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A CHARACTERIZATION OF ODD ORDER EXTENSIONS
OF THE FINITE SIMPLE GROUPS PSp(4,q), G,(q), D%(q)

MORTON E. HARRIS!

Let p denote an odd prime integer and let ¢ = p/ where f is a positive
integer. Let 27 denote the projective symplectic group PSp (4,q), the
Dickson group Gs(g), or the Steinberg triality twisted”” group D3(g) over
a field F, of ¢ elements. Then 27 is simple and the Sylow 2-subgroups of
&7 have centers of order 2 so that involutions which centralize a Sylow 2-
subgroup of 77 form a single conjugacy class of 27.

Let o denote an automorphism of F,. Then ¢ induces, in the natural way,
an automorphism of # (cf. [2]) which fixes an involution in the center of
a Sylow 2-subgroup of 2. In fact, <s>, the cyclic subgroup of Aut(F,)
generated by ¢, acts faithfully on % and we may form the natural semi-
direct product <¢)%. If ¢ is an odd ordered automorphism of F,, then
{o»Z¢ is an odd order extension of Z# with trivial 2-core. In fact, any
odd order extension of 2 with trivial 2-core is of this form (cf. [2]).

Let j be an involution in the center of a Sylow 2-subgroup of 7 such
that j is fixed by ¢. Then the centralizer C(j) of j in <¢>.97 is a semi-direct
product <e>Cg7(j) with trivial 2-core.

For each of the 3 possibilities for 27, C5#(j) has a subgroup 2 of index
2 containing subgroups L,, L, such that L, = SL(2,q,), L, = SL(2,q,) (where
¢i, = are prime powers), [L;, L,1= {1}, L,NL;=<j> and &= L,L,.

It has been shown in [4], [5], and [9] that if a finite group G contains
an involution j such that C4(j) has a subgroup 27 of index 2 of the above
type, then G = Cs(j) O(G) (O(G) denotes the 2-core of G; i.e., the largest normal
subgroup of odd order in G) or G = PSp(4,q) or G = G,(q) or G = D?(q) for
some odd prime power gq. However, for example, in classifying finite groups
by the structure of their Sylow 2-subgroups, one may arrive at a situation
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in which the centralizer C4(j) of an involution j in a group G has trivial
2-core and has a normal subgroup %" of odd index such that %" has a
subgroup 2 of index 2 of the above type. This is, of course, the case with
the groups <¢>. 77 above where 27 is PSp(4,q), G:(q) or Di(g), ¢ is an odd
prime power and ¢ is an odd ordered automorphism of F,. To handle this
situation we prove the following more general result:

THEOREM. If G is a finite group with an involution j such that

a) O0(Cely) = {1} and

b)  Celj) contains a normal subgroup 2/ of index 28 with 6 odd or a normal
subgroup %" of index 6 with & odd such that %" contains a subgroup 2 of index
2 where in either case &/ contains subgroups L,, L, such that L, = SL(2,q), L=
SL(2, q;) (where q,, q. are prime powers), [Ly, Ly] = {1}, LiNL,=<j> and & =
L\L;, then j is in the center of some Sylow 2-subgroup of G, ¢, and g, are both odd
and one of the following holds:

i) G =Cslj)OG).

(i1) q1 = qs Ly and L, are not normal in Cg(j) and G = {e)PSp(4, q) where
o is an aulomorphism of order & of a field of q = q. = gz elements.

(i) ¢ =@, Li<9Cq(f), Lo<1Cq(j) and G = <o) Gy(q) where ¢ is an auto-
morphism of order & of a field of q = q, = q» elements.

(iv) one of the numbers q,, q, is the cube of the other, L, <<Cg(j), Lo <1Cql(j)
and G = {o>Dj(q) where o is an automorphism of order 6 of a field of q = min
{q., gz} elements.

Thus, for the rest of the paper we assume that the theorem is false.
Hence we assume that G is a finite group with an involution j such that
Cs(j) satisfies the hypotheses of the theorem and that G does not satisfy
the conclusion of the theorem and we shall arrive at a contradiction. By
induction, we may assume that all groups of order less than |G| satisfy the
theorem and that ¢ is minimal among all groups of order |G| contradicting
the theorem.

If 6=1, then the theorem follows from [4], [5], and [9]. Thus we
have 6 > 1.

Note that jeZ(L,)NZ(L,) so both ¢, and ¢, are odd prime powers.

Our notation is fairly standard. If X is a finite group, then O(X)
denotes the 2-core of X ; i.e., the largest odd order normal subgroup of G.
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If xv=y 2y =2 we write y:x—>2. Ify:2—>2 and y:z—> 2, then we
write y:x <>z If y:xz—>27, then we say that y inverts z. If p is a
prime, then an S,-subgroup of a group X is a Sylow p-subgroup of X.

Let ¢, =™, ¢, = p,"» where p;, p, are odd prime integers and #n,, #,
are positive integers. Then:

q; — & = 2%uy, g+ & = 2v;

where ¢, = +-1, a;==2 and #,, v; are odd for i =1,2.

Also let Fy, F, denote fields of gqi, ¢. elements respectively and view
SL(2,q,) as the group of 2x2 matrices with coeflicients in F; of determinant
1 for i =1,2. As is well known, Aut (F;) acts faithfully in the natural way
on GL(2,¢q;) and SL(2,q,) as follows:

if ‘cl (’} eGL(2,q;) or SL(2,q;) where

a, b, ¢, deF; and if s=Aut (F,), then

(€ - (€ ) or i

Finally fix isomorphisms

¢i H SL(Z, qt) - Ll for i = 1, 2.

Clearly ¢i[<—(1) _(1)>J =7 for i =1,2.

The paper is organized as follows. In §1, we study Cq(j) to obtain
various properties of G and to factorize Cg4(j) into a semi-direct product
Celj) = % A where |A| =6 and A acts like “field automorphisms™ on %7
In §2, we examine Cg(A) to show, among other facts, that p; = p,. Then,
in §3 and 4, we construct a semi-direct product subgroup GA of G such
that Cg(j) << GA and such that GA is strongly embedded in G. Using [1], it
is then easy to obtain a contradiction to prove the theorem.

§1. In this section we examine the structure of Cs(j) and prove, among
other facts, that a; = @, O(G) = {1} and that G has only one conjugacy class

of involutions.

Lemma 1.1. 2= L,L,<1Cg(y).

Proof. If % <aCy(j)and | %" & | =2, then O %) = & since L, and L,
are generated by their elements of odd order and thus 2/ <1Cs(j).
The proof of [4,(2B)] yields:
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Lemma 1.2. If H<G and T is an Sy-subgroup of Cy(j) such that j is
characteristic in T, then T is an Sy-subgroup of H. In particular, an S,-subgroup
of Ce(j) is an Sy-subgroup of G so that j is in the center of an Se-subgroup of G.

Clearly:

LemmA 1.3, Z(Z) =<5> and all involutions of & — <{j> = L,L,— {j> are
conjugate in 2.

Since [Cs(5)/2/| = 25, there exists a unique subgroup & of Cg(j) such
that [Cs(j) : ¥ =2 and & > Z.

Lemma 1.4, {L,, L,} is invariant in Cg(j) and & < Ng(L,) = Ng(Ls).

Proof. The first part follows easily from the Krull-Schmidt theorem
applied to the group 2/<{j> = PSL(2,q))XPSL(2,¢). Since | & : 2| =6 and
|Ce(j) + &#| =2, the lemma follows.

LemMA 1.5, C2(Z) = .

Progf. Since | ¥ :%| =6 and Cx(Z)INZY =<, |C»(2)|=2d where
d|o. But Cox(2/) <Cs(j) and 0(Cs(j)) = {1} so that 4 = 1.

LEMMA 1.6.  There exists a subgroup A of Z of order 6 and homomorphisms
B A— Aut (Fy) for i =1,2 such that: if ac A and k,€SL(2,q;), then

(1.1) bi(k,)* = ¢:(kH) Jor i=1,2

Moreover, & = ZA, ZNA= {1}, Ker (8)NKer (8;) = {1} and A is abelian on at
most 2 genegrators.

Proof. Clearly Cz(L,) = L, <<C(L;) < ¥ and | & : L,Cs»(L,)| divides
6. It follows from the structure of Aut(L,;) that there exists a subgroup
A; of & and a homomorphism 8, : A— Aut (Fy) such that A, =Cw(L,),
< =LA, LinA, <Cs (L, and such that ¢,(k,)* = ¢,(k,$*®) for all ac A4,
and k,€SL(2,q;). Hence LiNA, =Ce(L)NL, =<{>, ZNA, =L, <A, and
|Ai/L.| divides 6. Again it follows that there exists a subgroup A, of A4
and a homomorphism B, : A, — Aut (F;) such that A, =C,,(L,), A:i = LA,
LyNA;<Cy4(Ly) and such that ¢,(k)* = ¢s(k,"®) for all ac 4, and k,€SL(2, gu).
Hence A:N%2 = A:NAINZ = AsN Ly = Cy(L)NLy = <j) so that <j)> is an S,-
subgroup of 4,. Hence A, has a normal 2-complement A. Then &¥ =24,
ZNA = {1} and the restrictions of f;, f, to A give the desired homomorph-
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isms. Also Ker (8;)nKer (8,) = {1} follows from Lemma 1.5. Now it follows
that conjugation induces a monomorphism of A into O¥((Aut (L,)/Inn (L,))x
(Aut (L,)/Inn (L,))) so that A is abelian on at most 2 generators as required.

Let |Im (8;)| = 8;; then 6,]6 and §;|n; so that »; =4d,f, where f; is a
positive integer for i =1,2. Hence if #n; is a 2-power, then 6, =1, A is
cyclic, A centralizes L; and is faithful on L; where {i,j} = {1,2}. So that
if both #,, n, are 2-powers, then § =1 which is not the case. Thus we
have:

(1.2) #n, and #n, are not both 2-powers.

Let o,€Aut (F,) be such that ¢; : & — 2’ for all x=F;; then Im (8, =
{o:y for i =1,2. Let F* denote the fixed subfield of ¢;, and let |F*| = ¢*;
then ¢f = p,”s for i =1,2. Let 7, be a primitive root of F; for i =1,2. If
€; =1, then —r%eF} and —7,* is a non-square in F; and we can choose
Xi, tE€F; such that 2, + p,/—7 is a generator for the group of elements.
in the field F,(/—7™) of F; —norm 1. In this case, set:

e 0 2 § 253 0 1
0= ’ v = , b= .
0 T;l _71’”"[11, A --1 0

If ¢, =—1, choose 2,, p,€F; such that 2, + #;/—1 1is a generator for the

group of elements in the field F;(/—1) of F, —norm 1 and choose 7;, & in
F%¥ such that 7? +¢? =1. In this case, set:

2 ‘ul} I:Ti O] [m é‘z}
P = y K= , b= .
L—#, A 0 77! &

Then we always have:

1.3) b; = o O}, pi’ = p.", 0(p,) = q; —¢&;, O(k)) = qi + €.
0 —1
Let
(1.4) a;=p* t,=a"" and Q, = <a,b).
Then:

(1.5) k"=, and @, is an Sy;-subgroup of SL(2,q,).

Moreover,
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N s os
(1.6) b =b; pfi=p"", @ =a; and &’ =g,

In order to simplify the notation, we shall identify elements of SL(2,q,)
with their ¢;-images in L; and we shall suppress the homomorphism 8; in
the action of the elements of 4 on L; for { =1,2. Thus we shall utilize
Lemma 1.6 with this in mind.

Set:
(L.7) =z =1tit;, and y = bb,.

Then 2 and y are involutions of 2 — ().
A slight modification of the argument of [4, (2D)] yields:

Lemma 1.7. If L;<1Cs(j) for i =1 or i =2, then there exists an element
neCelf) — L such that n?<{jy and L7 = L,.

Note that if there is an involution neCs(j) — 2 such that L? = L, then
[7] implies that G satisfies conclusion (ii) of our theorem. However, we also
have:

Lemma 1.8. If Cg(j) contains an element n such that n®=j and L% = L,,
then G = Cq(5)0(G).

Proof. Since [4,@.]1=1, by conjugating n by an element of L, we
may assume that @, = Q7. Now C(Q,Q;) = {j>XA so that » normalizes A.
A slight modification of the proof of [4, (2E)] yields that Cs(j) — 2 contains
no involutions and then the remainder of the proof of [4, (2E)] applies
directly to yield the lemma.

Thus we may henceforth assume:
(1.8) L,<Csj) for i=1 and i=2.

LemMa 1.9. Cu(j) contains a unique normal subgroup ¢ of index & containing
2 such that Ceo(j) = %A and 97 NA = {1}.

Proof. Conjugation induces a homomorphism 4 : C4(j) > Aut (L;) X Aut(L,).
By Lemma 1.5, Ker (0)N2/ =<{j>. Thus an S;-subgroup of Ker (6) has order
2 or 4. However, {j>< Z (Ker (#)) so that Ker () has a normal 2-comple-
ment which must be {1} since O (C¢(j)) = {1}. Thus |[Ker(9)] =2 or 4. If
|Ker (0)] =4, then 2 Ker () is a normal subgroup of Cg(j) of index §. If
Ker (0) = (5>, consider the natural homomorphism
8 1 Aut (L) x (Aut (Ly) > (Aut (L)/Inn (L)) X (Aut (Ls)/Inn (Ly)).
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Then 8.6 has kernel 2/ so that C4(j)/2” is abelian; hence, there always exists
a normal subgroup % of Cq(j) of index & such that 27 < % and the rest
readily follows.

Observe that %" satisfies the hypotheses on the structure of the centra-
lizer of an involution in [4] and that if H<G, then all S;-subgroups of
Cy(j) lie in ¥ NnH.

We now can prove:

LEMMA 1.10.

(i) G has only one conjugacy class of involutions.

(i1)  There exists an involution ne 9" — 2 such that n acts by conjugation on

0 1 —1 0
(1.9) [ ]ifeizlandas{ o Jz’f&-:—l

—r4
Jor i =1,2.

(iii) a; = Og

iv) % =Zw

Proof. The proof of [4, (2F)] yields (i), (iii), and the fact that there
exists an involution n€_%" — 2 which acts on L; = SL(2,¢;) as an involution
in PGL(2,q;) — SL(2,q;) for i =1,2. Then, by conjugating » by an element
of 27 = L,L,, we arrive at (ii).

Henceforth, let a = a; = a,.

We now have:

(1.10) pr=p7, a'=a;!, K=k, for i=1,2.

When ¢;=1, we also have d"=b,a;. However, if ¢;=—1, then b;'b7€{p,>
and 57167 is fixed by ¢;. Then, as in [4, p. 146], there is an integer m such
that p7 is fixed by ¢; and such that (b,07)" = (b;07)a;. Replacing b; by b;07
in this case, we have:

(1.11) bt =ba; for i=1,2.
CoROLLARY 1.10.1. O(G) = {1}.

Progf. Clearly <n,;> is a 4-subgroup of G whose three involutions are
conjugate in G. Since Cg(t)NO(G) < O0(Cs(t)) = {1} for any involution ¢ of
{n, 7> and O(G) =<Ce(t)NO(G)|tELln, j>*, the corollary follows.
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LemMA 1.11..

(1) =n normalizes Q; for i =1 and 2 so that Q,Q.{n) is an Sy-subgroup of G.
(i) [n,A]= {1}.
(iii) Co(Z) = .
Proof. Clearly (i) holds. Since n normalizes C#(@.Q,) =<j> X 4, =
normalizes A so that [#, A]<< AN _% = {1} and (ii) holds. Finally, if ¢ de-

notes the homomorphism defined in the proof of Lemma 1.9, then ()<
Ker () = Co(2) =< Cr(2/) = {j> and (iii) follows.

LEmmA 1.12. 0O%¥(Cq(f) = ¥

Proof. 1If q,>3, then L; is generated by 2-elements and if ¢; =3, then
Lny =GL(2,3) 1s also generated by 2-elements. Hence ¥ = L,Ln><
0% (Cs(j)) < . % and we are done.

CoroLLARY 1.12.1. If an involution t of Cs(j) inverts an odd order subgroup
Q of Cslf), then Q< ¥ .

For future reference, we have:
1.12)  Csx(x,j) = <Py, po, ¥, n> and Cg(a, j) = Cor(x, j)A.
(1.13) Csr(n, j) = {&1, ks, £, n) and Cq(n, j) = Cx(n, j)A.
Since # inverts p,, p, and x inverts «;, x, we have:
(1.14) 0% (Co(w, j)) = Cor(a, j).
(1.15) 0% (Cg(n, j)) = Co(n, j).

§2. In this section, we obtain information about Cg(A4) and show,
among other facts, that p, = p,

The proof of [4, (34)] yields:

LemmaA 2.1. If D is a 4-subgroup of G, then D is conjugate in G fo {x,j»
or {n, 7> and Ng(D)/Cs(D) = S, the symmetric group on 3 symbols.

From this lemma, we can demonstrate:

LemMma 2.2. If E={n, >, then E < Cx(A) and (N(E)NCe(A))/(Co(E)NCg(A))
= S,, the symmetric group on 3-symbols.
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Proof. Let V=< fori=1,2and V=V,xV,; then |V,| =v, for i =1,2
and |V| =vw, is odd. By (1.15), OY(C4(E)) = (VXE)<(x) and the Frattini
argument vyields Ng(E) = Co(E) (Ng(E)N Ng(Ex<x))). Hence there exists a
3-element &€ Ng(E)N Ny(E x<x)) such that £:j—n—>nj—j. Since ¢ norma-
lizes Co(E x<2>) = Ex{xyx A, it follows that & Nz(4). On the other hand,
t, fixes j, t; :n<—nj and [¢, A]={1}. Consequently # fixes n,t{ : nj «<—j
and [#5, Al = {1}. Thus <#, #5) < Nz(E)NCs(4) and the lemma follows.

LEMma 2. 3.

(1) Cw(A) = LYL% where L¥=C,(A) = SL(2,q%) for i = 1,2 and [L%, L¥]= {1}
and L*N L% = ).

(i1) CslA, §) = Cor(A)X A where Cx(A) = Cz (AXn).

Proof. If 1,€L; for i =1,2 and ([,1,)* = I, for a4, then [7!l}€L,
NL,=<j>. Sinceaisofodd order, {?=1,, then [5=[, and the lemma follows

easily.
Lemma 2.4.
1) 2= D

(i1) Cs(A)A is isomorphic to G,(q*) or Di(q*) where ¢* = min {q}, ¢3}.

Proof. Let M= Cg(A); then Cyi(jA) = Cu()AIA = Ce(4, j)|A=Csr(A).
But L% = L,NCs(A) <Cs(4,j) for i =1,2 and j is conjugate to »n in M.
Hence MJA # Cy/4(jAO(M]A) and [4], [5] yield the result.

§3. In this section, we lay the groundwork for the construction of a
strongly embedded subgroup of G and we prove that an S,-subgroup of
Cs(j) is not an S,-subgroup of G.

Let p = p,/ = p,. Since @; = a; = @, we have & =¢&,, so let ¢ = ¢ = &,.

We now introduce the following notation: let the images of

P W e B

under the isomorhism ¢;:SL(2,¢q;) — L, be denoted by z,(a), z_.(a), h(a), ®;
respectively and let X,, X_,, H; be the subgroups of L; generated by elements
of the form x,(a), 2_;(a), h,(a) respectivley for i =1,2. We have:
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Li = XiH{UXiHi(DiXi for i= 1, 2.

Set:

0 —1
di={ :l ife=1land d;=1ife=1 for i =1,2 and let:
1 0

3.1) ho = ndd,.
Then % = (LL,, ho), ho€Ce(HiH;) and hicHH, Let:
(3.2) H = {H\H,, ho).

Then |H| = (g —1)(¢:—1) and, as on [4, p. 163], H is abelian and is the
direct product of two cyclic subgroups of orders ¢, —1 and ¢, — 1.

Let D denote the 4-subgroup contained in H and denote the involutions
in D by:

j = jo, jx, jz-

Clearly D =<x,j> if e=1 and D =<n,j> if ¢ = —1. The involution 0,
inverts H and [Co(D)| = 2(q; — 1)(g. — 1); hence:

(3.3) Cs(D) = C+(D)A where Csr(D) = H<{w0:).
(3.4) 0% (C¢(D)) = Cs (D).

The case ¢, = g, =3 has been excluded so that D+ H and H is the unique
subgroup of its isomorphism type in 0¥(C¢(D)) so that Ng(D) = Ns(H).

By Lemma 2.1, there exists a 3-element 7€ Ny(H) = Ng(D) such that
9 :jo—>ji—> ja—>jo. Since o, fixes j=j, and o :j; < j;, Na(D) = <Cs(D),
o1, 0]> by Lemma 2.1.  Also o, centralizes C4(D)/0% (C4(D))= 0% (C4(D))A]O% (C(D))
so that o] also centralizes C4(D)/0% (C4(D)) and hence <O¥ (C4(D)), w1, ) <1 Ng(D).
Thus O (Ng(D))=<0% (Ca(D)), w1, 07> and Cg(D)/0¥ (Ce(D)) < Z(Ns(D)/O% (C4(D))).
By Lemma 2.1, there exists a unique normal subgroup M of Ng(D) such that
{Ng(D) : M| =2, Co(D)< M, oM and |[M: Ce¢(D)| =3. Then M/0¥(Cy(D))
is abelian of order 36 and o, acts non-trivially on this abelian group. It
follows that M contains a normal subgroup M* containing 0% (C¢(D)) such
that o, normalizes M*, o, inverts M*/0% (C4(D)), | M*/0O% (Cs(D))| =3, M= M*C4(D)
and M*NCg(D) = 0¥(Ce(D)). Moreover, M*w,> < 0% (Ng(D)), M = M*A,
M*NA=M*NCs(D)NA =Cx(D)NA = {1} and M*w,) < Nz(D) = M*{w,)A.
Thus 0% (Ng(D)) = M*{w,) and O¥ (Ng(D))NA = M*NA = {1} so that Ng(D) =
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O¥(Ng(D))A, O¥(Ne(D)) N A = {1}, O¥(N(D)) N Ce(D) = O¥(Ce(D)) and O¥(Ng(D))/O¥
(Ne(D))NCs(D)) = S,.  We may now assume that the 3-element 7 lies in
O%(Ng(D)). Let T denote the S,-subgroup of H; we have [4, TN (H:Hy)]= {1}
and [A4, ko = {1} so that [4, T]1= {1} since T = (TN(H,H,)h,. Consequently,
[4, T<ww:>] = {1} where T<{ww:) is an Sy-subgroup of 0¥ (Ce(D)). The Frattini
argument implies that we may assume that yeNg(T<w0,p) also. Then [8,
Kapital I, Satz 18.6] implies that » centralizes an element 7€ T<ww ~ T
which must be an involution. Note that C4(D) = H({w,w:) X A) has a normal
2-complement O(H)A. However, Couna(r) = A which implies that neNg(A)
and hence [, A]<< 0¥ (Ng(D))NA = {1}. Since C,(H,H,) = {1} and O¥(Ng(D))/H
is clearly dihedral of order 12, we have proved:

Lemma 3.1. Let D be the 4-subgroup of H. Then D 7 H, Ng(H)=NsD)=
O% (Ng(D)A, O (Ng(D)) N A = {1}, H= 0¥ (Nyz(D)) and W = O¥ (N¢(D))/H is dihedral
of order 12.  Moreover, Co(H) = H, there exists a 3-element ne O¥ (Ng(D))NCq(A)
such that O¥ (Ng(D)) = <H, 0, 3,7y and O (Ng(D))NCe(j) = 0¥ (Ce(D)) = H (w02

Combining Corollary 1.12.1 and the proof of [4, (4B)], we have:
LemmvaA 3.2, If Pis a p-subgroup of Cs(j) which is inverted by j, or j., then
P< X,X, where ac {1, —1} and b= {2, —2}.

As in [4, (4C)], since H normalizes X, and X_; for i =1 and 2, we have:

LeEmmA 3.3, Let ze (X, Xp)* with as {1, —1} and b= {2, —2}. Then:

(1) If aX, UX,, then = has %—(ql — 1) (g — 1) conjugates under H, all of
which belong to X, X, — X, — X,

(i1) If n Xt or X%, then the conjugates of = under H consist of X% or X%,
respectively.

Let X=XXX,. Then:
(3.5) Nor(X) = XH <1 No(X)NCqlj) = Nor(X)A.
(3.6) Co(X, 7) = XX
We can now demonstrate:
Lemma 3.4, An S,-subgroup of C(j) is not an S,-subgroup of G.

Proof. Assume that the lemma is false. If pf6 = |A| then X is an S,-
subgroup of G which contradicts Lemma 2.4 (ii) since an S,-subgroup of
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Gs(g*) or of D3(g*) is not elementary abelian; hence p|d. Let A, denote
the S,-subgroup of A. Then T = XA, is an S,-subgroup of G. We claim
that X is the unique elementary abelian subgroup of T of order ¢,¢,. For,
let U be an elementary abelian subgroup of 7 such that U < X. Since A4,
is abelian on at most 2-generators, |U/UNX|p%. If |UUNX| = p, let u = za
eU—UnNnX where zeX and acAf. But [Cx(u)| = [Cx(a)] and a acts as a
non-trivial “field automorphism” of order p on X, or X,. It follows that
ICx(@|p <@g and hence |U|=plUNX|<p|Cx(w)|=p|Cx(@]| <qgs. If
|U/UNX| = p?, then the “projection” of U into A, is a subgroup Y of A,
which is elementary abelian of type (p, ;{)). 1Simce Y is not cyclic, [V, X1+ {1}

for i =1 and 2 and hence |Cx(Y)| =q¢? 7. But XnU=<Cx(U)= Cx({¥) so
1 1 :

that U] = p2|UNX| spquTq27< ¢:¢>. Thus X is the unique elementary
abelian subgroup of 7T of order ¢,q, and X is weakly closed in 7 with res-
pect to G.

Now Lemma 1.2 and (3.6) imply that {j> is an S,-subgroup of Cs(X).
Hence Cs(X) has a normal 2-complement and the Frattini argument gives:

(8.7)  Ng(X) = O(Ce(X)) (Ne(X)N Ce()) = O(Ce(X)) HA where O(Ce(X)) N (HA) =
O(Ce(X))NCe(X)N(HA) = O(Ce(X)) N5 = {1},

Thus (0(Ce(X)H)NA=(OCa(X)H)N(HA)NA=HN A= {1}, O(Ce(X))H <ANg(X)
and Ng(X)/O(Cs(X))H=A. Since p|]Al, Ng(X) has a normal subgroup of index .

Applying [6, Theorem 14.4.2] to the weakly closed subgroup X of T
with respect to G, we conclude that G has a normal subgroup J of index
p. Now Lemma 1.12 implies that C,;(j) = %" so that C,;(j)=_%"(ANJ)<Cs(j)
and hence O(C;(j)) = {1}. Also Lemma 2.1 implies that there is a 2-element
we& Ng({n, 75) such that w:j<«—>n. Since we J, J+C,;(5)0(J); then, since
|J1 < |G|, we conclude that J satisfies conclusions (iii) or (iv) of the theo-
rem. Hence J' <G, |G/J'] is odd and either ¢ = ¢, = q and J'=G,(q) or
one of the numbers g, ¢, is the cube of the other and J’=D3(q) where
¢ = min {g,, ¢.}. However, O(G) = {1} by Corollary 1.10.1 so that G satisfies
conclusions (iii) or (iv) of the theorem. But this is false and the lemma
follows.

§4. In this section we construct a strongly embedded subgroup and
use it to obtain a final contradiction.
Let {e,5} = {1,2} and let U be a non-trivial subgroup of X,. Then:
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(4.1) Cor(U) = Xy X Lo 2 Co(U, J).

Thus @, is an Sy-subgroup of Cs(U,j) and Lemma 1.2 and the proof
of [4, (3C)] yields:

Lemma 4.1. If {a,b} = {1,2} and U is a non-trivial subgroup of X,, then:
(i) Co(U) = O(Ca(U)Cs(U, 5) and X, < O(Cy(U)).

(il) No(U) = O(Ce(U))(Cs(4) N Ne(U)).

(iii) Q. us an Sy-subgroup of Ce(U).

For U = X,, we have:

(4.2) Nov(X,) = Xy Lo H <0 No(Xp) N Ca(j) = Nar(X)A.

In this case, we also have:
LemmMma 4. 2.

(i) OCelXy))NCe(f) = X,
(i1) O(Co(Xy))| X, is abelian and inverted by j.
(1i1)  O(Cge(Xy) ts nelpotent.

Proof. Let Y=0(Ca(X,)NCs(j); clearly X, <Y and[Y, L,]< L,NO(Cs(Xs))
= {1}. Hence Y =<C4(L,) so that Y < O(Cs(X;)) N Ce(Xa) N Co(L,) < X, which
implies (i). Since (ii), (iii) follow immediately from (i), we are done.

LemMA 4.3. Let {a,b} = {1,2} and let M denote the S,-subgroup of O(Ce(Xy)).
Then M#-‘— Xb.

Proof. Assume that M= X, and let @ be an S,-subgroup of Cgs(j) such
that X = X;xX,<Q. By (3.6), 4> is an S,-subgroup of C4(®,j) so that {j)>
is an S,-subgroup of C4(Q). Hence Cy(Q) = L{j> where L = O(C4(Q)). Since
Z(Q)=<L, we may choose an S,-subgroup @Q* of C.(j) such that @*=@Q.
Then Q*Q is a p-subgroup of Cs(j) and hence @* = Z(Q). By Lemma 3.4,
Q is not an S,-subgroup of N;(®). Since Ng(Q) = L(NgQ)NCs(5)), we have:

INe@1y _ LI,
Q1 [C:01,

=7.

Now let @, be an S,-subgroup of L normalized by j. Since Z(Q) is the
Sp-sbugroup of C.(j), @:>Z(Q)=LNQ. Hence there exists an element
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2€Qt inverted by j. But Q,=<Cs(X;) = O(Cs(X,))Ca(X,, j) so that 2&0(Co(X,))
and 2&0(Ce(X;))NCs(j) = X, which implies that M+ X,, proving the lemma.

Again let {a,b} = {1,2} and let M denote the S,-subgroup of O(Cs(X,)).
Then D, the 4-subgroup contained in H, acts on M. Since D¥= {j,, ji, ja},

letting

(4. 3) M, = MnCq¢(j;) for i=0,1,2,
we have:

(4. 4) H normalizes M; for i = 0,1, 2.
(4.5) M, = X, and M = M,M,M,.
(4.6) M¢{e = M, and Mg = M.

Since j inverst M, and M, we have:

(4.7) M; =< 0%(Cs(4;)) and M, is elementary abelian for i =1,2.
(4.8) [M;| = | M:]| <qug. and | M| = q,| My

Hence 1 < |M/X,| <qiq}, M|X, is an elementary abelian p-group which
admits L, and M/X, has L,-composition factors which are faithful irreducible
L,-modules over the field of » elements (since j inverts M/X,).

Also if 7€0%(Ng(D)) is the 3-element of Lemma 3.1, then (4.7) and
Lemma 3.2 yield:

(4.9) M, <(X,X,) and M, < (X,X,)” where a,ce{l, —1} and b,d={2, —2}.

Arrange notation so that ¢;=¢. and set e=1 and b =2 in the above.
Since 1 < |M/X,| <q¢ig; <qi, we have the following 3 possiblities by [4, (LE)]:
(I) IM|X;| = qf, (II) [M/X;| =q}?, and (III) |M/X,| = q3.

If (1), then ¢ = ¢, |M| = |M;| = q1q,, equality holds in (4. 9), and
IM|X,| = q3q3. If (II), then |[M| = M| =q{*>q=¢q,, and, as on [4, p.
165], we conclude that ¢;=g¢}, equality holds in (4.9) and that |[M/X;|=q%q:.

However, in order to treat possibility (III), we shall need a deeper
analysis. To this end, let P= MX,, let M denote the S,-subgroup of
0(Cs(Xy), let P= NX,, let M, = MNCs(j) = X;, and let M, = MNCq(j;) for
i=1,2

LemMMmA 4.4, If | M/X| = ¢%, then |M|X,| = ¢%q.
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Proof. Assume |M/X,| =4}, then |M,|=|M,| =¢ >3 and it follows
from the discussion in [4, p. 166] that:
(1) My=X] or ¢ =¢q, and M, = X; and

(i) M,=X!* or ¢, =¢; and M, = X}*. Taking into account (4.'6), we
have one of the following 4 cases:

1) M=XX.,X7

2) M= XX'X"

B) M= XX}X7 and ¢, = ¢,
(4 M= XXX and q, = ..

If we have case (1), set o = w0 Ng(H); then, as in [5, (6C)], PNP*=
X!, Xy. The proof of [5, (€C)] yields that M is elementary abelian and
X?, < Z(P). Hence P = X_X,X?} centralizes X;; since j inverts X7, X
and X7, Lemma 4.1 implies that P*v<M. Thus (X, X.)’<M and
| M2 = | M[|X,| =q%q? so that [M/X;| = q?¢?. A similar argument yields the
result for case (2). If we have case (3), then » normalizes M and X,<Z(M)
so that M is elementary abelian. Then, as in the proof of [5, (6C)],
X} <Cq(X,) for i =1 or 2. Since j inverts X%, we have X< M. Thus,
if the conclusion of the lemma is false, then we would have case (1) or (2)
for M which implies that |M/X,| = ¢}¢? and the lemma holds in case (3).
Finally, assume case (4), then, as in the proof of [5, (6C)],

[XZ,, X%]1=X,, ZM)= X, and Z(P) = X,.

Let A, denote the S,-subgroup of A (possibly A,={1}). Then P*=PA,
is an S,-subgroup of Ns(X;) by Lemma 4.1. Let R be an S,-subgroup of
G containing P*; clearly Z(R)< RNCs(Xz)NCs(X1) = (P(A,NCs(X2)) NCo(X,).
However, A,NCq(Xz) acts faithfully on PIM = X; so Z(R) < PNZ(P)=Z(P)=X.
Now Lemma 4.1 implies that @, is an S;-subgroup of Cg(Z(R)). However,
if |M/X,| + q3q2, then we must have case (4) for M. Then there would
exist an S,-subgroup R of G such that Z(R)< X, and Q, is an S,-subgroup
of C4(Z(R)). It follows that @, and @, are conjugate in G which implies
that @, and @, are conjugate to each other in Cs(j) which is impossible so
the lemma also holds in case (4).

We now have:
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LemMA 4.5,  There is a choice for o, with {a,f} = {1,2} such that
10(Ca(Xp))| X3] » = qias-

We now assume that «,8 are chosen so as to satisfy this lemma.
The proof of [4, (4H)] now yields:
Lemma 4.6.  Let M be the S,-subgroup of O(Ce(X;) and let P= X, M. Then:
(1) M|X; is elementary abelian of order q3qs.
(i1) With a suitable choice of notation, we have:
(@) P =X.X(X_.Xp)"(X.Xp)"
(4.10) or

(b) P = XXX\ X)X Xop)",

Let _y~ = O¥(Ns(H)) = O¥ (Ng(D)) = {H, 01, w,7> and let W =_4/H. As
we have seen in Lemma 3.1, W is dihedral of order 12.

As in [4, §6] it follows that:
LeMMA 4.7. With suitable notation, we may assume that (4.10) (b) holds.
Since H=< N4(P) and HNnP = {1}, if we set
(4.1) B = HP
then B is a subgroup of G of order (g —1)(g: — 1)gigi. Set
(4.12) G =9B_y9B.
Then [4, (6D) and (6E)] yield:
Lemma 4.8. G is a subgroup of G.

We can now show:

LEMMA 4.9. Let 0 : W—_y~ be a transversal; then:

() G is the disjoint union of the 12 double cosets Bo(w)B for weW.
(i) A< N4G) and GNA = {1}.
(i) Csi) =
(iv) Either q, = q2 and G = G,(q) where q = q: = q; or one of qi, gz is the cube

of the other and G = D}(q) where q = min {q,, ¢}.
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Progf. Clearly G is the union of the double cosets Bw(w)B for weW
and BNy =HPN_4°). Let rePn_4, then [r, HI<HN P= {1} so
re€Ce(H)N gy NP=HNP={1}. Now (i) follows. Since A=< Ni(P)NN;H),
A< Ng(G) and Y = GA is a subgroup of G. Clearly Ny(P) = N3(P)A = BA;
let acGN A, then ae Nx(P)=% and acs PHNCs(j)N A= (X. X;H)INA< % NA={1},
so (ii) holds. Now L, =<X,, X#*> < G;similarly L, < G, so that % = L,L,H<G
and (iii) follows. But then (iv) follows from [4] and [5] and the fact that
i g Q.E.D.

Using the subgroup GA we can arrive at a final contradiction. Since
G A satisfies conclusions (iii) or (iv) of the theorem, G = GA. Assume that
G has a proper normal subgroup N; then |N]| is even by Corollary 1.10.1.
But Q,Q.(n><G and Q,Q.,{n> is an S,-subgroup of G, hence NNG + {1}.
Since G is simple by Lemma 4.10 (iv), G <N and Cy(j) = F# (ANN) < Cs(j).
Thus O(Cy(j)) = {1} and the theorem holds for N by our choice of G. But
then either g, = g, and N’ = G,(q) where ¢=g¢q, =g, or one of ¢, ¢, is the
cube of the other and N’ = Dj(q) where ¢ = min {g,,g.}. Since N’ <G and
O(G) = {1}, the theorem holds for G, which is false. Thus G is simple and
GA cannot contain all elements of G of even order. However, GA has only
one conjugacy class of involutions and Cg(j)<<GA. Thus, in the language
of [1], GA is strongly embedded in G. Then [1, Satz 4] implies that
G = PSL(2,q) or Sz(q) or PSU(3,q) where ¢ =2"=4. Hence an S;-subgroup
of G has center of order g =4 (cf. [1, §4]). However, we know that @,Q.{n)
is an S;-subgroup of G and Z(Q,Q.,{n)) = <{j> which is a contradiction and
the theorem follows.
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