Molecular Gas and Star-formation in Selected H-ATLAS SDP Lensed SMGs

Lerothodi L. Leeuw^{1,2}, Dominik A. Riechers^{3,4}, John M. Carpenter³, Mattia Negrello⁵, Rob J. Ivison^{6,7} and H-ATLAS Lensing and Core

¹College of Graduate Studies, UNISA, P. O. Box 392, UNISA, 0003, South Africa ²SETI Institute, 189 Bernardo Avenue, Suite 100, Mountain View, CA 94043, USA email: lerothodi@alum.mit.edu

³Astronomy Department, California Institute of Technology, MC 249-17, 1200 East California Boulevard, Pasadena, CA 91125, USA; ⁴Hubble Fellow

 $\operatorname{email:} \mathtt{dr@astro.caltech.edu}$

⁵Open University, Milton Keynes, MK7 6AA, United Kingdom

 $^{6}\mathrm{UK}$ Astronomy Technology Centre, Royal Observatory, Blackford Hill, Edinburgh EH9 3HJ

⁷Institute for Astronomy, University of Edinburgh, Blackford Hill, Edinburgh EH9 3HJ, UK

Abstract. We present detections of spatially resolved $CO(J = 2 \rightarrow 1)$ and $CO(J = 3 \rightarrow 2)$ emission, respectively, from the lensed submillimeter (submm) galaxies (SMGs), ID 9 (z = 1.577) and ID 17b (z = 2.308), found in the Science Demonstration Phase (SDP) of the *Herschel* Astrophysical Terahertz Large Area Survey (H-ATLAS, www.h-atlas.org). The detections were obtained using the Combined Array for Research in Millimeter-wave Astronomy (CARMA, www.mmarray.org) and confirm redshifts of the lensed galaxies. We exploit the CARMA data together with existing high-J observations, to determine, among other physical properties of the lensed SMGs, the CO line luminosities, brightness temperature ratios, gas masses, and spatial sizes.

 $\label{eq:second} \begin{array}{l} \textbf{Keywords.} \ \text{galaxies: distances and redshifts} - \text{galaxies: ISM} - \text{gravitational lensing} - \text{molecular data} - \text{submillimeter} \end{array}$

Synopsis

We summarize high significance $(> 10\sigma)$ detections of $CO(J=2\rightarrow 1)$ and $CO(J=3\rightarrow 2)$ line emission toward the lensed submillimeter (submm) galaxies (SMGs) ID 9 (z = 1.577) and ID 17b (z=2.308), that were discovered in the Herschel Astrophysical Terahertz Large Area Survey (H-ATLAS, www.h-atlas.org). The detections were obtained with the Combined Array for Research in Millimeter-wave Astronomy (CARMA, www.mmarray.org) and are spatially resolved. From Gaussian fitting to the spatially integrated line profiles, we obtain $CO(J=2\rightarrow 1)$ and $CO(J=3\rightarrow 2)$ line peaks of $19.4\pm 2.2 \text{ mJy}$ (ID 9), $38.6 \pm 3.8 \text{ mJy}$ (ID 17b, component 1) and $13.1 \pm 3.1 \text{ mJy}$ (ID 17b, component 2) with line FHWM of 371 ± 52 , 157 ± 26 and 248 ± 73 km s⁻¹. From the fits, we also find redshifts of 1.5746 ± 0.0002 (ID 9), 2.3047 ± 0.0001 (ID 17b, component 1), and 2.3070 ± 0.0003 (ID 17b, component 2). The line parameters correspond to velocity-integrated emission line strengths of 7.63 ± 0.91 and 9.87 ± 1.22 Jy km s⁻¹, and line luminosities of $L'_{\rm CO(2-1)} = (2.48 \pm 0.29) \times 10^{11} \, (\mu_{\rm L})^{-1} \, {\rm K \ km \ s^{-1} \ pc^2} \text{ and } L'_{\rm CO(3-2)} = (2.85 \pm 0.35) \times 10^{11} \, {\rm K \ s^{-1} \ pc^2} \, {\rm K \ s^{-1} \ s^{-1} \ pc^2} \, {\rm K \ s^{-1} \ pc^2} \, {\rm K \ s^{-1} \ pc^2} \, {\rm K \ s^{-1} \ s^{-1} \ pc^2} \, {\rm K \ s^{-1} \ s^{-1} \ s^{-1} \ s^{-1} \ s^{-1} \ s^{-1} \ pc^2} \, {\rm K \ s^{-1} \ s^$ $10^{11} (\mu_L)^{-1} \text{ K km s}^{-1} \text{ pc}^2$ (where μ_L is the lensing magnification factor) for ID 9 and ID 17b, respectively. The detections will be used to estimate, among other physical properties, the total molecular gas masses, spatial sizes, and star-formation efficiencies of the SMGs and compared to those of similar objects in the context of evolutionary galaxy models.