
FINITE ABELIAN SURFACE COVERINGS!

by S. A. JASSIM

(Received 22 March, 1983)

Introduction. Let G be a finite abelian group, and Y be a closed surface. The
problems of classifying and enumerating the free and effective G-actions on Y modulo
selfhomeomorphisms of Y and X= Y/G can be transferred into ones of classifying regular
G-coverings on X. P. A. Smith [7], proved that for any prime number p there are pr(r~1)/2

equivalence classes of free (Zp)
r actions on Y provided that rggenus of X. This paper is

devoted to the classification and the enumeration of regular G-covering surfaces, when G
is any finite abelian group. Recently, A. Edmonds [2] classified the G-actions on closed
surfaces by their G-bordism classes in the set ©2ree (G) of free oriented G-cobordism
classes of free oriented G-surfaces.

Section 1 is introductory. In Section 2 the classification problems for a finite abelian
group G are reduced to the corresponding, reasonably easier, problems for its primary
components. In Section 3 Smith's result is generalized for arbitrary p-groups. The last
section is aimed at the enumeration of weak equivalence classes of regular finite abelian
surface coverings. Throughout all coverings are regular, all surfaces are oriented and all
surface maps are assumed to be orientation preserving. H^(-) stands for homology with
integral coefficients.

1. Let G be a group, X be a closed surface of genus g, and q: Y —> X be a
G-covering. Then G acts freely on Y, and if G is finite then Y is also a closed surface of
genus g' = |G|(g — 1) +1 . On the other hand, if G acts freely on a space Y then the natural
projection Y—>Y/G is a G-covering. Hence there is a bijection between the class
Cov(X, G) of G-coverings of X and the set of free G-actions on closed surfaces of genus
g'. Moreover, for any x in X the fibre q~\x) is a TT^X, x)-set and there exists an onto
map from Cov(X, G) to the class of all short exact sequences of the form

where M=TT 1 (Y, y), i = q% and y is in the fibre q-1(x). If G is abelian then the
isomorphism classes of G-coverings q : Y—> X are in bijection with the set of short exact
sequences of abelian groups of the form

Two G-coverings qt: Yf —»X, for i = 1, 2, are said to be weak equivalent (or simply
w-equivalent) if there exist homeomorphisms F:YX^>Y2 and /:X—»X such that q2F =
fqt. If in addition F is a G-map then qx and q2 are said to be equivalent.

tThe results here are presented in the author's Ph.D. thesis written at the University College of Swansea
under the supervision of Dr. Alan Thomas to whom the author is most indebted for his constant help and
insights.
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1.1 PROPOSITION. TWO G-coverings qx and q2 over X are w-equivalent (respectively
equivalent) iff the sequences ir^qd, i — 1, 2, enter in a commutative diagram of the form

(X, q2(y2)) -> G.

where f is a homeomorphism of X and 8 is an automorphism (resp. an inner automorphism)
ofG.

The proof in the case of w-equivalence follows from the fact that qx and q2 are
w-equivalent iff fqt and q2 are isomorphic for some homeomorphism / of X. For the
equivalence case see [7].

1.2 COROLLARY. If G is abelian then two G-coverings q1 and q2 over X are w-
equivalent {resp. equivalent) iff there exists a commutative diagram of the form

I I* I'
such that <f> is induced by a homeomorphism of X and 0 is an automorphism (resp. the
identity map) of G.

In certain cases homology with coefficients other than integers may be used. For
details see [7] and [4]. The integral first homology group Ht(X) is isomorphic to Z2R and
the intersection product defines a symplectic form ( , ) on Hi(X). Throughout a symplectic
b a s i s { a ! , . . . , a g , b u ... , b g } for HX(X) i s fixed, i . e .

( a i , b i ) = - ( b i , a i ) = l f o r j = l , . . . , g

and if i^j then

It is well known (see [6]) that the group H+(X) of all automorphisms of H^X) which are
induced by orientation preserving homeomorphisms of X is the group of symplectic
automorphisms of H^X). That is, H+(X) is isomorphic to Sp2g(Z). Therefore in 1.2 the
statement "<f> is induced by a homeomorphism of X" can be replaced by "$ is a
symplectic automorphism of H1(X)'\

2. For any natural number g and any group G, let WE(g, G) and £(g, G) be the
sets of w-equivalence and equivalence classes, respectively, of G-coverings of the closed

k

surface X of genus g. In this section, we obtain, for a direct decomposition G = © Gh a
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relation between the cardinality of WE(g, G) (resp. E(g, G)) and those of the WE(g, Gf)'s
(resp. £(g, G,)'s).

Throughout this section H = H^X), G1 and G2 are finite abelian groups of relatively
prime orders, ^ : G, —> Gt © G2 is the natural injection, for i = 1, 2, and for any group G,
\H, G\ stands for the set of epimorphisms from H onto G. Two elements in \H, G\ are said to be
w-equivalent (resp. equivalent) if they correspond to w-equivalent (resp. equivalent)
G-coverings of X. Let ^ be the isomorphism

Hom(H, Gj) x Hom(H, G2) -> Hom(H, G1 © G2): (alt a2) -» n ^ © n2a2.

The proof of the following lemma is straightforward. However, it is not necessarily true if
Gi and G2 are not of relatively prime orders.

2.1 LEMMA. The restriction of "^ to \H, G^X-lH, G2\ defines a bijection

«fc : \H, G1\ x \H, G2\ -»|H, G,©G2|.

For the special fixed basis {a! , . . . , ag, bu ..., bg} of H, define:

fa, if l S J S g ,
if g < i ^ 2 g .

An automorphism <f> of H is said to be quasi-elementary if for each i = 1 , . . . , 2g,
Kj implies that there exists a j=fci such that (j>(xi) = xiTxj and

Consider the integral 2g x 2g matrices:

f o r 1 - i - / = &

where: Yf is the g x g matrix whose only nonzero entry is yu = 1,
t/j, is the g x g matrix whose only nonzero entries are Uy = uiX = 1,
Zj, is the g x g matrix obtained from 7g by adding the i-th row to the j'-th row,
Tj is the g x g matrix whose only nonzero entries are tH = fj+li+1 = - 1 and

' i . i + 1 = 'i + l . i = 1 -

Birman [1] has shown that Sp2g(Z) is generated by the set

{ah ft, o- | i = 1 , . . . , g and / = 1 , . . . , g -1} .

The relation
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shows that {af, ft, A,- | j = 1 , . . . , g and j = 1 , . . . , g - 1 } also generates Sp2g(Z). The last set
consists of only quasi-elementary automorphisms of H.

2.2 PROPOSITION. For i = l , 2 let h{ and k{ be in \H, Gf|. Then ipe(hi,h2) is w-
equivalent (resp. equivalent) to il/e(k1,k2) iff K is w-equivalent (resp. equivalent) to fcf.

We will only prove the proposition in the case of w-equivalence. The other case is
similar.

Proof. The necessity is obvious.

To prove the sufficiency, let 6X be an automorphism of Gi and (f> be in Sp2(!(Z) such
that 01h1 = k1< .̂ By induction on the number of quasi-elementary factors of <j> we will
prove that ifc(hi, h2) is w-equivalent to t/>e(ki, h2).

If <j> is quasi-elementary, then choose positive integers rl and r2 such that r1|G1| +
r2\G2\ = 1, and let n = r^Gil and m = r2|G2|. Consider the symplectic automorphism <f>m of
H and the automorphism 0 = 0!© IGz of d © G2. For each i, if $(%) = %, then

© ^

But if <p(Xi)j=Xi then there exists a j such that <̂ (Xi) = Xi Tx, and <t)(xj) = xj. In this case
4>m(x,) = Xj T mXj and

xi =F mx,)

x,) ± nM

Consequently t/'e(/ii, ^i2) is w-equivalent to ifc(ki, M -
If 4> = <{>\<fr2 . • • <t>r for some quasi-elementary automorphisms <f>lt... ,<f>r of H, then

kx<t>\ is w-equivalent to fct. By the first case ^ ( f c ^ , h2) is w-equivalent to ipe(k1, h2). By
the induction hypothesis, ^(fci^i , fi2) is w-equivalent to ^e(hu h2). By transitivity, then,
*l>e(ki, h2) is w-equivalent to ^ ( k j , h2).

Similarly, ipe(k1,h2) is w-equivalent to <pe(ki,k2), and the proposition follows by
transitivity.

2.3 COROLLARY. The function if/e induces bijections

E (g, Gx) x £ (g, G2) -> E (g, d © G2)

and

WE(g, d ) x WE(g, G2) -> WE(g, Gj © G2).

By induction on the number of p-primary subgroups of an abelian group G, the
above corollary yields the following main object of the present paper.

2.4 PROPOSITION. Let G be a finite abelian group with the p-primary decomposition
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r

G = © Gp., where px,... ,pT are the distinct prime divisors of G. Then
r = l

Card(E(g, G)) = f\ Card(E(g, G,)),
i = l

and

Card(WE(g, G)) = fl Card(WE(g, G,)).
i = l

3. Let p be a prime which we will fix throughout the rest of this paper. Let
T

m!,..., mr be positive integral powers of p, ordered increasingly, and let G = ® Zm.. Let
i = l

{g , , . . . , gr} be the basis for G formed by the 2g-tuples g, = (g i X, . . . , gj2g), where gy = 8tj
k

the kronecker delta. In what follows the product Y[ Tf of matrices stands for
i = l

Tx .T2... Tk, and 1m is represented additively by { 0 , 1 , . . . , m - 1 } .
For any G-covering q:Y ^>X, let /3(q) be the rx2g integral matrix that represents

the epimorphism 0 in the short exact sequence H(q), given in Section 1, with respect to
the fixed bases for G and H,(X). Note that, here H(q) has the form

where ker(/3) = Z2s. If M(g, G) is the set of all r x 2g integral matrices of row rank r and
whose ith row, i = l,...,r, consists of integers in 2mi, then 0( ) defines a surjection
Cov(g,G)-*M(g,G).

Two matrices A, B in M(g, G) are said to be equivalent if there exists R in Sp2g(Z)
such that A = BR. In this case we write A ~ B. By Corollary 1.2 the function |3( ) induces
a bijection

E(g ,G) -*M(g ,G) /~ ,

which is independent of the choice of the special basis for H. If a different basis is chosen
for G then the corresponding set of matrices is in bijection with M(g, G).

3.1 DEFINITION. Let A be a matrix in M(g, G). For any two integers i and / with
1 g i ̂  j S= r, define

(A)j,=<ri)rJ) modm,,

where (rj, r,) is the symplectic product of the ith and /th rows of A. It is easy to prove that
if A and B are two equivalent matrices then for each i and /, (A)j,- = <B)j,.

3.2 PROPOSITION. 7/ 1 g rS= g then any matrix A ire M(g, G) is equivalent to one of the
form (Hr | U), where

(1) Hr is the r x g matrix with 1 on its main diagonal and zero elsewhere, and
(2) U is an upper triangular r x g matrix with zero main diagonal and such that u^ = 0

for j>r.
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This is a generalisation of Proposition (6.1) of Smith's paper [7], and so the proof is
omitted.

3.3 COROLLARY. If r ^ g then the cardinality of E(g, G) is pK, where
r - 1

K='Z(r-l)ki and mi=pk>.
i = l

This follows from the fact that if A is a matrix in M(g, G) of the form described in
Proposition 3.2, then for each i and / with l^ i^ /S=r , (A)^ = Uy.

4. In this section the classification of abelian primary coverings of closed surfaces
modulo weak equivalence is studied. If G is a finite abelian group then for any
G-covering q: Y—»X, the short exact sequence H(q) has the form

with respect to the special basis for irT1(X) = Z2R. Since ker(f3) = Z2E, then for any such

covering a basis {elt..., e2g} can be chosen with respect to which H(q) has the form

Let a(q) be the 2g x 2g integral matrix that represents the monomorphism with respect to
the given bases. If

N(g, G) = {A | A is a 2g x 2g integral matrix and Coker A = G}

then
a( ) :Cov(g,G)^N(g,G):q-^a(q)

is a surjection.
Two matrices A and B in N(g, G) are said to be w-equivalent, in symbols A~B, if

B = LAR for some L in Sp2g(2) and R in GL2g(Z). By 1.2, the function a( ) induces a
bijection

WE(g,G)->N(g,G)/«,

which is independent of the different choices of the bases.

4.1 DEFINITION. For any matrix A in N(g, G) and any vector v in Z2g we define
JO{A) to be the principal ideal in 2 generated by the set of inner products (cu v),...,
(c2g, v), where q is the ith column of A.

If (A) is the subgroup of 22g generated by the columns of A, then JV(A) is generated
by |min{(a, v) \ a in A}\. Therefore if M is any matrix in GL2g(Z) then JV(A) = JV(AM).
Moreover, if A~B then there exists S in Sp2g(2) such that for any u in Z2B, JU(A) =
Js,(B).

The following lemma provides a simple, but frequently needed, characterization of
the matrices in Sp2g(Z). For any 2gx2g matrix A and any set iu i2, j \ , } 2 of natural
numbers less than 2g, let A(iu i2,ii,i2) be the determinant of the 2x2 submatrix of A
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FINITE ABELIAN SURFACE COVERINGS 213

obtained by deleting all rows and columns but the ijth and i2th rows and the ĵ th and /2th
columns.

4.2 LEMMA. Let S be a 2g x 2g integral matrix. The following are equivalent.
(1) S is symplectic,
(2) for each i, and i2 with l ^ i 1 S i 2 =

,=1 10 otherwise, and

(3) for each /j and j2 with lg / ,S=/2^2g

i = 1 10 otherwise

Let p be a fixed prime number, ku ... ,kr be non-decreasingly ordered natural
r

numbers, and G = © /<,., O; = pk\ Obviously an integral matrix A is in AT(g, G) iff the
i = l

elementary divisors of A are those of G (i.e. A is similar to the diagonal matrix
diag(l , . . . , 1, pfc\ . . . , pk'). For simplicity we introduce the following notations.

4.3 NOTATIONS. For any integer a^O, define:

p(a) = max{r | pr divides a},

[a] = pp(a), and

(a) = al[a].

And let p(0) = oo and (0) = 0.

The elementary column operation of adding the /th column to the ith one will be
denoted by Q.

For natural numbers r, s, t, w, i, and / with rs + tw = 1 and 1 ^ i ̂  / ^ 2g,

(' " 1
stands for the 2g x 2g matrix obtained from I2g by replacing the iith, ijth, /ith, and //th
entries by r, -w, t, and s respectively. If / = i + g then this matrix is symplectic in which
case it will be written as

\t s I,

The sympletic matrix that interchanges the ith row with the /th row and the (i + g)th
row with the 0' + g)th row will be denoted by Rit.

Finally, by TLX we mean the trivial group.

4.4 PROPOSITION. Let A be a 2g x 2g integral matrix whose determinant is pn for some
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natural number n. Then A is w-equivalent to a matrix of the form

/ D | 0 \

XvTu)'
where D =diag(d11;. . . , dgg), U is an upper triangular gXg matrix and V is an upper
triangular matrix with zero diagonal such that:

(1) dn | . . . |dg g |ug g | . . . |u1 1 and

( 2 ) toH) = ( « H ) = l , i = l , . . . , g , '
(3) for each i<j if Uy^O then p(ujj)^p(uij)<p(uii),
(4) for each i<j if vtj^O then p(dJJ)gp(uiJ)<p(^).

Matrices in this form are said to be in canonical form.

Proof. The proof is by induction on g.
If g = 1 then the proof follows from the fact that Sp2(2) = SL2(Z) and a slight

modification of the matrix equivalent of the structure theorem of finitely generated
abelian groups; see [3, Thm. 7.10].

For g > l , row operations of premultiplication by powers of alt /3l5 y -̂, and yti as
necessary followed by column operations ensure that, up to equivalence, a n = d n is the
only non-zero entry in the first row and the first column, and au divides all the other
entries of A. Since all elementary row operations on the rows other than the first and the
(g + l)th rows can be carried out by means of symplectic matrices which do not affect the
first row, then by the matrix equivalent of the structure theorem one can assume that the
first g rows of A are of the form (D | 0), where D = diag(dn, . . . , dgg) and dlx | . . . | dgg.
Moreover, column operations on the last g columns can be used to reduce the lower right
hand corner into an upper triangular gXg matrix whose first entry divides all the entries
in the (g + l)th row of A. Now, by the induction hypothesis A is w-equivalent to one
which satisfies all the required conditions except possibily that for some / > 1 , Uy^O and
p(u,,)>p(ulj). But in this case, repeating the above process on the matrix S^ACfi with
x = djjldu yields a matrix with p(u,j) reduced. Repeating the process as much as necessary
together with induction completes the proof.

Different matrices in canonical form (i.e. satisfying the conditions of 4.4) may still be
w-equivalent. So further reductions of the canonical forms are essential. The rest of the
paper is devoted to studying those cases where such reductions are possible. The first such
case is the one of homocyclic p-groups.

4.5 PROPOSITION. Let g=^2 be an integer, k and r be natural numbers such that
K r < 2 g —1, and G = (Zpt)

r. Any matrix A in N(g, G) in canonical form is w-equivalent
to one in which U is a diagonal matrix and the only possibly non-zero entry of V is
vn-\ n = pm with l g m < ( c and

-A: ifj<g'
L2g-r otherwise.

Any such matrix is said to be of the form K(m).
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Proof. The proof is by induction on g.
If g = 2 then r = 2 and one need only prove that u,2 = pm for some m, with 1 g m < k.

Suppose that vX2
 = wpm for some vv^O, 1 such that (w, p) = 1. Choose integers su s2, tu

and t2 such that s1w + s2p'c~m = 1 and s,t1 + pmt2= 1. Then

o i\
Ul 0/3

„„-.„ _s _, _ p - m / 0
W /23 2 1 3 1 4 3 3 4 4 2 V—1 U/34

has the desired form.
Suppose that g>2 . If r > g then conditions (3) and (4) of 4.4 ensure that U is

diagonal and the gth column of V is a zero column. Now the induction hypothesis applied
to the 2 ( g - l ) x 2 ( g - l ) submatrix of A formed by deleting the gth and 2gth rows and
columns yields the required form. If r<g then in the matrix

(n 7i*) sfri 8&) A (n ca) (n
the gth column of V is a zero column and ugg = 1 is the only non-zero entry in its column,
where S is a product of powers of -fty's needed to restore the canonical form. Again the
induction hypothesis gives the required result.

If r= g, then the induction hypothesis implies that U = diag(p\ ... ,pk) and the only
possibly non-zero entries of V are the u,,'s for / = 2 , . . . , g and ug_i)g = pm with 0 i= m ^
k. If vu = 0 for all ; then there is nothing to prove. Otherwise, let h be the first integer
such that p(ulh) = min{p(uu)}. Replacing A by the matrix

if necessary shows that h = 2. Now similar operations to those used in the case g = 2 can
be used to make v{2 = pn for some n. If x, =vulvl2 then in

the Ui,'s are replaced by 0 for j>2. By now only vn = ph and ug_l g = pm are non-zero
entries of V. If g = 3 and h ii m then

is of the form K(m). But if g = 3 and h < m, then

is of the form K(m). If g = 4, then similar operations to those used in the case g = 3
applied on the matrix R23AR23 yield the required form. For g>4, the induction
hypothesis applied to the 2 ( g - l ) x 2 ( g - l ) submatrix of
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obtained by deleting the 1st and the (g + l)th rows and columns yields a matrix of the
form K(m) and this completes the proof.

Note that if r= 1, 2g —1, or 2g then any matrix in N(g, Zpk) is w-equivalent to the
only one in canonical form: diag(l, . . . , 1, pk), diag(l, p \ . . . , pk), or diag(pk, p \ . . . , pk).
Therefore by proving that for m=£h, K(m) is not w-equivalent to K(h), the classification
of homocyclic surface coverings is complete. Assume, for a contradiction that K(m) is
w-equivalent to K(h). There are two cases.

Case 1: g g r ^ 2 g - l . If K(m) = SK(m)R for S in Sp2g(Z) and R in GL2R(I), then
the symplectic products of the (n- l ) th and the nth columns of K(m) and K(h)R are
equal. This yields the equation

K R

P Li ('i,n-lri+g,n~ ri+g,nrin) ~^~ P Li \ri,n-\ri+g.,n~~ ri+s,n-lrin)

which has no integral solution. Therefore K(m) is not w-equivalent to K(h).

Case 2: K r < g . In this case let q, and q2 be the G-coverings that correspond to
K(m) and K(h) respectively. Let fBl and /32 be the integral matrices that represent the
epimorphisms in the short exact sequences H(qx) and H(q2) respectively. Then 0,=
(W\Hr) and /32 = (X|Hr), where Hr is the rxg matrix (/r | 0) and the only non-zero
entries of W and X are wr_lir - pk~m and xr_1-r = pk~h respectively. If /32 = S^{T for some
S in Sp2g(Z) and T in GL^/pO, then the symplectic product of the ( r - l)th and rth rows
of p2 must be equal modulo pk to the product of those of (3XT. But this implies that

which cannot hold for any T unless m = n.
The above arguments, together with the fact that if r>2g, then there is no epimorph-

ism Hi(Xg) -»(Zpk)r and hence Cov(g, G) = 0 , complete the proof of the following
proposition.

4.6 PROPOSITION. Let g =S 2, k and r be positive integers. If G = (Zpt)
r then

(0 if r>2g,

CardWE(g,G)=| l if r = l,2g, or 2 g - l ,

U + l if Kr<2g-1.
In the rest of the paper we concentrate on the case when the genus g of the surface is

4

2. Let G = 0 Z r , with rt = pk> and O^fc, gfc2gfc3^fc4. For simplicity, let Y(n) be the
i = l

4x4 matrix whose diagonal is (pk', pk*, pk*, pk*) and the only other non-zero entry of
which is y34

 = p"; let Z(m,n;w) be the 4x4 matrix whose diagonal is also
(pk', pk*, pk", pk') but the other non-zero entries of which are z32

 = p'" and z34
 = wp"; and

let X(m) = Z(m, n;0). Here (w, p) = 1. By Proposition 4.4 any matrix in N(2, G) which is
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in a canonical form is equal to a Z(m, n; w) for some m, n and w. In fact it is not difficult
to see that:

4.7 PROPOSITION. Every matrix in N(2, G) is w-equivalent to one in one of the
following forms:

(1) X(m) with fc2gmgmin{fc4, k3+k2-kl},
(2) Y(n) with k3^nSmin{fc4, k3+k2-k1}, or
(3) Z(m, n; w) such that

(j) fc3SnSmin{k4, k3+k2-kl},
(ii) n-k3+k2<m<n,

{Hi) 0 < w < p min{k4, k3+m-k2, k3 + k2-kl}-n, and
(iv) if n = k3 then w = 1.

Note that if m =min{fc4, fc3 + fc2-fc1} then X(m) is w-equivalent to the diagonal
matrix diag(pk', p \ pk*, pk')-

4.8 PROPOSITION.

(1) XCmJ-XCm^ iffmx = m2.
(2) Y(n,)=Y(n2) iffnx = n2.
(3) For each m and n, X(m)=^ Y(n).
(4) / / Z(mu nx\ w^)^Z{m2, n2; vv2) then n\\ = m2 and nx = n2.
(5) For each mx, m2, n and w, X(ynx)^Z(m2, n; w).
(6) For each m, n1; n2 and w, Y(n1)7^Z(m, n2; w).

Proof. (1): If X(mi) = SX(m2)R for some S in Sp4(Z) and R in GL4(Z), then a
comparison of the symplectic products of the first two columns of X(mx) and X(m2)R
yields the equation:

which has no integral solution unless m1 = m2.
The proof of (2) is similar to that of (1).
(3): Suppose to the contrary that X(m) = SY(n)R for some S in Sp4(2) and R in

GL4(Z). The relations /u(X(m)) = /Su(Y(n)) for v in the set {(1, 0, 0, pm~k>), (0 ,1,0,0) ,
(0, 0, 0,1)} imply that either p | det(S) or

t S(i,i + 2; 1,2)^0,
i = i

which contradicts the fact that S is symplectic (see Lemma 4.2).
(4), (5), and (6): Similar arguments to those used in the proof of (1) imply that in

these three cases one can assume that mx = m2 = m, m1 = m2 = m, and nx = m respectively.
Moreover, if S in Sp4(Z) and R in GL4(T) exist to make the relevant matrices w-
equivalent, then the /„( )-invariants for v in the sets

{(1, p m - \ 0, - w p " . - H (0,1, 0, 0), (0, 0, 0,1)},

{(1, 0, 0, pm-">), (0,1, 0, 0), (0, 0, 0,1)},
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and

{(1, -pm"f c3, 0,0), (0 ,1 , 0,0), (0,0, 0,1)}

2

respectively imply that either p | det(S) or £ S(2, 3;/ , j + 2)j=0 in contradiction to the
properties of the symplectic matrix S. l - 1

Unfortunately, we are unable to prove or disprove that Z(m, n; wx)=^Z(m, n; w2) iff
wi = W2- However the previous two propositions can be used to enumerate the classes in
WE(2, G) for reasonably large class of groups and bounds can be given for the unsettled
cases.

4.9 COROLLARY. Let K = min{fc4, k3 + k2-k1}.
(1) Ifk2 = k3 ork3 = k4 then Card(WE(2, G)) = K-k2+l.
(2) 7/fc2=k1 + l, fc3=fc2+l ork4=k3+l then Card (WE (2, G)) = 2(K-k2).
(3) If ki+1 > fc; +1 , for i = 1,2, 3, then

1 + (K - fc2) + (fe3 - k2)(*T - fc3) ̂  Card ( WE(2, G)) ^ 2(K - k2) + L,

where

r = K-k3-l, s = k3-k2—l,
and

f(i, j) = min{k4-k3-i , k2-kx-i, j}.

REFERENCES

1. J. S. Birman, On Siegel's modular group, Math. Ann. 191 (1971), 59-68.
2. A. L. Edmonds, Surface symmetry, Michigan Math. J. 29 (1982), 171-183.
3. B. Hartley and T. O. Hawkes, Rings modules and linear algebra (Chapman and Hall, 1970).
4. S. A. Jassim, Classifications of covering spaces (Ph.D. Thesis, University College of Swansea,

1980).
5. W. B. R. Lickorish, A finite set of generators for the homeotopy group of a 2-manifold,

Proc. Cambridge Philos. Soc. 60 (1964), 769-778.
6. W. Magnus, A. Karass and B. Solitar, Combinatorial group theory, (John Wiley, 1966).
7. P. A. Smith, Abelian actions on 2-manifolds, Michigan Math. J. 14 (1967), 257-275.

11A CLARENDON ROAD,

SKETTY,

SWANSEA SA2 0SR,

WALES

https://doi.org/10.1017/S0017089500005632 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089500005632

