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Abstract
Hand gesture recognition (HGR) has gained significant attention in human-computer interac-
tion, enabling touchless control in various domains, such as virtual reality, automotive systems,
and healthcare.While deep learning approaches achieve high accuracy in gesture classification,
their lack of interpretability hinders transparency and user trust in critical applications. To
address this, we extend MIRA, an interpretable rule-based HGR system, with a novel gesture
onset detection method that autonomously identifies the start of a gesture before classifica-
tion. Our onset detection approach achieves 90.13% accuracy on average, demonstrating its
robustness across users. By integrating signal processing techniques, MIRA enhances inter-
pretability while maintaining real-time adaptability to dynamic environments. Additionally,
we introduce a background class, enabling the system to differentiate between gesture and
non-gesture frames and expand the dataset with new users and recordings to improve gen-
eralization. We further analyze how feature diversity affects performance, showing that low
diversity can suppress personalization due to early misclassifications. Using a foundational and
personalized rule framework, our approach correctly classifies up to 94.9% of gestures, rein-
forcing the impact of personalization in rule-based systems. These findings demonstrate that
MIRA is a robust and interpretable alternative to deep learning models, ensuring transparent
decision-making for real-world radar-based gesture recognition.

Introduction

Gestures play a crucial role in human communication, with applications ranging from air traf-
fic control to sign language. In modern smart environments, hand gesture recognition (HGR)
systems enable touchless interaction in virtual reality [1–3], medical applications to minimize
pathogen transmission [4], and automotive systems to reduce driver distraction [5, 6].

HGR systems are broadly categorized into contact-based and non-contact-based
approaches. Contact-based methods, such as data gloves [7–9] and smart bands [10],
capture user gestures but are often inconvenient to wear and can pose hygiene risks [11]. In
contrast, non-contact methods leverage sensing modalities such as cameras, WiFi, multimodal
sensors, and radar to detect gestures without physical contact [12–16].

Among non-contact methods, vision-based HGR systems rely on cameras and image pro-
cessing techniques [17, 18]. However, they are susceptible to lighting conditions, weather, dust,
and smoke [19], exhibit high power consumption, and raise privacy concerns [15]. WiFi-based
HGR systems offer improved privacy but suffer from lower resolution and reduced ability to
capture fine-grained motion [16]. Conversely, millimeter-wave (mmWave) radar-based solu-
tions provide higher resolution, improved privacy, and robustness to environmental factors
[20, 21].

With the advent of compact, low-power radar-on-chip mmWave sensors, such as Google
Soli [22] and Infineon’s XENSIV™ BGT60LTR13C 60GHz Frequency-Modulated Continuous
Wave (FMCW) radar [23], radar-based gesture recognition has gained increasing attention [16,
24]. Deep learning approaches, particularly convolutional neural network (CNN) and recur-
rent neural network architectures [25], have been widely used for HGR due to their ability
to automatically learn spatial and temporal features. Multi-channel CNNs have demonstrated
robust performance for mmWave-based HGR [26], and hybrid CNN-long short-termmemory
(LSTM) architectures have been successful in traffic gesture recognition andmultimodal fusion
[11, 16, 27–29].

However, despite their accuracy, deep learning models lack interpretability.
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The recently introduced European Union’s Artificial
Intelligence Act (EU AI Act)1 mandates that AI systems be
transparent, interpretable, and user-centered, particularly for
high-risk applications. It classifies AI systems based on their risk
level and enforces strict compliance measures, including penalties
for non-compliance. These regulatory requirements underscore
the necessity of explainable and interpretable HGR systems. A
first step toward explainable HGR was introduced in [30], where
the feature attribution method Shapley Additive Explanations [31]
was used to highlight feature importance, providing insights into
how input features influence model predictions. Nevertheless,
these models do not offer transparency in intermediate reasoning
steps, which is crucial for user trust, especially in safety-critical
domains.

To address this, we proposed MIRA (multi-class rule-based
algorithm) in our earlier work, which was presented at the
EUMW2024 conference and published in its proceedings [32].
MIRA is a fully transparent, interpretable, rule-basedHGR system.
It constructs human-readable “if-then” rules, ensuring decision-
making transparencywhile achieving high accuracy and adaptabil-
ity to user-specific behavior.

In this work, we extend MIRA with the following advance-
ments:

(i) Gesture Onset Detection: Instead of assuming predefined
gesture frames, we extend MIRA using a signal-processing-
based onset detection method that identifies the start of a
gesture, bringing us closer to real-time applications.

(ii) Background Class Inclusion: Gesture onset detection
enables the introduction of a Background class alongside
the five existing gestures (SwipeRight, SwipeLeft, SwipeUp,
SwipeDown, and Push), allowing the system to differentiate
between gesture and non-gesture frames more effectively.

(iii) ExpandedOpen-SourceDataset andExperiments: MIRA is
evaluated on a larger dataset with additional 4, 000 recordings
and based on four users [33], improving robustness.This leads
to a total of 12 users and 31,000 gestures.

(iv) Feature Diversity and Rule Generalization Analysis: The
impact of feature diversity on generalization inMIRAby com-
bining dataset-level interquartile range (IQR) analysis with a
recursive feature ablation study.

To the best of our knowledge, this is the first HGR system that
detects gesture onset within a gesture recording and subsequently
classifies the gesture in a fully transparent and interpretable way,
enabling fine-grained and interpretable gesture recognition.

The remainder of this paper is structured as follows. The
next section describes radar system design, signal preprocess-
ing, and feature extraction. This is followed by an explanation
of the methodology for interpretable gesture onset detection and
classification using MIRA. The subsequent section outlines the
experimental setup, followed by an analysis and discussion of the
results.

Radar system design and signal processing

This section presents the radar system’s design and signal pro-
cessing pipeline for HGR. It first describes the hardware con-
figuration of the FMCW radar. The next section details the sig-
nal preprocessing steps, which include range profile generation,

1https://eur-lex.europa.eu/eli/reg/2024/1689/oj

target identification, Doppler profile extraction, and angle estima-
tion. The feature extraction pipeline is then introduced, detailing
the computation of key features such as radial distance, velocity,
azimuth, elevation, and signal magnitude to effectively represent
gestures. Additionally, the frame-based gesture labeling approach
is discussed, ensuring precise gesture annotation by distinguishing
active gesture frames from background noise.

Radar system design and configuration

As illustrated in Fig. 1 panel A, the radar system utilized in this
work is the XENSIV™ BGT60TR13C 60GHz FMCW radar chipset
developed by Infineon Technologies [23]. Operating within a fre-
quency range of 58.5GHz to 62.5GHz, the radar achieves a range
resolution of 37.5mm and a maximum resolvable range of 1.2m.
Its velocity resolution is approximately 0.26m/s, with a maximum
measurable velocity of 4.17m/s.The radar operates in a burst con-
figuration, where each burst comprises 32 chirps transmitted with
a pulse repetition time of 300𝜇s, yielding a frame rate of 33Hz.The
transmitted chirps are linear frequency-modulated signals, gen-
erated by a phase-locked loop and voltage-controlled oscillator
system.These chirps are emitted with a transmit power of approx-
imately 5 dBm. Upon encountering a target, the back-scattered
signal is received by the radar’s three receiving antennas, which are
arranged in anL-shaped configuration to facilitate angle estimation
for both azimuth and elevation.

On the receiver side, the captured signal undergoes a series of
processing steps. It is amplified with a low-noise amplifier pro-
viding 12 dB gain and then mixed with the transmitted signal
to extract an intermediate frequency signal. High-pass filtering
(cutoff: 100 kHz) and anti-aliasing filtering (cutoff: 600 kHz) are
applied to refine the signal, resulting in a bandwidth-efficient inter-
mediate frequency signal suitable for digitization.The signal is then
sampled by an analog-to-digital converter at 2MHz with 12 bit
resolution.

The radar data is structured as a 4D array denoted by [F × R ×
C×S], where F represents the number of frames,R the three receive
channels,C the slow time axis, and S the fast time axis, correspond-
ing to the time within a single chirp. The fast time axis captures
range information through rapid frequency modulation, while the
slow time axis, representing intervals between consecutive chirps,
is used to extract Doppler information for velocity estimation.This
configuration enables the system to simultaneously estimate the
range, velocity, and angular information of targets.

Radar signal preprocessing and feature extraction

The radar preprocessing pipeline is based on [25] and is designed
to isolate gesture-related reflections while mitigating the impact of
static objects and background noise, ensuring clarity in gesture sig-
nals andminimizing computational requirements. It has been used
in multiple research papers and is hence also applied in this work
[30, 32, 34].

Range profile generation
To generate the range profile, the radar data undergoes a series of
preprocessing steps.The raw time-domain radar data is structured
as a 4D array [F × R × C × S], where F represents the number of
frames, R the three receive channels, C the slow time axis, and S
the fast time axis. The exact dimensions are [100, 3, 32, 64].

The raw time-domain radar data undergoes an initial prepro-
cessing step to address transmitter-receiver antenna leakage and
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Figure 1. Radar signal preprocessing. a) Using Infineon’s XENSIV™ BGT60TR13C 60GHz radar, the raw gesture data are collected in the format
[frames × receive channels × chirps × samples] (depicted only for one frame). b) The range profile is generated, where a local peak search is performed to find the range bin
of the hand (marked in blue). c) In total, five features are extracted, bringing the data into the format [frames × features] (depicted only for one frame). d) Frame-based
labeling is performed, where the area around Fgesture, i.e., the bin with the closest distance to the radar, is labeled as the gesture. All remaining frames are labeled as
Background.

eliminate static reflections. For this, the mean along the fast-time
axis is subtracted:

xcorr(f , r, c, s) = x(f , r, c, s) − 1
S

S−1

∑
s=0

x(f , r, c, s) (1)

where x(f , r, c, s) is the received radar signal and S is the number
of fast time samples.

A range fast Fourier transform (FFT) is applied along the chirps
of the radar signal, converting the raw time-domain data into the
frequency domain Xr(f , r, c, k):

Xr(f , r, c, k) =
S−1

∑
s=0

xcorre−j2𝜋ks/S (2)

where k is the frequency index. Following this, the symmetric part
of the spectrum is discarded, resulting in complex range profiles
that represent the signal’s intensity across the resolvable range.

As a next step, a moving target indication is applied [35]. Static
reflections from objects in the radar environment are suppressed
by subtracting the mean along the slow-time axis, leaving only
dynamic targets such as the moving hand:

Xmti
r (f , r, c, k) = Xr(f , r, c, k) − 1

C

C−1

∑
c=0

Xr(f , r, c, k) (3)

where Xmti
r (⋅) is the mean-subtracted frequency-domain signal.

To enhance the signal-to-noise ratio, themagnitude of the com-
plex range profile is computed and integrated across both the
receive channels and chirps.This process yields a one-dimensional
vector that effectively represents the distribution of reflected
energy along the range axis, isolating dynamic elements such as
the moving hand performing the gesture:

Xfinal(f , k) =
R−1

∑
r=0

C−1

∑
c=0

|Xmti
r (f , r, c, k)|. (4)

Target identification
A local peak search is performed on the range profile to identify the
range bin of the closest moving target, corresponding to the hand
performing the gesture. To improve reliability, Gaussian smooth-
ing and thresholding are applied to suppress noise and insignificant
local maxima. If no local maxima satisfy the threshold, the global
maximum is selected as the closest target. This step retrieves the
radial distance of the object. Figure 1 panel B illustrates this process.

Doppler profile and signal magnitude extraction
Once the range bin corresponding to the hand is identified, a
Doppler FFT is applied only on the hand’s range bin across all
receive channels:

Xdoppler(f , r, v) =
C−1

∑
c=0

Xmti
r (f , r, c, khand)e−j2𝜋vc/C (5)

where Xdoppler(⋅) is the Doppler-transformed radar signal, v is the
Doppler frequency index, and khand is the detected hand range bin.

The absolute values of the mean along the antenna’s dimen-
sions provide information about the hand’s radial velocity.Thepeak
value of this Doppler profile is extracted as the signal magnitude,
representing the strength of the gesture reflection.

Angle estimation
To determine the spatial orientation of the hand relative to the
radar, the horizontal and vertical angles are estimated using the
phase-comparison monopulse technique [36]. By analyzing phase
differences between the radar’s receive antennas, the azimuth and
elevation angles of the hand are calculated for the Doppler bin
corresponding to the detected hand.

The azimuth and elevation angles 𝜃 and𝜙 are defined as follows:

𝜃 = sin−1 ( 𝜆
2𝜋d arg(

Xdoppler(f , r2, v)
Xdoppler(f , r1, v)

)) (6)

𝜙 = sin−1 ( 𝜆
2𝜋h arg(

Xdoppler(f , r3, v)
Xdoppler(f , r1, v)

)) , (7)

where 𝜆 is the wavelength of the radar signal, d is the distance
between the two horizontally spaced receive antennas used for
azimuth angle estimation, and h is the distance between the two
vertically spaced receive antennas used for elevation angle estima-
tion.

Feature extraction summary
The preprocessing pipeline extracts the following features for ges-
ture classification (Fig. 1 panel C):

• Radial Distance (Range): Representing the distance between the
radar and the hand as the closest moving target.

• Radial Velocity (Doppler): Derived from the Doppler shift and
indicating the hand’s motion toward or away from the radar.

• Horizontal Angle (Azimuth): The azimuth angle of the hand,
determined using phase-comparison monopulse.
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• Vertical Angle (Elevation):The elevation angle of the hand is also
determined using phase-comparison monopulse.

• SignalMagnitude (Peak): Represents the strength of the reflected
signal from the moving hand.

Frame-based gesture labeling for training
A common characteristic of the gestures is that, during execution,
the hand reaches its closest distance to the radar at some point.
Leveraging this property, the labeling framework introduced in
[25] and applied in this work, designates the frame with the min-
imum radial distance to the radar as the gesture anchor point,
denoted as Fgesture (Fig. 1 panel D).This frame serves as a reference
to determine the surrounding window where the gesture occurs.

Once Fgesture is identified, a fixed-length labeling approach is
applied:

• The six frames preceding and the three frames following Fgesture
are labeled as the gesture.

• All other frames are classified as background.

This ensures that only the precise duration of the gesture is labeled.
To improve labeling robustness and reduce false detections, par-
ticularly at sequence boundaries where noise is prevalent, a signal
amplitude threshold is applied before identifying the minimum
radial distance. This threshold eliminates frames with insufficient
signal strength, ensuring that the search for Fgesture is conducted
only on frames containing meaningful signal information.

Once a frame surpasses this threshold, the frame with the
minimal radial distance is selected as the gesture anchor. This
frame generally corresponds to the midpoint of swipe gestures or
the approximate endpoint of push gestures, reflecting the distinct
kinematic profiles of these movements.

Following the method proposed in [25], a fixed-length label
(Lgesture), set to ten frames (matching the average gesture duration),
is applied. All frameswithin thiswindoware assigned to the gesture
class, while all other frames remain in the background class.

This refined labeling process results in a dataset with dimen-
sions [M × F × D], where:

• M is the number of gesture recordings,
• F is the number of frames per recording, and
• D is the number of extracted features.

It is important to note that this labeling step is solely for annotating
recordings used in the training phase. This process is performed
on preprocessed data and requires the entire recording to ensure
accurate labeling.

Interpretable gesture onset detection and classification

Gesture recognition consists of two key tasks: (1) gesture onset
detection, determining when a gesture occurs, and (2) gesture
classification, identifying the performed gesture. While deep
learning models have demonstrated strong performance in both
areas [25], they often lack interpretability. To address this, we
extend MIRA, a rule-based system (RBS), by incorporating an
interpretable approach for gesture onset detection.

The first section provides an overview of MIRA and explains
the concept of foundational and personalized rules. The proposed
onset detection method is detailed in the second section. To eval-
uate its effectiveness, the third section introduces the dynamic

gesture accuracy metric, which accounts for natural variations in
human motion and sensor measurements.

Unlike our prior work [32], which assumed gesture-aligned
data and pre-segmented frames, this paper introduces a real-time
gesture onset detection pipeline, a newbackground class, expanded
evaluation across 12 users, and a dynamic evaluation metric. This
establishes a framework for fine-grained and interpretable gesture
recognition, improving both transparency and practical applicabil-
ity.

Overview of MIRA: rule-based gesture classification

MIRA is a RBS designed for interpretable gesture classification
based on radar signals. It employs a sequential covering rule induc-
tion method to iteratively construct a set of classification rules.
Each rule consists of:

• A condition (if-statement) defining a feature-based threshold.
• A decision (then-statement) assigning a gesture label.

The algorithm selects rules based on their accuracy and general-
izability, halting when either the predefined maximum number of
rules is reached or an early stopping criterion is triggered, such as
ensuring a rule covers at least a minimum number of samples in
the training or validation dataset.

Weighted Silhouette for gesture identification
To identify the most compact gesture class for rule development,
MIRA computes the Silhouette score (SC):

SCj = 1
N

N

∑
i=1

b(xi) − a(xi)
max{a(xi), b(xi)}

(8)

where a(xi) is the average intra-cluster distance, and b(xi) is the
average inter-cluster distance.

A weighted SC is introduced to prevent bias toward small
clusters:

SCweighted,j = 𝜆1√𝜆2
nj
Nleft

+ 𝜆3 ⋅ SCj (9)

with𝜆1 ∈ [0, 1]weighting the overall transformed impact based on
the cluster size and 𝜆2 ∈ [0, ∞) directly weighting nj, the number
of samples in the current cluster j relative to all not yet classified
samples Nleft remaining in the training dataset. 𝜆3 ∈ [0, 1] adjusts
the weight of SCj.

Rule evaluation using the f-beta score
Rules are optimized using the F-Beta score, balancing precision and
recall:

F-Beta = (𝛽2 + 1) Precision ⋅ Recall
𝛽2Precision + Recall (10)

A low value of 𝛽 (set to 0.3) prioritizes precision over recall,
minimizing false positives.

Foundational and personalized rules
Traditional RBS methods struggle to generalize across users
due to variations in gesture execution [32]. Existing rule-based
approaches rely on a single, static set of rules, which fail to account
for differences in user behavior, anatomical variations, and exe-
cution styles. To address these challenges, we introduced a novel
framework that differentiates between foundational and personal-
ized rules, enabling both generalizability and user adaptability.
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Table 1. Illustrative example of foundational and personalized rules. The
default-else rule (crossed-out rule) is replaced with personalized rules

Rule-Based Classification

Foundational Rules:

IF Range ≦ 6.8 THEN Push

ELSE IF Elevation ≧ 0.28 AND Azimuth ≦ 0.12 THEN SwipeUp

ELSE IF Azimuth ≧ 0.48 THEN SwipeRight

. . .

ELSE SwipeDown

Personalized Rules:

ELSE IF Range ≦ 5.5 AND Doppler ≧ 0.15 THEN Push

ELSE IF Azimuth ≧ 0.35 AND Peak ≧ 0.6 THEN SwipeRight

ELSE SwipeUp

Foundational Rules.We define foundational rules as a univer-
sal rule set that captures general gesture patterns applicable to a
broad range of users. These rules are derived using the sequen-
tial covering algorithm on a diverse training dataset, ensuring
they reflect a wide range of execution styles. Foundational rules
serve as the baseline decision logic, establishing a robust initial
model while preventing overfitting through early-stopping and
validation-based constraints.

Personalized Rules.While foundational rules provide a strong
starting point, they do not fully capture individual execution
nuances. To enhance adaptability, we propose personalized rules,
which refine the system based on user-specific calibration gestures.
A user performs a limited number of gestures, and those not cov-
ered by the foundational rules are iteratively processed using our
RBS algorithm. The newly generated personalized rules are then
appended to the foundational rule set and take precedence when
applicable, allowing the model to dynamically adapt to the user.

By introducing the distinction between foundational and per-
sonalized rules, we create a system that is both generalizable and
adaptive, improving recognition accuracy while maintaining full
interpretability. An illustrative example is given in Table 1.

Extending MIRA with interpretable gesture onset detection

Previously, MIRA operated under the assumption that gesture-
containing frames were predefined, meaning that background
frames were excluded from consideration. This limitation
restricted its applicability in real-world scenarios, where gestures
naturally occur within continuous motion streams. To address
this, we introduce a robust gesture onset detection method that
enables MIRA to autonomously identify the precise moment a
gesture begins before performing classification.

Once the gesture onset is detected, a 10-frame window follow-
ing the onset is set as the gesture segment. These frames serve
as input to MIRA, where its rule-based framework classifies the
gesture based on extracted feature patterns. This enhancement
ensures that MIRA remains interpretable while seamlessly inte-
grating onset detection, significantly improving its usability in
real-world applications.

To enhance interpretability, we extendMIRAwith a structured,
rule-based onset detection mechanism that:

• Detects the start of a gesture using the frame energy.

• Seamlessly integrates with MIRA’s classification pipeline for a
unified, interpretable framework.

• Improves temporal localization while preserving MIRA’s trans-
parency and rule-based decision-making.

Our choice of an energy-based gesture onset detection method
is intentional and stems from the need to preserve interpretabil-
ity and rule-based transparency in MIRA. Benchmarking against
more complex probabilistic (e.g., hidden Markov models [37]) or
deep learning (e.g., LSTM [38]) approaches would be inconsis-
tent with our system’s goals, which are to provide transparent and
deployable gesture recognition in safety-critical contexts. These
alternatives, while powerful, introduce hidden states or nonlinear
decision boundaries that limit inspectability and explainability.We
thus demonstrate that a simple, explainable onset method, when
combined with MIRA’s interpretable rule system, achieves strong
performance while upholding full transparency.

The following section details the design and integration of our
interpretable gesture onset detection method into MIRA.

Proposed method for gesture onset detection
For gesture onset detection, range-Doppler image (RDI) maps are
utilized to accurately identify the beginning of a gesture. This
approach is preferred over using high-level features, because it
enables real-time inference without requiring access to the full ges-
ture sequence. By analyzing each frame independently, the system
can detect the onset of a gesture as soon as it occurs, ensuring
low latency and adaptive detection in dynamic environments.This
eliminates the need to accumulate multiple frames before flagging
a gesture onset, significantly improving responsiveness.

The preprocessing pipeline for generating RDIs follows the
same steps as outlined in Section Radar System Design and Signal
Processing, up to the application of the Range FFT in Equation
2 and stationary clutter suppression using moving target indi-
cation in Equation 3. However, unlike the previously described
feature extraction, where only the hand range bin is considered,
RDI generation retains the full range dimension.

This results in the RDI:

Xrdi(f , r, v, k) =
C−1

∑
c=0

Xmti
r (f , r, c, k)e−j2𝜋vc/C (11)

Using the now computedRDI, the absolute value of the complex
RDI is then computed:

|Xrdi(⋅)| = √Re(Xrdi(⋅))2 + Im(Xrdi(⋅))2 (12)

The frame energy is then obtained by summing the squared
magnitudes across all range, Doppler, and channel dimensions:

Ef = ∑
r,v,k

|Xrdi(f , r, v, k)|2 (13)

where Ef denotes the total energy for a given frame.
To ensure consistency, the frame energy is standardized using

the StandardScaler:

Enorm =
Ef − 𝜇

𝜎 (14)

where Enorm is the normalized frame energy,𝜇 represents themean
frame energy, and 𝜎 is the standard deviation of the frame energy.
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Figure 2. Visualization of the dynamic gesture accuracy metric for
gesture classification. The blue box represents the true gesture, the
green box denotes the tolerance window, and the red box indicates
the predicted gesture. A correctly classified gesture falls within the
tolerance window and satisfies the duration requirement, whereas
a misclassified gesture does not. This metric accommodates slight
offsets, providing a more practical evaluation of model
performance.

Table 2. MIRA classification parameters

Parameter Value

Sil-score weights (𝜆1, 𝜆2, 𝜆3) 0.5, 10, 0.7

F-Beta score (𝛽) 0.3

Maximum number of rules 15

Maximum number of literals per rule 2

Minimum rule coverage (Training) 8 samples

Minimum rule coverage (Validation) 5 samples

Minimum validation rule accuracy 70%

Early stopping criteria (Train/Val) 6 / 2 samples

To remove low-energy peaks, we apply the Savitzky–Golay fil-
tering method [39] and thresholding to retrieve Esmoothed.

Esmoothed(f ) =
w

∑
j=−w

w(p)
j Enorm(f + j) (15)

where Esmoothed(f ) represents the filtered energy of frame f , w is
the filter window size, p is the polynomial order used for fitting the
filter, and w(p)

j is the Savitzky–Golay filter coefficient at position j.
A peak is only considered valid if it exceeds a predefined thresh-

old Ethresh, ensuring that minor fluctuations and noise do not
trigger false detections.

The onset of the gesture is then identified by detecting the
first local maximum, computed as the difference between adjacent
frames:

ΔE(f ) = Esmoothed(f ) − Esmoothed(f − 1) (16)

whereΔE(f ) represents the energy difference between consecutive
frames. A peak is identified when the difference transitions from
positive to negative, marking the start of the gesture.

In summary, the proposed gesture onset detection method
leverages RDI analysis combined with an energy-based approach
to achieve robust and real-time detection.The systemdistinguishes
meaningful gestures from background noise and minor move-
ments by applying Savitzky–Golay filtering and thresholding. This
ensures that only significant motion triggers a gesture onset event,
making the detection both efficient and reliable in dynamic envi-
ronments.

Table 3. Configuration of experimental settings

Configuration 1 2 3 4 5 6

Users 4 3 6 5 6 6

Recordings 11k 3k 13k 12k 13k 6k

Dynamic gesture accuracy

To assess the effectiveness of this technique, we employ the
dynamic accuracy metric [40, 41], which evaluates gesture onset
detection robustness by allowing slight variations without penal-
izing model performance significantly, as illustrated in Fig. 2.
Given the natural variability in human motion and sensor mea-
surements, we argue that a minor offset of up to 3-4 frames
in predicting the gesture onset has negligible real-world impli-
cations, as such deviations do not meaningfully affect system
performance or user experience. For each gesture sequence,
dynamic gesture accuracy is determined solely by the correct
identification of the gesture onset. The metric incorporates a
tolerance window to account for natural variations in detect-
ing the start of a gesture. A prediction is considered correct if
the detected gesture onset falls within an acceptable range of
the actual onset, ensuring robustness while maintaining practical
applicability.

The dynamic gesture accuracy is computed as:

dg_accm = I(sm − 4 ≤ ̂sm ≤ sm + 4) (17)

where I(⋅) is the indicator function that returns 1 if the condition
is met and 0 otherwise, sm is the ground truth gesture start frame,
and ̂sm is the predicted gesture start frame.

The evaluation process consists of identifying the first local
maximum as the gesture start. The classification is then compared
with ground truth data, and detection is considered correct if the
predicted gesture onset occurs within ±4 frames of the ground
truth.

This approach ensures that minor variations in gesture detec-
tion do not negatively impact practical model performance,
thereby increasing robustness in real-world applications. For the
remainder of this work, the dynamic gesture accuracy is referred
to as accuracy.

Experimental setup

This section outlines the experimental setup used to evaluate
both gesture onset detection and MIRA’s rule-based classification.
Section gesture dataset acquisition describes the dataset acquisition
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Figure 3. Gesture onset detection. (a) Range spectrogram and (b)
Doppler spectrogram of a recording with a duration of 100 frames. The
yellow overlay indicates the gesture duration. (c) Frame energy over
time showing the energy (blue dotted line) and filtered (smoothed)
energy (black solid line). The red marker denotes the detected gesture
onset using the filtered signal, while peaks below the red-dashed
threshold line are not considered. The green marker denotes a
suboptimal onset detected in the unfiltered signal. The purple-shaded
region represents the ten-frame interval predicted as a gesture based
on the detected onset.

process, detailing the radar system, gesture classes, and environ-
mental settings. The data collection process accounts for user
variability and different execution styles to create a robust dataset.

The second section explains the training and testing protocols,
including parameter configurations for gesture onset detection and
MIRA’s classification model.

To analyze how feature diversity influences generalization in
RBSs like MIRA, we define various training dataset configu-
rations with varying numbers of users and recordings in the
last section. These configurations are constructed to systemat-
ically explore how differences in feature distribution affect the
ability of MIRA’s foundational and personalized rules to gen-
eralize and adapt, particularly under the risk of early-stage
misclassification.

By extending the dataset and optimizing onset detection, this
section provides a foundation for evaluating the effectiveness of
MIRA in real-world scenarios while ensuring interpretability and
adaptability to diverse user behaviors.

Gesture dataset acquisition

The gesture data acquisition for this work was conducted using
the 60GHz FMCW radar system described in section radar sys-
tem design and configuration. The dataset was collected by asking
twelve participants to perform five distinct gestures (SwipeLeft,
SwipeRight, SwipeUp, SwipeDown, and Push) in six different indoor
settings: a gym, library, kitchen, bedroom, shared office room, and
meeting room. Additionally, a Background class was included to
represent the absence of gestures. Gestures were performed within
a field of view of ±45∘ and at a distance of one meter or less from
the radar.

Each gesture recording spanned approximately 3 s, equivalent
to 100 frames, with individual gestures lasting an average of 0.3 s
or 10 frames. Participants were instructed to fully extend their
arms during gesture execution. To ensure a diverse dataset, the
participant group included users with arm lengths ranging from
62 cm to 73 cm, and amix of genders, with three participants being
female ({useri ∣ i = 2, 3, 10}). Building upon a prior dataset, an
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Table 4. Dynamic gesture onset detection accuracy for filtered and unfiltered
frame energy signals across twelve users

User Unfiltered Accuracy (%) Filtered Accuracy (%)

1 35.20 86.90

2 54.20 84.60

3 28.00 81.50

4 54.20 93.90

5 62.21 84.53

6 62.60 99.90

7 59.20 93.30

8 62.90 89.60

9 88.90 97.50

10 72.26 90.53

11 66.40 95.80

12 73.20 83.50

Average 59.94 90.13

additional four users were included in this work, each perform-
ing 1, 000 gestures, with 200 gestures per class, bringing the total
dataset to 31, 000 gestures.

The gesture data was stored as a four-dimensional NumPy array
[42] with dimensions [100× 3× 32× 64]. Here, 100 represents the
frame length of each gesture, while the other dimensions corre-
spond to the three receive channels, the number of chirps, and the
number of samples, respectively. Preprocessing details for the radar
data are discussed in section radar signal preprocessing and feature
extraction.Thedataset is publicly accessible via IEEEDataport [33].

Train and test protocols

This subsection details the parameter settings for both gesture
onset detection and MIRA’s rule-based classification. The onset
detectionmethod was configured to ensure robust identification of
gesture initiation, while MIRA retained its original hyperparame-
ters for rule induction and classification.

Gesture onset detection parameters
The gesture onset detection method was configured as follows:

• Savitzky–Golay Filtering:
• Window size w: 8
• Polynomial order p: 3
• Mode: Interpolation

• Threshold Etresh: 1

This configuration ensures that gesture onset detection is seam-
lessly integrated with MIRA, making it adaptable to real-world
continuous motion while maintaining rule-based interpretability.

MIRA classification parameters
MIRA was configured using the same hyperparameters as in the
prior work and is shown in Table 2.

Training dataset configurations

To investigate the role of feature diversity in rule-based generaliza-
tion, we evaluated six training configurations, each composed of
different combinations of users and recording counts. The config-
urations are intentionally designed to explore a range of diversity
levels in the training data,measured using both the IQR and overall
feature range.

• IQR: Represents the spread of the middle 50% of feature values
(Q3–Q1). A higher IQR indicates greater variability in core data
values, reducing the risk of overfitting.

• Overall range: The difference between the maximum and min-
imum values in the dataset. While a larger range suggests broad
feature coverage, it may also indicate the presence of extreme
outliers.

These metrics were selected to quantify dataset diversity and relate
it to the generalization performance of MIRA, particularly in
avoiding foundational rule failures.

Each configuration offers a different level of user diversity and
gesture variation and is detailed in Table 3. This setup allows us
to evaluate whether higher IQR values, even in smaller datasets,
can lead to improved rule generalization and personalization per-
formance. This is explored in detail in section feature diversity and
generalization in MIRA.

Results and discussion

This section presents the results and analysis of gesture onset
detection and rule-based classification usingMIRA. First, the effec-
tiveness of the proposed signal processing techniques for gesture
onset detection is evaluated.

Then, the role of feature diversity in supporting generalization
in RBSs is investigated. We analyze multiple training configura-
tions to understand how differences in feature variability affect the
accuracy of MIRA’s foundational and personalized rule layers. A
recursive feature ablation study further identifies which features
are most critical for generalization.

The third section assesses the impact of dataset quality on user
calibration efficiency. The minimum number of calibration sam-
ples required for optimal personalization is analyzed, comparing a
well-distributed training configuration with a less diverse one.

Gesture onset detection using signal processing techniques

In Fig. 3, we present a comprehensive multi-modal analysis of our
radar-based gesture detection method. Panels A and B display the
range and Doppler spectrograms, respectively, with a yellow over-
lay highlighting the ten-frame interval during which the gesture is
performed.

The bottom panel C illustrates the frame energy profile over
time, comparing the unfiltered normalized energy Enorm (blue dot-
ted line) with its smoothed counterpart Efiltered (black solid line).
For the smoothed frame energy, all peaks with energy values below
the specified threshold (red dashed line) are not considered. The
first peak of the filtered energy signal (red marker) determines
the predicted gesture start. From this point onward, a ten-frame
interval is predicted as a gesture and used as input to MIRA to be
classified.

In this example, the predicted onset correctly aligns with the
actual gesture onset, as the purple-shaded window coincides with
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Figure 4. Impact of feature distribution mismatch on
classification accuracy. (a) Confusion matrix for user12
showing high misclassification as Push in configuration1.
(b) Range vs. Doppler plot showing misclassification region
based on the first rule. (c) Range feature distribution
comparison for Push class between training and user12.

the yellow gesture window. In contrast, the unfiltered energy sig-
nal has its first peak before the actual gesture window, shown by
a green marker. This comparison substantiates that the smooth-
ing process enhances the clarity and reliability of gesture onset
detection.

In our experiments, we evaluated the accuracy of gesture
onset detection using both filtered (smoothed) and unfiltered

frame energy signals across twelve different users. As shown in
Table 4, the filtered approach achieved a significantly higher aver-
age dynamic gesture accuracy (90.13%) compared to the unfiltered
method (59.94%).This result underscores the importance of apply-
ing signal processing techniques to enhance the clarity and reliabil-
ity of onset detection, which is a crucial step toward interpretable
HGR.
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Table 5. Feature variability and classification accuracy across experimental
configurations

Config. Avg. IQR Avg. Range Found. Acc. (%) Pers. Acc. (%)

2 2.37 6.97 75.71 88.99

6 1.71 7.09 79.69 95.71

5 1.35 7.08 73.14 93.30

4 1.34 7.11 81.01 92.45

3 1.33 7.09 76.52 83.17

1 1.29 7.09 79.35 83.57

User-specific variations are evident from the table. For instance,
while user6 achieved near-perfect detection accuracy (99.90%)
with the filtered signal, some users, such as user3, recorded notably
lower accuracy (81.50%) even after filtering.

Moreover, the unfiltered energy consistently underperformed,
with accuracy values as low as 28.00% for user3, highlighting
the challenges of detecting gesture onset using the unfiltered
and -smoothened energy signals alone. These discrepancies may
arise due to inconsistent gesture execution, where variations in
speed, amplitude, or force introduce irregular signal patterns.
Additionally, differences in hand size and motion trajectory can
affect radar reflections, leading to noisier signals for certain users.
Background motion noise, such as subtle arm or torso move-
ments, may further interfere with onset detection, especially in
cases where users exhibit involuntary motion. Furthermore, the
fixed thresholding approach may not generalize well across all
users, particularly those with weaker energy signals, leading to less
reliable onset detection in some cases.

Overall, these results substantiate the effectiveness of the
filtering step in our gesture recognition pipeline. By improv-
ing the signal-to-noise ratio, the filtering technique enables

more precise identification of gesture onset, which is cru-
cial for applications requiring timely and accurate recogni-
tion. To further enhance robustness across users, future work
could explore adaptive filtering methods that dynamically adjust
smoothing parameters based on user-specific signal variability,
thereby improving onset detection accuracy in diverse real-world
conditions.

Feature diversity and generalization in MIRA

In rule-based interpretable systems like MIRA, feature diversity
is not just beneficial; it is structurally necessary. Unlike proba-
bilistic or deep learning models, MIRA’s architecture relies on a
sequential execution of foundational rules. If early rules misclas-
sify a sample, the remaining rules, including the personalization
layer, are bypassed. This design introduces a unique failure mode:
insufficient diversity during training can lead to early-stage mis-
classification that prevents correction.

Motivating case: user distribution mismatch
Figure 4 illustrates a real failure scenario using data from user12. In
configuration1, most of user12’s gestures weremisclassified as Push,
due to a shift in the range feature distribution compared to the
training data. The first foundational rule in the model incorrectly
absorbed all low-range samples into the Push class, blocking access
tomore specific downstream rules.This highlights how limited fea-
ture variability during training can propagate errors throughout
the rule chain.

Dataset-level analysis: diversity vs. accuracy
To systematically assess the effect of feature diversity, we computed
the IQR and average feature range across six training configu-
rations. Table 5 summarizes the foundational and personalized
accuracy achieved by each configuration.

Figure 5. Recursive ablation heatmap showing the accuracy drop per feature per round. Top: Foundational rules. Bottom: Personalized rules. White cells indicate removed
features.
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Table 6. Impact of calibration size on personalized accuracy for configuration1 and configuration6

Calibration Gestures n
Config 1 Accuracy [%] Config 6 Accuracy [%]

Person. Improvement Person. Improvement

Found. 79.4 - 79.7 -

5 82.0 (+2.6) 91.1 (+11.4)

10 82.5 (+3.1) 92.3 (+12.6)

15 82.9 (+3.5) 93.9 (+14.2)

20 83.5 (+4.1) 94.1 (+14.4)

25 83.3 (+3.9) 94.9 (+15.2)

Configurations with higher feature IQRs consistently achieved
greater post-personalization accuracy improvements. For example,
configuration2 (IQR = 2.37) improved from 75.71% to 88.99%,
while configuration1 (IQR = 1.29), despite having more training
samples, improved only by 4.2%.This suggests that an IQR ≥ 1.33
may serve as a practical threshold for training data diversity in
MIRA.

Feature-level contribution: ablation study
To further analyze generalization at the feature level, we conducted
a recursive ablation study. Starting with the full feature set, we
removed the most impactful feature at each step and relearned the
rules. Figure 5 presents the resulting accuracy drop per feature and
round.

For foundational rules, removing Azimuth alone led to a 22.6%
drop in accuracy. Removing Elevation and Peak in subsequent
rounds caused further degradation, with accuracy dropping by
51.9% overall. In contrast, removing Doppler or Range produced a
negligible impact (<2%).

A similar pattern held for personalized rules, where removing
Azimuth and Elevation caused a 34.9% drop. These results sug-
gest that the angular features are critical for robust foundational
rule creation, whereas the radial distance and signal magnitude are
more useful in further model refinement.

This analysis demonstrates that in MIRA, feature diversity,
particularly in spatial dimensions, is not only useful but struc-
turally necessary. Without sufficient variation, foundational rules
misclassify early, suppressing the corrective effect of personaliza-
tion. Unlike black-box models, rule-based architectures depend
on diverse training signals to activate their full rule cascade.
Optimizing dataset diversity, measured by IQR, and prioritizing
spatial features in training set design are essential for reliable
rule-based gesture recognition.

User calibration analysis: calibration performance across
configurations

In line with our previous work, we aim to determine the min-
imum number of user-specific recordings required to achieve a
well-calibrated model using our increased dataset. Since reduc-
ing user effort is a key priority, we adopt a fine-grained approach,
evaluating smaller calibration sets (5, 10, 15, 20, and 25 recordings).

While all training configurations were examined, we focus on
configuration1 and configuration6, as they exhibit contrasting fea-
ture distributions whilemaintaining similar foundational accuracy
(as shown in Table 5).

Table 6 presents the foundational accuracy and the accuracy
progression after personalization with increasing calibration sam-
ples.

The difference in personalization effectiveness is further evident
in how the models adapt over time. In configuration6, accuracy
increases sharply between 5 and 15 calibration samples, suggesting
that the model quickly adapts to user-specific variations. Beyond
15 samples, the gains become more incremental, implying that the
model has reached a well-calibrated state. Configuration1, how-
ever, struggles to adapt, with accuracy plateauing early, showing
minimal improvement beyond 10 recordings. This suggests that
poor feature diversity limits the effectiveness of personalization.

The results also highlight the efficiency of calibration. In
configuration6, only 10–15 calibration samples are required to
achieve near-maximal performance, making it a highly efficient
setup. Conversely, in configuration1, even with 25 recordings, the
model fails to achieve significant improvements, reinforcing that
poor feature distribution hinders the benefits of personalization.

These findings demonstrate that the personalization efficiency
of MIRA is highly dependent on the diversity of the training
dataset. In well-distributed datasets, even a small number of user
recordings leads to substantial accuracy improvements, whereas
in imbalanced datasets, personalization remains ineffective. This
confirms that dataset selection plays a more significant role in cal-
ibration performance than simply increasing the number of user
recordings. Ensuring a well-balanced training feature value distri-
bution in data-driven methods like MIRA is crucial for achieving
effective personalization with minimal user effort.

Conclusion

This work advances the field of interpretable radar-based ges-
ture recognition by enhancing MIRA with gesture onset detection
and feature distribution analysis. Unlike previous approaches that
assumed predefined gesture frames, our method autonomously
detects the start of a gesture using signal processing tech-
niques, achieving 90.13% accuracy across users.This improvement
enhances adaptability to real-world continuous motion scenarios
while maintaining interpretability.

By incorporating a Background class, we enable robust dif-
ferentiation between gestures and non-gesture frames, improving
MIRA’s usability in real-world applications. Using the founda-
tional and personalized rules, our method correctly classifies up
to 94.9% of gestures, demonstrating the effectiveness of rule-based
user adaptation. Beyond system-level improvements, we show that
feature diversity, particularly in spatial dimensions, is essential
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for generalization in sequential rule systems. Low-diversity train-
ing sets can lead to early misclassifications by foundational rules,
structurally preventing personalization.Through IQR analysis and
feature ablation, we quantify this dependency and highlight the
importance of training set design.

Overall, this study strengthens the interpretability and trans-
parency of radar-based gesture recognition, positioning MIRA
as a viable and interpretable alternative to deep learning-based
methods.

Competing interests. The author(s) declare none.
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