∞|x̃|)
]

exp(−iκ̃∞M∞x̃1), (3.17a)

φj(x̃) = − i
4

[
x̃j

|x̃|H
(1)
1 (κ̃∞|x̃|)

]
exp(−iκ̃∞M∞x̃1), (3.17b)

with j = 1, 2.

Figure 3 shows these three components which are a monopole, a dipole in the horizontal
axis and a dipole in the vertical axis. The velocity potential field, φ̂(x), will then depend
on the geometry of the field through the weighting terms α0, α1 and α2 in (3.15). The
three components are affected by the Doppler factor exp(−iκ̃∞M∞x̃1), which causes
the wavelength of the potential propagating in the forward direction to be shortened by
the motion whereas the wavelength of the potential propagating in the rear direction is
lengthened.
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Figure 3. Components of the solution of the acoustic potential, φ̂, for a flow M∞ = 0.2 and He = 0.05 :
(a,d) φ0; (b,e) φ1; and (c, f ) φ2. (a–c) Real part and (d–f ) directivity.

The pressure field is then obtained from these three components using (2.7). If the
observer is sufficiently far from the aerofoil, the mean flow velocity and density can be
assumed uniform and the pressure field simplifies to

p′ = ρ∞

[
iωφ̂ − U∞

∂φ̂

∂x1

]
, (3.18)

which shows that the pressure field is given as a combination of the acoustic potential and
its derivative in the streamwise direction ∂φ̂/∂x1. The streamwise derivatives for the three
potential components are given by

∂φ0

∂x1
= − κ∞

β2∞
[iM∞φ0 + φ1] , (3.19a)

∂φ1

∂x1
= − κ∞

β2∞

[
iM∞φ1 − i

4

(
x̃2

1
|x̃|2H

(1)
2 (κ̃∞|x̃|) − 1

|x̃|
H(1)

1 (κ̃∞|x̃|)
κ̃∞

)
exp(−iκ̃∞M∞x̃1)

]
,

(3.19b)

∂φ2

∂x1
= − κ∞

β2∞

[
iM∞φ2 − i

4

(
x̃1x̃2

|x̃|2 H
(1)
2 (κ̃∞|x̃|)

)
exp(−iκ̃∞M∞x̃1)

]
. (3.19c)

where H(1)
2 is the Hankel function of first kind and second order. These functions are

depicted in figures 4 and 5 for two different Helmholtz numbers. The term iM∞ arises
from the Doppler factor and causes the sound radiated in the forward direction to be
amplified whereas the sound propagating in the rear direction is attenuated. For the
first component, the monopole φ0, its derivative additionally includes a dipole whose
wavelength and amplitude are accordingly modulated by the Doppler effect. For the second
component, the dipole along the horizontal axis φ1, its derivative additionally includes
two terms: a flattened horizontal dipole and a term with a omnidirectional directivity, and
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Figure 4. Streamwise derivative of the components of the acoustic potential, ∂φ̂/∂x1, for a flow M∞ = 0.2
and He = 0.05 : (a,d) ∂φ0/∂x1; (b,e) ∂φ1/∂x1; and (c, f ) ∂φ2/∂x1. (a–c) Real part and (d–f ) directivity.
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Figure 5. Streamwise derivative of the components of the acoustic potential, ∂φ̂/∂x1, for a flow M∞ = 0.2
and He = 0.001 : (a,d) ∂φ0/∂x1; (b,e) ∂φ1/∂x1; and (c, f ) ∂φ2/∂x1. (a–c) Real part and (d–f ) directivity.

that decays with distance and frequency faster than a monopole. Figure 4(b,e) and 5(b,e)
show how at high frequencies the dominant contribution is the flattened dipole, while at
lower frequencies both contributions are as important and combine to form a directivity
pattern comprising four lobes along the two main axes. Finally, for the third component,
the vertical dipole φ2, its derivative is a quadrupole also affected by the Doppler effect
(stronger sound amplitude in the forward direction).

The results presented up to this point constitute a contribution of the present work. The
combination of the Born approximation with (2.9) allows the integral solution given by
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(3.10) to be obtained. This solution is valid within the limits summarised at the end of
§ 2 and those given by (3.6a–g). The solution expands the range of validity of analytical
solutions beyond that available in the existing literature, because it allows aerofoils outside
the scope of thin-aerofoil theory to be described. Finally, we restrict the analysis to low
acoustic wavelengths (He2 � 1) so that the computation of the Green’s functions is greatly
simplified and (3.14) is obtained. This expression can be readily integrated numerically
provided that the details of the mean flow are available.

4. Simplifications for thin aerofoils

To evaluate the source and boundary terms appearing in (3.14), the mean flow is required.
This mean flow, given as the solution of the nonlinear compressible Euler equations, can
be obtained either numerically or analytically. In the present work, we consider the latter
so that explicit expressions for both the source and boundary terms are obtained. However,
this requires further assumptions. Here, we restrict the aerofoil thickness, camber and
angle of attack to be small, which allows one to assume that the mean flow is a small
perturbation to a uniform flow (Ashley & Landahl 1985; Kerschen & Myers 1987), i.e.

U0 = U∞(1 + εq), (4.1)

where q is the normalised perturbation in flow speed and ε is a small parameter so that
ε � 1. Neglecting terms of second order and above, the source term simplifies to

Ŝ(Φ, Ψ ) = −εAsU∞
[

i (k1q + β∞k2μ) + U∞M2
∞

∂q
∂Φ

]
exp(ik · X ), (4.2)

and the boundary condition on the aerofoil becomes

∇φ̂ · n = −εAsU∞β∞μ exp(ik · X ), on Σ+, (4.3a)

∇φ̂ · n = εAsU∞β∞μ exp(ik · X ), on Σ−, (4.3b)

where Σ+ and Σ− denote the upper and lower side of the aerofoil, respectively. The
function β∞μ is the mean-flow angle relative to the uniform flow at upstream infinity.

The computation of the mean-flow variables is also substantially simplified by the use
of thin-aerofoil theory. The mean-flow potential Φ can be linearised as

Φ = U∞
[
x1 + εΦ1 + O(ε2)

]
, (4.4)

where the perturbation potential Φ1 satisfies

β2
∞

∂2Φ1

∂x2
1

+ ∂2Φ1

∂x2
2

= 0 (4.5)

and appropriate conditions on the body surface. Using the Prandtl–Glauert transformation:

x̄1 = x1, x̄2 = β∞x2 and Φ̄1 = β∞Φ1, (4.6a–c)

this equation becomes the Laplace equation (Ashley & Landahl 1985). This transformation
effectively recasts the compressible mean flow problem as an equivalent incompressible
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flow in a scaled domain. The compressible perturbation velocity potential and stream
function F(z) = Φ1 + iΨ1 are related to the incompressible complex potential F̄(z) by

F(z) = 1
β∞

F̄(z), (4.7)

where z = x̄1 + ix̄2 contains the coordinates of the incompressible domain. The potential
and stream functions can also be written as a complex function ζ = Φ + iΨ, which allows
us to write

z = ζ

U∞
+ O(ε). (4.8)

The perturbation velocity (V = q − iμ) and acceleration along a streamline are given,
respectively, by

V = dF
dz

= 1
β∞

dF̄
dz

,
∂q
∂Φ

= Re
(

1
U∞

dV
dz

)
. (4.9a,b)

The drift function (2.14) simplifies to

g(Φ, Ψ ) = −2ε

∫ Φ

−∞
q(ξ, Ψ ) dξ, (4.10)

and using (4.9a,b) becomes

g(Φ, Ψ ) = −2εU∞ Re [F(z) − F(−∞)] . (4.11)

To simplify the following calculations the integrals in (3.16) are split as follows:

α0 = −εAsU∞
[
i
(

k1 I(0)
q + β∞k2 I(0)

μ

)
+ M2

∞I(0)
∂q + β∞J(0)

μ

]
, (4.12)

αj = −εAsU∞
κ∞
β∞

[
i
(

k1 I( j)
q + β∞k2 I( j)

μ

)
+ M2

∞I( j)
∂q + β∞J( j)

μ

]
, (4.13)

with

I(0)
q = 1

β2∞

∫
V

q eiσ dx̄1dx̄2, I( j)
q = 1

β2∞

∫
V

qYj eiσ dx̄1dx̄2, (4.14a)

I(0)
μ = 1

β2∞

∫
V

μ eiσ dx̄1dx̄2, I( j)
μ = 1

β2∞

∫
V

μYj eiσ dx̄1dx̄2, (4.14b)

I(0)
∂q = U∞

β2∞

∫
V

∂q
∂Φ

eiσ dx̄1dx̄2, I( j)
∂q = U∞

β2∞

∫
V

∂q
∂Φ

Yj eiσ dx̄1dx̄2, (4.14c)

J(0)
μ =

∫
Σ±

∓μ eiσ dS, J( j)
μ =

∫
Σ±

∓μYj eiσ dS, (4.14d)

and j = 1, 2. The volume integrals have been transformed to the equivalent incompressible
domain, with the factor 1/β2∞ being the Jacobian of the change of variables. The term
σ = k · X + κ̃∞M∞x̃1 in the exponentials can be simplified as

σ = St
β2∞

x̄1

b
+ k2b

β∞
x̄2

b
+ O(ε), (4.15)

where St = ωb/U∞ is the Strouhal number based on the semi-chord of the aerofoil.
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The thin-aerofoil approximation also leads to the first-order correction of the Born
approximation (3.5) being negligible. The zero-order term is φ̂∞ = O(ε) because the
source term and boundary condition are of that order. Additionally, the operator LΔ

becomes O(ε). The source term is LΔ(φ̂∞) = O(ε2), hence the potential is φ̂Δ = O(ε2)
and can be neglected.

Finally, the thin-aerofoil limit also allows the third integral in (3.10) to be neglected. This
integral appears because the source term given by (2.16) is singular along the streamline
going through the aerofoil (which contains the aerofoil and the wake) which means that
the acoustic potential can become discontinuous across it. This integral is used to enforce
continuity of pressure across the wake. Because the singularity is moved to higher-order
terms, the continuity of both the potential and pressure field is guaranteed up to this order.

5. Sound generated by thin symmetric aerofoils

In this section, we particularise the theory previously outlined to a thin, symmetric
aerofoil. Specifically, we consider a canonical Joukowsky profile whose mean flow can
be obtained analytically using conformal mapping. Such an aerofoil is parametrised by

x1 = Re
{(

eiθ + τ0

)
+ a2

eiθ + τ0

}
, x2 = 1

β∞
Im
{(

eiθ + τ0

)
+ a2

eiθ + τ0

}
, (5.1a,b)

with θ ∈ [0, 2π), τ0 = −ε/(1 + ε) and a = 1/(ε + 1). Here, the expansion parameter ε

corresponds to approximately half the maximum thickness of the aerofoil (normalised by
its semi-chord). All the results are obtained for a case defined by ε = 0.05.

5.1. Numerical results
We first compute a numerical solution of the two-dimensional compressible Euler
equations as a benchmark for the model. Both the steady and linearised Euler equations
are solved using the finite element method (Donea & Huerta 2003) implemented using the
open-source computing platform FEniCS (Logg et al. 2012; Alnæs et al. 2015).

The mean flow is obtained as the solution of the steady compressible Euler equations
in conservation variables. The equations are discretised in space using a continuous
Galerkin formulation stabilised using the least-squares method (Donea & Huerta 2003).
The discretised nonlinear problem is solved using a fully-implicit, pseudo-time-stepping
algorithm (Crivellini, D’Alessandro & Bassi 2013). The algorithm adapts the local time
step every iteration so that it is inversely proportional to the local residuals. When the
residuals are small, the time step becomes large, the unsteady term negligible and the
algorithm effectively behaves as the Newton method, exhibiting quadratic convergence.
The global residuals (in norm-2) for all the results presented hereafter are lower than 10−9.
The results are typically obtained in less than 100 iterations. At the aerofoil boundary we
require the fluid to satisfy the slip boundary condition. At the inlet we impose uniform
velocity and density, and at the outlet we impose uniform pressure. The meshes used in
this study are fully unstructured and contain approximately 200 000 triangular elements.
The approximation polynomials are quadratic. The domain is a square with the length of
a side being 26b.

Figure 6 depicts the mean flow obtained numerically. At the leading edge of the
aerofoil, the flow quickly decelerates from the upstream velocity to being stagnant. It then
accelerates until the point of maximum thickness of the aerofoil and gently decelerates
thereafter until the trailing edge. Note that for Joukowsky aerofoils, a second stagnation
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Figure 6. Normalised density ρ0/ρ∞, local Mach number M0 = U0/a0 and normalised speed of sound
a0/a∞ for a symmetric aerofoil at (a–c) M∞ = 0.2 and (d–f ) M∞ = 0.5.

point does not exist there (in contrast with realistic aerofoils). At the point of largest
velocity, its increase never exceeds 20 % of the unperturbed velocity. Therefore, the main
acceleration occurs in the region around the stagnation point at the leading edge. This
velocity variation translates to the density and speed of sound. The speed of sound does
not exceed 2 % of the unperturbed one in any case. The variation of density is larger,
reaching variations of 4 % at the leading edge for M∞ = 0.5, but remains low enough to
neglect them in the analytical model.

We now turn our attention to the acoustic problem. The linearised compressible Euler
equations are formulated in primitive variables and recast in the frequency domain. Then,
they are spatially discretised using the discontinuous Galerkin method (Bassi & Rebay
1997; Cockburn & Shu 2001). The discretisation leads to a linear problem that is solved
using the sparse linear solver MUMPS (Amestoy et al. 2001, 2006). A perfectly matched
layer (PML) (Hu 2001) was added to the domain to damp any incoming acoustic wave. To
enforce the incoming entropy waves, an incident density fluctuation was superimposed to
the reflected solution in the PML (Özyörük 2009). A slip boundary condition is used on
the aerofoil.

The current implementation of the finite element method allows for approximation
polynomials whose order range p = 0–5. The bulk of the simulations are carried out using
quadratic elements p = 2. However, to assess the accuracy of the results, simulations with
cubic elements were performed for the highest frequencies showing the independence
of the results to the order of the polynomials. Additionally, a mesh convergence study
was performed showing that 20 points per entropy wavelength are sufficient to obtain
mesh-independent results. The final mesh used for the study is unstructured and is
composed approximately of 150 000 triangular elements. The domain is again a square.
The length of the domain is varied from 20b to 40b. All the domains are extended by a
PML of length 5b. The PML coefficients are σm = 6 and β = 2 (as defined by Hu 2001).

923 A10-17

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

56
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.569


J. Guzmán-Iñigo, I. Durán and A.S. Morgans

–2

–2
–15

15

(×10–4)

2

0 0

20

(b)(a)
x 2/

b

x1/b
0

x1/b

Re(ρ′) Re(ρ′)

–1.0

–0.5

0.5

1.0

15

4

2

–2

–4

0

–15

0

Figure 7. Numerical results: real parts of the (a) perturbation density, ρ ′/ρ∞, and (b) pressure, p′/γ p∞, for
a symmetric aerofoil at M∞ = 0.2 and He = 0.5.

For the highest frequencies considered here, the simulations are independent of the size
of the domain. However, for the lowest frequency (corresponding to He = 0.001), small
variations are observed for different domains. This indicates that the simulation for this
frequency is not fully converged in domain size (larger domains are beyond our current
computational capabilities). The variations of the acoustic directivity with different sizes
are small enough to assure that the results will not change dramatically for larger domains.
Note that the effect of the PML layer was ruled out by running several simulations with
different sets of PML parameters for every domain size. Figure 7 shows an example of the
acoustic field obtained from the simulations, which shows that for a plane entropy wave
the generated acoustic field resembles a dipole radiating along the horizontal axis.

5.2. Source term and Kirchhoff vectors
The incompressible mean-flow potential is obtained by mapping a cylinder of unit radius
centred at the origin (τ -plane) into the aerofoil defined by (5.1a,b) (z-plane) as follows:

z =
(

τ + τ0 + a2

τ + τ0

)
. (5.2)

The incompressible potential in the τ -plane is given by

f (τ ) = U∞
(

τ + 1
τ

)
+ U∞τ0. (5.3)

The incompressible perturbation potential (εF̄ = f /U∞ − z) is obtained as

εF̄ =
[

1
τ

− a2

(τ + τ0)

]
 ε

[
2
τ

− 1
τ 2

]
. (5.4)

The perturbation velocity is

εV = ε
dF
dz

= ε

β∞

(
dF̄
dτ

/
dz
dτ

)
 − 2ε

β∞
1

τ (τ + 1)
. (5.5)
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Figure 8. Mean-flow surface pressure coefficient for different Mach numbers obtained numerically (blue
dashed) and using potential theory (black solid).
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Figure 9. Components of the source term (4.2).

Figure 8 compares the normalised mean-flow pressure coefficient obtained using the
numerical simulations with the predictions of linearised theory. Note that the compressible
variables are obtained from the incompressible ones through the Prandtl–Glauert
transformation (see §§ 2.1 and 4). At low Mach numbers, the analytical results closely
match the simulations over the entire blade. For M∞ = 0.5, the agreement is still good
for most of the aerofoil, but some discrepancies appear close to the leading edge. This is
because thin-aerofoil theory breaks down at that point. For M∞ = 0.7, some mismatch
between simulations and theory are noticeable over the whole surface and are more
pronounced at the leading edge. Overall, the results suggest that potential theory is a good
approximation for this problem.

The velocity and acceleration components involved in the calculation of the source term
of (4.2) are shown in figure 9. It is apparent that the region that contributes most to the
noise generation is the area around the leading edge. Both the perturbation velocity q
and its acceleration ∂q/∂Φ exhibit reflectional symmetry with respect to the horizontal
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axis (x2 = 0) whereas the perturbation to the mean-flow angle μ is antisymmetric. These
considerations have important implications when integrating the source term.

The last necessary elements for the model are the Kirchhoff vectors Yj = yj − ϕ∗(yj).
To obtain an analytical expression for them, we restrict the analysis to flows satisfying
κ̃∞M∞ � 1, so that the second term in (3.13) disappears. The problem then simplifies to
solving a Laplace equation with slip boundary conditions on the aerofoil and conformal
mapping can be used again to obtain

Y1/b  1
2β∞

Re
{(

τ + 1
τ

)
+ ε

(
τ + 1

τ
− 1

)}
, (5.6a)

Y2/b  1
2β∞

Re
{(

−iτ + i
τ

)
+ ε

(
−iτ + i

τ

)}
. (5.6b)

Note that when the term ε = 0, the expressions correspond to the Kirchhoff vectors for a
flat plate. When we multiply the source term (O(ε)) by the Kirchhoff vectors, the second
terms in both the Kirchhoff vectors become O(ε2) and can be neglected. This means that,
in the limit ε � 1, the aerofoil can be approximated as a flat plate. In other words, the
effect that the solid boundaries of the blade have in the acoustic response is equivalent to
that of a flat plate.

Figure 10 shows the Kirchhoff vectors Y1 and Y2 that are symmetric and antisymmetric
with respect to the horizontal axis, respectively. This has consequences when evaluating
the acoustic integrals: any source term with horizontal symmetry will contribute to the
integrals in α0 and α1 that weight a monopole and a horizontal dipole, respectively. Using
symmetry considerations, the integrals in α2 vanish and, thus, a symmetric source does
not contribute to the vertical dipole solution. For an antisymmetric source, the conclusion
is the inverse: the terms α0 and α1 are cancelled and the source only contributes to the
potential as a dipole along the vertical axis.

Figure 10 also depicts the functions ϕ∗
j (yj) that represent the influence of the solid

boundary on the acoustic potential. The physical meaning of these functions can be
intuitively understood if a point source is considered. This source can be placed, for
instance, on the horizontal axis close to the leading edge. The resulting acoustic potential
is the sum of a monopole, as in free-space, together with a horizontal dipole owing to
the shielding of the aerofoil. This is apparent from ϕ∗

j : ϕ∗
1 is relatively large at that point

whereas ϕ∗
2 is close to zero. If the point source is now placed on the upper side of the

aerofoil, close to the point of maximum thickness, the acoustic potential is given by the
combination of a monopole and a vertical dipole (which arises again from the shielding of
the blade). This is captured by ϕ∗

2 being large at that point and ϕ∗
1 being negligible.

5.3. Acoustic response
We now compute the integrals in (4.14) to obtain a closed form of the perturbation pressure
p′. To evaluate the integrals, these are transformed to the cylindrical domain (τ -plane) and
then expressed in cylindrical coordinates. An example is given below:

I(0)
q = 1

β3∞

∫
V

Re
{

dF̄
dz

}
dz
dτ

dz
dτ

eiσ dτ1dτ2

= 1
β3∞

∫ ∞

1

∫ 2π

0

[
rRe

{
dF̄
dτ

dz
dτ

}
eiσ

]
dθ dr. (5.7)
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Figure 10. Kirchhoff vectors Yj = yj − ϕ∗
j ( y). The functions ϕ∗

j capture the influence of the aerofoil on the
acoustic field.

Note that the term (dz/dτ)(dz/dτ) corresponds to the Jacobian of the transformation from
the z-plane to the τ -plane. The source terms and Kirchhoff vectors in the integrand are
expressed as a sum of rational terms. However, to the best of the authors’ knowledge,
the integrals preclude an analytical solution owing to the exponential term eiσ and must
be obtained numerically. To approximate the integrals, we truncate the infinite limit in
the radius to a finite number. The convergence with respect to this value is assessed in
Appendix C.

The numerical values obtained for the integrals are depicted in figure 11. The β∞-factor
is removed from the integrals as

I(0)
q = I(0)∗

q

(
b2/β3

∞
)

, I(0)
∂q = I(0)∗

∂q

(
b /β3

∞
)

, J(0)
μ = J(0)∗

μ

(
b /β2

∞
)

,

I(1)
q = I(1)∗

q

(
b3/β4

∞
)

, I(1)
∂q = I(1)∗

∂q

(
b2/β4

∞
)

, J(1)
μ = J(1)∗

μ

(
b2/β3

∞
)

,

⎫⎪⎬
⎪⎭ (5.8)

so that they can be expressed only as functions of St∗ = St/β2∞. For St∗ < 0.5, clear trends
arise from the results, which can be summarised as follows:

I(0)∗
q  π − i

π

4
St∗, I(1)∗

q  −π

4
+ i

π

4
St∗, I(2)

q  0,

I(0)∗
∂q  −π

4
St∗2 − iπSt∗, I(1)∗

∂q  −π + i
π

2
St∗, I(2)

∂q  0,

J(0)∗
μ  −π

4
St∗2 − iπSt∗, J(1)∗

μ  −π + i
π

2
St∗, J(2)

μ  0.

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(5.9)
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Figure 11. Real (black solid) and imaginary (red dashed) parts of the source and boundary integrals. The
results are scaled by functions of St∗ = St/β2∞ to highlight their functional dependence on this parameter.

For simplicity, we consider only plane entropy waves (k2 = 0) and, thus, the computation
of the integrals I(0)

μ and I( j)
μ is not necessary. A simple analytical description of the acoustic

potential can be given as

φ̂

(U∞b)
 εAsπHe

β5∞

[
M∞

(
St

4β2∞
+ i
)

φ0(x) +
(

1 + St2

4β2∞
− iSt

(
1 + M2∞

4β2∞

))
φ1(x)

]
,

(5.10)

which shows that the acoustic potential is the combination of a monopole and a horizontal
dipole solution. The monopole, which arises from the acceleration source term, is O(M∞)

the dipole. The main contribution for the dipole term comes from the boundary integral.
Physically, the dipole can be interpreted in terms of the unsteady horizontal force
experienced by the blade when interacting with density fluctuations. To counter this force,
an acoustic field must be generated. The monopole term, on the other hand, has its origin
in the strong local acceleration produced at the leading edge of the aerofoil. Note that for
St∗ > 0.5, the values of the integrals quickly deviate from the trends shown in figure 11
and (5.10) is no longer appropriate. For these frequencies, however, the general formalism
is still fully valid and results are obtained for each individual frequency.

Figure 12 shows an example of the acoustic field predicted by the model. For M∞ = 0.1,

the acoustic field has the form of a horizontal dipole, with amplitude weakly modulated
by the Doppler factor. When the Mach number is increased to M∞ = 0.5, the main sound
radiation still happens along the horizontal axis, but the field exhibits a strong directivity
in the forward direction. This arises from a combination of the Doppler factor and the
monopole contribution becoming significant.

The quality of the model is now assessed using the numerical results described in
§ 5.1. Figures 13, 14, 17 and 18 show a comparison of the predictions of the model with
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Figure 12. Normalised acoustic field, p′/ρ∞U2∞, predicted by the model for a symmetric aerofoil at He = 0.1
and (a) M∞ = 0.1 and (b) M∞ = 0.5. See supplementary movies 1 and 2 available at https://doi.org/10.1017/
jfm.2021.569.
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Figure 13. Model validation: far-field directivity pattern, |p′|/ρ∞U2∞, of the analytical solution compared
with numerical solutions of the Euler equations. Here, M∞ = 0.1 and Helmholtz numbers (a) He = 0.001,

(b) He = 0.005, (c) He = 0.05 and (d) He = 0.1. The observer is placed at Robs/b = 15. Note that the axis
amplitudes are different for each frequency.
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Figure 14. Far-field directivity pattern, |p′|/ρ∞U2∞, for M∞ = 0.2 and Helmholtz numbers (a) He = 0.001,

(b) He = 0.005, (c) He = 0.05 and (d) He = 0.1. The observer is placed at Robs/b = 15.

numerical simulations of the linearised compressible Euler equations for several Mach
numbers and frequencies. The modulus of the pressure field |p′| has been computed at
a distance of 15 semi-chords from the profile for four different Helmholtz numbers. At
low Mach numbers, figures 13 and 14 show that the agreement between computational
aeroacoustics (CAA) and model predictions is excellent for all four frequencies. At low
frequencies, the directivity exhibits four main lobes along the horizontal and vertical axes.
This behaviour corresponds to that observed for the axial derivative of the horizontal
dipole ∂φ1/∂x1 at low frequencies (figure 5(b,e) – second term of (3.19b)). Further
from the source, the directivity pattern is similar to a dipole. At higher frequencies, the
directivity clearly exhibits the behaviour of a horizontal dipole with a stronger directivity
in the forward direction (accentuated with increased Mach number).

In figure 15, we explore the evolution of the acoustic pressure as a function of the
frequency for a fixed observer. At low frequencies (St < 0.5), (5.10) shows that the acoustic
potential increases linearly with the frequency. Combining this with (3.18), we obtain
the quadratic growth of the acoustic pressure observed in figure 15. For St > 0.5, the
pressure keeps increasing for increasing frequencies with a seemingly linear dependence.
At St  1.5 this linear growth saturates and a maximum value of the pressure is obtained
at around St  2.5. The pressure then drops reaching a local minimum at St  4.25. All
these trends are qualitatively well-described by the model. Quantitatively, the predictions
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Figure 15. Limits of validity of the model: normalised acoustic pressure, |p′|/ρ∞U2∞, for an observer placed
at (x1, x2) = (−15b, 0). The grey area corresponds to the domain of validity of (5.10). (a) M∞ = 0.1 and
(b) M∞ = 0.2.
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Figure 16. Limits of validity of the model: far-field directivity pattern, |p′|/ρ∞U2∞, for He = 0.5, and
(a) M∞ = 0.1 and (b) M∞ = 0.2.

of the model are in excellent agreement with the numerical results up to He ≈ 0.2, after
which the performance of the model slowly deteriorates. This is in agreement with the
range of validity of the compact Green’s function (valid for He2 � 1). Figure 16 shows the
directivity for a frequency which is beyond the range of validity of the analytical solution,
namely He = 0.5. Although a certain mismatch is observed, the directivity pattern is
generally well-described (especially for M∞ = 0.1).

Figures 17 and 18 show directivity plots for M∞ = 0.5 and 0.7, respectively. At low
frequencies, the four-lobes directivity pattern persists. At higher frequencies, the pressure
presents a very strong directivity in the forward direction owing to a combination of
the Doppler effect and the monopole source created at the leading edge. These figures
also show that the performance of the model slowly degrades with increasing Mach
number. For M∞ = 0.5, the predictions for both directivity and amplitude are acceptable,
even if not as good as for the previous cases. For M∞ = 0.7, the directivity is still
correctly predicted, but the model underestimates the pressure amplitude by a factor of
approximately two. The disagreement most probably arises from errors in the mean flow
model. As explained in § 5.2, we observe a mismatch between the numerical and the
theoretical normalised pressure coefficient for M∞ = 0.7, which becomes quite significant
close to the stagnation point of the aerofoil, where the main source of noise resides.
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Figure 17. Far-field directivity pattern, |p′|/ρ∞U2∞, for M∞ = 0.5 and Helmholtz numbers (a) He = 0.001,

(b) He = 0.005, (c) He = 0.05 and (d) He = 0.1. The observer is placed at Robs/b = 15.

6. Summary and conclusions

A theoretical model for the sound generated by entropy perturbations interacting with
blades has been introduced. The model is based on a linearisation of the compressible
Euler equations about a steady, potential mean flow. Using the Born approximation, it has
been shown that for thin aerofoils, the sound can be assumed to propagate in a uniform
mean flow. This assumption is also valid for thick and strongly cambered aerofoils at the
expense of the range of validity in frequency and Mach number. Using a Lorentz-type
transformation, the governing equations have been reduced to the Helmholtz equation that
has been solved using a low-frequency Green’s function. The approach assumes that the
acoustic wavelength is large compared to the chord of the profile, but it places no restriction
on the entropy wavelength. The source term has been simplified using thin-aerofoil theory
and results have been obtained for a symmetric aerofoil, showing good agreement between
the model and numerical simulations of the linearised compressible Euler equations. The
results show that the acoustic field generated when this aerofoil interacts with plane
entropy waves corresponds to a dipole along the horizontal axis, in agreement with the
conclusions of Bodony (2009), and an additional monopole term that becomes apparent
only at high Mach numbers.
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Figure 18. Far-field directivity pattern, |p′|/ρ∞U2∞, for M∞ = 0.7 and Helmholtz numbers (a) He = 0.001,

(b) He = 0.005, (c) He = 0.05 and (d) He = 0.1. The observer is placed at Robs/b = 15.

This work represents an extension to low frequencies of existing solutions using
high-frequency asymptotics (Kerschen & Myers 1987; Tsai 1992; Myers & Kerschen 1995,
1997). Solutions in the thin-aerofoil limit are now available for all range of frequencies for
symmetric aerofoils. An extension of the current theory to lifting aerofoils is currently
under investigation and will be the subject of future publications.

An advantage of the approach proposed here is that it can be extended to aerofoils
beyond the limits of thin-aerofoil theory. This is of practical interest for the modelling
of blades in realistic turbine cascades, where the favourable pressure gradient allows for
larger angles of attack, cambers and thickness of the aerofoils. This extension presents
some difficulties, the most important being that the source term and boundary conditions
become singular along the aerofoil and wake. This problem was addressed by Atassi
& Grzedzinski (1989) who proposed an alternative splitting of the velocity field more
suitable for numerical applications (Scott & Atassi 1995; Scott, Atassi & Susan-Resiga
2003). An extension of the model proposed here is actively being developed using Atassi’s
formulation together with a boundary element method (Zhong et al. 2019).

Entropy noise is relevant in the context of turbomachinery for which the current
approach requires an extension to cascades with finite blockage ratio. This challenge
will be addressed in a forthcoming study and involves the separation of the domain into
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upstream, downstream and interblade regions and the use of periodic Green’s functions
(Linton 1998).

Supplementary material. Supplementary movies are available at https://doi.org/10.1017/jfm.2021.569.
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Appendix A. Validity of the Born approximation

In this Appendix, we study the conditions of validity of the Born approximation for the
‘time-reduced’ convected wave equation (3.2). To this end, we start from the first-order
approximation of the acoustic potential and we substitute the integral solution of (3.5), to
obtain:

φ̂(x) = φ̂∞ + φ̂Δ = φ̂∞ −
∫

V
LΔ

(
φ̂∞

)
G dV. (A1)

Then, we normalise the wavenumber and Mach number inhomogeneities as κΔ = κ∞δκ

and MΔ = M∞δM . Neglecting L0, (A1) can be recast as

φ̂(x) = φ̂∞ −
∫

V

[
(κ∞δκ)2 + 2iκ∞M∞δκδM · ∇ − M2

∞δM · (δM · ∇∇)

+ 2
(

κ2
∞δκ + iκ∞M∞δM · ∇ + iκ∞M∞δκ

∂

∂x1
− M2

∞δM
∂

∂x1
∇
)]

G dV.

(A2)

Let us now assume a three-dimensional domain for simplicity of the following discussions.
If the size of the scatterer is of order L, then by dimensional analysis,

∫
V

dV ∼ L3, G ∼ 1/L. (A3)

For the Born approximation to be valid it is required that φ̂Δ � φ̂∞ which, using (A2),
leads to the following conditions:

(κ∞L)2δκ2 � 1, (κ∞L)M∞ δκ δM � 1, M2
∞ δM2 � 1, (κ∞L)2 δκ � 1,

(κ∞L) M∞ δM � 1, (κ∞L) M∞ δκ � 1 and M2
∞ δM � 1, (A4a–g)

where δM is the modulus of δM .
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Appendix B. Derivation of the integral formulation

An integral solution to (3.8a,b) is derived here. To this end, we first introduce the
free-space Green’s function of (3.8a,b), that is,[

∇̃2 + κ̃2
∞
]

G(x̃, ỹ) = δ(x̃ − ỹ). (B1)

Next, we can form a weighted residual integral for (3.8a,b), by weighting it by this Green’s
function and integrating over the volume of interest. After some manipulations, we obtain:

φ̃(x) =
∫

V
S̃G dV +

∫
S

(
G

∂φ̃

∂ñ
− φ̃

∂G
∂ñ

)
dS. (B2)

We now introduce the potential φ̂ in the surface integrals to obtain:

φ̃(x) =
∫

V
S̃G dV +

∫
S

G
∂φ̂

∂ñ
exp(iκ̃∞M∞x̃1) dS −

∫
S
φ̃

(
∂G
∂ñ

− iκ̃∞M∞ñ1G
)

dS. (B3)

To obtain a closed-form integral solution, a Green’s function that cancels the second
surface integral on the aerofoil has to be obtained, hence the boundary condition that
we impose on (3.9a,b).

Appendix C. Numerical convergence of the improper integrals

First, we prove analytically the convergence of I(1)
q , i.e.

I(1)
q = 1

β2∞

∫
V

qY1 eiσ dx̄1dx̄2

= b3

4β4∞

∫
V

[
Re
(

− 1
τ 2 + 1

|τ |4 + 1
τ 3 − 1

|τ |4τ
)

× Re
(

τ + 1
τ

)
exp

(
i

St
2β2∞

Re
(

τ + 1
τ

))]
dτ1dτ2. (C1)

The integrand can be evaluated asymptotically yielding

I(1)
q  −b3

4β4∞

∫
V

[
Re
(

1
τ 2

)
Re (τ ) exp

(
i

St
2β2∞

Re(τ )

)]
dτ1dτ2. (C2)

Because |exp (i(St/2β2∞)τ )| < 1, we can use the comparison test and the absolute
convergence test to recast the convergence of the previous integral as the convergence
of ∫

V
Re
(

1
τ 2

)
Re (τ ) dτ1dτ2, (C3)

which, using the cylindrical change of coordinates τ = r eiθ , is integrated to yield∫ ∞

1

∫ 2π

0
cos 2θ cos θ dθ dr = lim

R→∞

∫ R

1

(
sin θ − 8/3 sin3 θ

]2π

0
dr = 0, (C4)

hence proving the convergence of (C1). This integral has the largest integrand among
all the integrals arising in § 5, which proves through the comparison test that all of the
integrals converge.
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Figure 19. Convergence of the source integrals for St = 0.1. Real (black solid) and imaginary (red dashed)
parts of the integrals (a) I(0)

q , (b) I(1)
q , (c) I(0)

∂q and (d) I(1)
∂q . The dotted line in (b) corresponds to the asymptotic

evaluation of the integral. Both the exact and asymptotic integrals are depicted in the grey area.

We now turn our attention to the numerical convergence of the integrals. To numerically
approximate them, we truncate the limit r → ∞ to a finite value Rmax. For example, for
(5.7), we compute

I(0)
q ≈ 1

β3∞

∫ Rmax

1

∫ 2π

0

[
rRe

{
dF̄
dτ

dz
dτ

}
eiσ

]
dθ dr. (C5)

Figure 19 shows that the integrals I(0)
q , I(0)

∂q and I(1)
∂q can be considered converged when

we integrate over a domain extending to Rmax ≈ 104. Despite the apparent large extension
of the domain, these calculations can be obtained within minutes. The integral I(1)

q , in
contrast, requires a domain as large as Rmax ≈ 108 for its imaginary part to be converged.
Because the area to be integrated is proportional to R2

max, the cost becomes prohibitive
for this integral. To alleviate this problem, after a certain value of r = R0, the integral
was approximated using the asymptotic representation given by (C2), which in cylindrical
coordinates reads

−b3

4β4∞

∫ Rmax

R0

∫ 2π

0

[
cos 2θ cos θ exp

(
i

St
2β2∞

r cos θ

)]
dθ dr. (C6)

This expression can be integrated over r yielding

I(1)
q ≈ ib3

2β2∞St

∫ 2π

0
cos 2θ

[
exp

(
i

St
2β2∞

Rmax cos θ

)
− exp

(
i

St
2β2∞

R0 cos θ

)]
dθ. (C7)
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