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Abstract
Hydroelectric turbine designers need to know the damping coefficient of a turbine blade to assess its longevity.
Damping is difficult to simulate numerically. Current flow-added damping evaluation methods involve solving
Reynolds-averaged Navier–Stokes simulations, which are numerically expensive and complex. This paper presents
a new, simple and fast method to evaluate the added damping coefficient of a standalone and straight hydrofoil using
NASTRAN’s multiple modules. Using the vacuum and resting fluid natural frequencies, a proportionality matrix
is implemented into NASTRAN’s flutter solution using the added virtual mass incremental factor to evaluate the
added damping adequately. The methodology is validated against experimental and numerical data from previously
published articles and presents good agreement with existing results.

Impact Statement
Adding new energy sources, such as wind and solar, to the energy grid causes different loadings on hydro-
electric turbines, which can cause fatigue and reduce turbine longevity. Turbines’ fatigue life and longevity
are defined by their dynamical properties, which are heavily affected under fluid loads, as flow-added quan-
tities become important. Evaluating flow-added damping is computationally difficult and rarely done during
turbine design due to heavy numerical costs. Current studies include developing new methods to evaluate
these flow-added effects and focus on obtaining experimental data to validate these new methods. Common
test cases are hydrofoils, with similar geometries to turbine blades but a simpler dynamics. We develop a new
simple, fast and reliable method to evaluate flow-added damping on hydrofoils. A good agreement between
this method and existing experimental and numerical results is observed. Developing this method for more
complex structures, such as cascades and turbine runners, could help design turbines for flow-added damping.

1. Introduction

Every hydraulic turbine is tailormade for the hydroelectric power stationwhere it is installed tomaximize
its efficiency (Coutu et al. 2012; Monette et al. 2014; Gauthier et al. 2017) and support the load cases
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it will endure during its lifetime. Turbines are majorly impacted by fluid–structure interactions (FSI),
which can lead to complex dynamic behaviours (Coutu et al. 2012; Monette et al. 2014; Nennemann,
Monette & Chamberland-Lauzon 2016), especially during off-design operations (Dehkharqani et al.
2019) such as the start up, spin no load and load rejection.

Turbine designersmust knowwhatwill be themagnitude of a turbine blade’s vibrations under different
excitations (Bergan et al. 2019b), as it will determine its fatigue life. Vibration amplitude is heavily
dependent on its damping coefficient (Coutu et al. 2012; Gauthier et al. 2017; Zeng et al. 2023) and
turbine designers typically accept a large safety factor on the damping coefficient to determine whether
the turbine will be unstable or experience sufficiently large cyclic deformations to damage the turbine
under flow. Indeed, rotor–stator interaction is an unavoidable source of excitation for hydroelectric
turbines, which causes a forced response dependent on the excitation frequency and the system damping
(Seeley et al. 2019) that can lead to early cracks and fatigue failure (Coutu et al. 2012; Monette et al.
2014; Nennemann et al. 2016; Gauthier et al. 2017) if the turbine suffers large amplitude cyclic load
due to an insufficiently large damping.

The system damping is dominated by flow-added damping and structural damping is expected to be
insignificant (Seeley et al. 2012; Dehkharqani et al. 2019; Zeng et al. 2023). Currently, hydroelectric
turbine designers rely on empirical methods to estimate flow-added damping, which is adequate as long
as the turbine design remains conventional and an important safety factor is considered. Dehkharqani
et al. (2019) reviews different analytical, experimental and numerical methods to evaluate fluid-added
quantities for hydraulic turbines. These methods include computational fluid dynamics (CFD) using
deforming meshes (Monette et al. 2014; Gauthier et al. 2017; Seeley et al. 2019) and coupling the
fluid dynamics with a structural dynamics analysis (Falcucci et al. 2011; Liaghat et al. 2014; Cupr,
Rudolf & Habán 2018; Tengs et al. 2019), but these have been proven to be numerically expensive
and complex to set up for analysis (Nennemann et al. 2016; Gauthier et al. 2017). There has therefore
been an increasing interest in developing time-efficient procedures for evaluating flow-added damping
(Seeley et al. 2019). Several studies have also been focused on obtaining experimental data regarding
the damping of simplified hydrofoil geometries (Blake & Maga 1975; Coutu et al. 2012; Bergan et al.
2019a, b), which can be used to validate novel flow-added damping evaluation methods. The effect of
other parameters like the angle of attack was also studied experimentally (Reese 2010).

A common point to the previously mentioned methods is that they are CFD-based approaches.
Using alternative solutions that do not rely on unsteady Reynolds-averaged Navier–Stokes (URANS)
simulations with deforming meshes to evaluate flow-added damping can decrease the solution time
in an important manner. Flow-added damping arises from the same mechanism that gives rise to the
aeroelastic instability phenomenon of flutter (Fung 2008; Dowell 2015). At small and moderate reduced
velocities, flutter models predict an increase in damping with the passage of flow on an airfoil. It
therefore seems reasonable to think that we can represent flow-added damping effects using previously
defined flutter analysis methods.

The British method (Frazer & Duncan 1928; Lawrence & Jackson 1970), which follows Hassig’s
terminology as the PK method (Hassig 1971) implemented in NASTRAN’s SOL 145 (Siemens 2014a),
is a method to solve the aeroelastic stability problem by adding stiffness and damping terms, which are
functions of the structure’s frequency and the flow velocity, to the eigenvalue problem. This method is
applied in the modal basis, which therefore takes computational advantage of the reduced-order model
nature of this basis. NASTRAN’s SOL 145 is ideal for extracting the flow-added damping coefficient
of lighter fluids such as air, as it is possible to obtain the damping coefficient and natural frequency
according to the flow velocity.

To compute the added stiffness and damping terms in the PK method, the doublet-lattice method is
used to reproduce a uniform and inviscid flow around the hydrofoil, with the perturbations caused by
the hydrofoil’s motion, and non-penetration conditions are imposed on the aerodynamic panels as well
as instantaneous respect for the Kutta condition. It is important to note that the ideal fluid assumption
is used within the aerodynamic load matrices in the PK method, which removes any vortex-induced
vibrations from these analyses.
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However, simply modifying the flow density in NASTRAN’s SOL 145 will not produce interesting
results, as NASTRAN does not reproduce the added mass effect within the aeroelasticity module. It is
possible to reproduce this added mass effect using the added virtual mass incremental (AVMI) factor 𝛽
(Kwak & Kim 1991; Amabili & Kwak 1996; Louyot et al. 2020). This is possible due to the common
assumption in hydrodynamics that the vacuum mode shapes are the same as the resting fluid mode
shapes (Liang et al. 2007; Monette et al. 2014; Gauthier et al. 2017) with varying natural frequencies.
This assumption can be verified using the modal assurance criterion (Pastor, Binda & Harčarik 2012).

Zeng et al. (2023) developed a comprehensive empirical equation (CEE) for the flow-added damping
of hydrofoils. They take into account several geometry parameters in their model such as tip clearance,
angle of attack and flow velocity, with the objective of providing a general estimation for all types of
hydrofoils.

Here, we present a methodology based on reduced-order models, modal, vibro-acoustic and aeroe-
lastic analysis methods to study flow-added damping on hydrofoils. The objective is to develop a method
that both does not rely on interpolation techniques like empirical equation methods, which are by defini-
tion limited in the range of the available data, and is not computationally expensive like CFD, one-way
and two-way coupled methods. The method presented here is based on a physical model, with some
assumptions, but remains simple and fast to compute. This paper first presents the physical model to
be evaluated and then proceeds to describe the different applied analyses using NASTRAN’s multi-
ple modules for evaluating the damping coefficient of a hydrofoil. Finally, simple hydrofoils are tested
and compared with experimental and numerical data obtained from existing literature. A conclusion
regarding the solution’s time and accuracy is presented.

2. Methodology

2.1. Physical model

The equation of motion governing the discretized displacement {us} of a structure, such as a hydrofoil
or a turbine, can be written as

[Ms]{ �us} + [Cs]{ �us} + [K s]{us} = {F(t)}, (2.1)

where Ms is the structural mass matrix, Cs is the structural damping matrix, K s is the structural stiffness
matrix and F(t) is the load vector, with the �( ) notation used to represent time differentiation. However,
considering a heavy fluid such as water induces added effects on the hydrofoil (Gauthier et al. 2017),
which requires that we rewrite the equation of motion as

([Ms] + [MF]){ �us} + ([Cs] + [CF]){ �us} + ([K s] + [KF]){us} = {Fs(t)}, (2.2)

with MF the added mass matrix, CF the added damping matrix, KF the added stiffness matrix and
Fs(t) the residual load vector applied to the structure. By assuming a solution of the form {us(t)} =
Re({𝝓i} epit), with 𝝓i an eigenmode, pi the corresponding eigenvalue and t the time, for the free vibration
problem such that Fs(t) = 0, the following eigenvalue problem is obtained:

Re(( p2
i ([Ms] + [MF]) + pi ([Cs] + [CF]) + ([K s] + [KF])){𝝓i} epit) = {0}. (2.3)

Assuming that the system possesses orthogonal modes, the equation of motion in the modal basis is

([Mhh,s] + [Mhh,F]){ �uh} + ([Chh,s] + [Chh,F]){ �uh} + ([Khh,s] + [Khh,F]){uh}

= [𝛷]T{Fs(t)}, (2.4)

where uh are the modal coordinates such that {us} = [𝜱]{uh}, 𝜱 = [𝝓1𝝓2 · · · ] is the eigenvector
matrix, Mhh,s is the structural modal mass matrix, Chh,s is the structural modal damping matrix, Khh,s
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is the structural modal stiffness matrix, Mhh,F is the fluid modal mass matrix, Chh,F is the fluid modal
damping matrix and Khh,F is the fluid modal stiffness matrix. For very small damping, the previously
obtained eigenvalue can also be rewritten as (Hassig 1971; Siemens 2014a)

pi = 𝜔i (−𝜁i ± j), (2.5)

with 𝜁i the dimensionlessmodal damping coefficient,𝜔i themodal angular frequency such that𝜔i = 2πfi,
where fi is the natural frequency, since the damped modal angular frequency is approximately equal
to the undamped modal angular frequency with small damping. Therefore, the free vibration modes
become (Siemens 2019)

{us(t)} = Re({𝝓i} exp(−𝜁i𝜔it)(cos(𝜔it) ± j sin(𝜔it))) = {𝝓i} exp(−𝜁i𝜔it) cos(𝜔it). (2.6)

The dimensionless damping coefficient 𝜁i, the natural frequency fi and the mode shapes 𝜙i therefore
encapsulate the dynamics of a mechanical system and allow the evaluation of the vibration amplitude
for a given forcing. The mode shapes, being similar both in vacuum and in a fluid at rest, can be
obtained from modal analysis. The natural frequencies being influenced mostly by the added mass
can be evaluated using vibro-acoustic modal analysis. However, the flow-added damping coefficient is
caused by the CF matrix, which requires a fluid dynamics analysis. Therefore, we propose the following
method to evaluate the damping coefficient 𝜁i more efficiently.

2.2. Aeroelastic analysis

The flow-added damping originates from the same mechanism responsible for the aeroelastic instability
phenomenon known as flutter. The flow-added damping is essentially the exchange of energy between
the fluid and a vibrating structure. It can be interpreted as the work between the structure and the fluid
over a vibration cycle (Monette et al. 2014). If the overall energy increases, the damping is negative,
leading to flutter, whereas if it decreases, the amplitude of the vibrations will reduce and the structure
is damped by the presence of the fluid. We can therefore represent flow-added damping effects using
previously defined flutter analysis methods. In order to evaluate the dimensionless damping coefficient,
the PK method from NX NASTRAN’s aerodynamic flutter analysis (SOL 145) (Siemens 2014a) can
be used for lighter fluids. As mentioned, the PK method solves the aerodynamic stability problem
by adding velocity-dependent stiffness and damping terms to the eigenvalue problem. The eigenvalue
problem studied with the PK method is

(
[Mhh,s]p2

i +

(
[Chh,s] −

1
2fi

𝜌U2 [QI
hh]

)
pi +

(
[Khh,s] −

1
2
𝜌U2 [QR

hh]

))
{uh} = {0}, (2.7)

with Qhh the modal aerodynamic influence matrix, where its imaginary part QI
hh is used as a damping

term and its real part QR
hh is used as a stiffness term. Moreover, 𝜌 is the fluid density and U is the flow

velocity. As stated, themodal aerodynamic influencematrices are computed using doublet-lattice panels,
which imposes a non-penetration boundary condition on the surface of vibrating airfoils aswell as forcing
the Kutta condition at the trailing edge. For future comparisons, the reduced velocity, UR = U/f1,frh,
with f1,fr the fundamental natural frequency in resting water and h the hydrofoil’s maximum thickness,
will be used to allow for comparison between different structures. It is to be noted that (2.7) is written
differently in NASTRAN’s documentation (Siemens 2014a), using the reduced frequency k notation
such that k = fi,vacc/2U, with c the aerodynamic chord and fi,vac the modal frequencies in vacuum so that
the emphasis is placed on the fluid rather than the structure’s vibrational characteristics. Moreover, we
change the scaling from using the aerodynamic chord to the thickness so that the reduced velocity has
a direct link to the vortex shedding frequency. Indeed, when considering vortex shedding, it is common
for the Strouhal number to be defined using the thickness of the structure rather than its characteristic
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length, whereas aeroelastic analyses might use different conventions. This change of scaling is therefore
used to ease the understanding of what the reduced velocity represents.

Equation (2.7) is similar to (2.4), except the added mass matrix is absent. Therefore, it is required
to reproduce the added mass effect artificially for the aeroelastic analysis to be applicable, since this
module will allow us to extract the damping coefficient 𝜁i. This added mass effect is typically calculated
using a finite element analysis (FEA) integrating acoustic fluid, which is also the chosen method to
evaluate this added effect here.

2.3. Recreation of the added mass effect

Due to the assumption of similar mode shapes in vacuum and in resting fluid, the vacuum natural
frequencies can be linked to the resting fluid natural frequencies using the AVMI factor 𝛽 (Kwak &
Kim 1991; Amabili & Kwak 1996; Louyot et al. 2020). This factor is defined by the ratio of the natural
frequencies such that

𝜔i,fr

𝜔i,vac
=

1√
1 + 𝛽i

, (2.8)

where 𝜔i,fr is the ith angular natural frequency in resting fluid, 𝜔i,vac is the ith angular natural frequency
in vacuum and 𝛽i is the AVMI factor for the ith mode. Considering that (2.5) still holds and since there
is no added damping between the hydrofoil in vacuum and the hydrofoil in resting fluid, this leads to

𝜔i,fr

𝜔i,vac
=

pi,fr

pi,vac
=

1√
1 + 𝛽i

, (2.9)

where pi,fr is the eigenvalue for the problem in resting fluid and pi,vac is the eigenvalue for the problem
in vacuum. However, in the modal basis, where each mode has a corresponding modal mass mi and
modal stiffness ki lying on the diagonal of the mass matrix Mhh,s and stiffness matrix Khh,s, respectively,
we can also define the natural frequencies 𝜔i,vac =

√
ki/ms,i, with ms,i the structural modal mass, and

𝜔i,fr =
√

ki/(ms,i + mf ,i), with mf ,i the flow-added modal mass (Gauthier et al. 2017). This leads to

𝜔i,fr

𝜔i,vac
=

√
ki

ms,i + mf ,i√
ki

ms,i

=
√ ms,i

ms,i + mf ,i
=

1√
1 + 𝛽i

. (2.10)

By posing Pi =
√
1 + 𝛽i = 𝜔i,vac/𝜔i,fr, we can rewrite (2.10) as

ms,i + mf ,i = ms,iP2
i . (2.11)

Generalizing (2.11) to its matrix equivalent, we find

[Mhh,s] + [Mhh,f ] = [Mhh,s] [P2], (2.12)

since all modal matrices are diagonal due to the orthogonal modes hypothesis. Therefore, to add the
flow-added mass effect, we rewrite (2.7) as(

[Mhh,s] [P2]p2
i +

(
[Chh,s] −

1
2fi

𝜌U2 [QI
hh]

)
pi +

(
[Khh,s] −

1
2
𝜌U2 [QR

hh]

))
{uh} = {0}. (2.13)

By extracting the vacuum modal frequencies and resting fluid modal frequencies using NASTRAN’s
real eigenvalue analysis (SOL 103) and direct complex eigenvalue analysis (SOL 107), a modal AVMI
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Figure 1. (a) Profile of the hydrofoils (Cupr et al. 2018; Bergan et al. 2019a; Zeng et al. 2019). (b)
Structural mesh of the NACA0003 hydrofoil. (c) Zoom of a transverse cut of the acoustic fluid mesh of the
NACA0003 hydrofoil (the full mesh is 6-chords long). (d) Aerodynamic panels mesh of the NACA0003
hydrofoil.

matrix [P] can be constructed to recreate the adequate natural frequencies while maintaining appropriate
mode shapes. Thus, (2.13) allows us to calculate the flow-added damping coefficient 𝜁i and use the
flutter solution for hydroelastic purposes. These multiplications can be done in the DMAP commands
(Siemens 2014b) used in NASTRAN.

3. Results

3.1. Hydrofoils and materials

To validate the method described in § 2, structural response data from five different test cases based on
hydrofoils were used. Roth et al. (2009), Cupr et al. (2018), Bergan et al. (2019a), Bergan et al. (2019b),
Tengs et al. (2019) and Zeng et al. (2019) all present results for several different hydrofoils, materials
and conditions. The first hydrofoil is a modified NACA0003, such that its trailing edge has a 1mm
thickness, studied on ANSYS CFX using two-way coupling (Cupr et al. 2018). The second hydrofoil,
named F0, is the third Francis99 workshop hydrofoil made of aluminium (Bergan et al. 2019a, b; Tengs
et al. 2019) and studied experimentally. The third hydrofoil, named F1, is also made of aluminium
and is studied both experimentally and numerically using one-way coupling (Bergan et al. 2019a, b;
Tengs et al. 2019). Finally, the last two hydrofoils are both NACA0009 but with different trailing edges,
‘Donaldson trailing edge’ and ‘blunt trailing edge’, as described in Zeng et al. (2019). Zeng et al. (2019)
studied both hydrofoils numerically using two-way coupling, while Roth et al. (2009) studied the blunt
trailing edge hydrofoil experimentally. In the first three mentioned cases, the hydrofoils are clamped at
both ends whereas in the last two cases, they are only clamped at one end and free at the other. The
five hydrofoils are presented in figure 1(a) and their specifications are presented in table 1. For the five
hydrofoils, the velocity range that was tested was between 0 and 28m s−1, which, for the F0 and F1
hydrofoils, crosses the vortex-induced vibration lock-in region (Bergan et al. 2019a).

The hydrofoils F0 and F1 were drawn from illustrated figures (Bergan et al. 2019a) and exported into
x and y coordinates while the NACA0003 and NACA0009 profiles were imported as they are known
airfoil profiles. Using a custom Python script based on PyNastran (Doyle 2019) and Gmsh (Geuzaine
& Remacle 2009), the vacuum modal analysis, vibro-acoustics modal analysis and aeroelastic analysis
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are set up automatically after the input of the hydrofoil’s geometry, material and studied conditions.
Since the hydrofoils studied are standalone and straight, the mesh was made from quadratic pentahedral
elements, also called CPENTA in NASTRAN, both for structural and fluid elements, since the hydrofoil
can be seen as an extruded profile. Moreover, the test sections used for the different hydrofoils can also
be represented within this program by modifying the test section thickness and length, the width being
constrained to the hydrofoil’s span and the boundary conditions applied to the fluid around the hydrofoil
being a rigid wall.

For the five mentioned hydrofoils, their test section thicknesses are described in table 1. The length
of the test section is chosen as 6c in the five cases. This value was chosen following a convergence study
such that the length of the test section did not impact the resting fluid modal frequency of the hydrofoil
nor the mode shapes, similarly to how an open boundary would behave. This convergence analysis is
discussed in § 3.2.

The custom Python script is available on GitHub (Lamoureux & Audefroy 2024).

3.2. Modal and vibro-acoustics analysis

The first step to evaluating the added damping is to find the AVMI matrix, which is constructed from the
resting fluid and vacuum natural frequencies. Therefore, a vacuum modal analysis is performed using
SOL 103. The structural meshes resemble the NACA0003 hydrofoil mesh presented in figure 1(b) for
all hydrofoils. Afterwards, a vibro-acoustics analysis is performed using SOL 107. The fluid meshes
being very similar, only the NACA0003’s fluid mesh is presented in figure 1(c).

From these simulations, the modal frequencies and mode shapes are extracted. The studied modes
from the literature are only the first modes, which are called the bending modes. Thus, while higher-
order modes could be studied here, only the first bending mode will be analysed. The various natural
frequencies are presented in table 2 and compared with the original data. We also present the natural
frequencies obtained using coarse and finer meshes, along with the number of solid and fluid elements
used. From the coarse and fine mesh results, we see that the results using the described method seem
well converged, and finer meshes would not produce very different results. Therefore, we can rely on
these results to perform our analyses. Moreover, we present the vacuum natural frequencies as well as
the natural frequencies in a fluid at rest, whereas the data in the literature are often incomplete, providing
only one of the two values. We also observe that comparing our method with the full URANS/FEA
two-way coupling produced by Cupr et al. (2018) or the Tengs et al. (2019) one-way coupling, we
obtain similar results with much fewer elements, making the computations much faster. This is due to
the use of quadratic elements, which, for pentahedral elements, use 15 nodes instead of 8 for the linear
hexahedrons, providing a higher degree of accuracy.

In order to show the convergence of our results, we present a detailed case of convergence analysis for
the F1 hydrofoil using the procedure described by Celik et al. (2008) using the Richardson extrapolation
method. First, a convergence analysis was performed on the solid elements when considering a modal
analysis in vacuum. We compute the extrapolated reference value, and we calculate the error as the
relative difference between the natural frequency in vacuum for a given mesh and this reference value
e = |f − fref |/fref , as shown in figure 2(a). The relative error is less than 1% with a solid element size of
6mm, knowing that the chord is 250mm.We then perform a convergence analysis of the fluid elements,
using the same definition as in the previous convergence analysis but with the natural frequency in
resting fluid and maintaining the solid element size as 6mm, such as in figure 2(b). We also maintain
the length of the channel as 6c, as the following convergence analysis will discuss. The relative error for
the fluid elements is less than 1% with a fluid element size of 10mm, considering the channel length of
6c, which is 1500mm. Finally, figure 2(c) presents the influence of the test section length on the natural
frequency in water. The error is defined as previously, but using the longest simulated test section as the
reference value. The error is plotted against the test section length ℓ over the chord c. Once the test section
length is long enough (around 6 times the cord), it does not influence the natural frequency anymore, as
it plateaus to an error very close to zero. The convergence analysis regarding the fluid elements and test
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Figure 2. Convergence analysis of the F1 hydrofoil case. (a) Convergence analysis of the solid elements
through a modal analysis in vacuum. (b) Convergence analysis of the fluid elements through a modal
analysis in resting fluid. (c) Convergence analysis of the length of the channel in modal analysis in
resting fluid.

section length was produced iteratively such that both parameters would not influence each other. This
shows that our cases are well converged and that the following results can be interpreted reliably.

However, there exist some appreciable differences between our results and the ones from the literature
as compared in table 2. These differences have both physical and numerical origins, as the numerical
simulations do not reproduce the exact experimental conditions. Indeed, first, on the numerical side
of things, the hydrofoils have very particular profiles that are not typically given by easily obtained
equations. Here, we reproduced the profile geometries manually by redrawing the hydrofoils from
images in the literature (Roth et al. 2009; Cupr et al. 2018; Bergan et al. 2019a; Zeng et al. 2019),
therefore introducing discrepancies. The hydrofoils’ dynamic characteristics might be heavily affected
by this geometrical imperfection. For example, the F0 and F1 hydrofoils are custom made while the
NACA hydrofoils all have altered trailing edges. Most notably, the NACA0003 frequencies we find differ
from those found by Cupr et al. (2018), despite both methods being numerical. Inexact reproduction of
the problem geometry is possibly responsible for the discrepancies observed for both vacuum and fluid
at rest natural frequencies. While the length of the channel does not seem to affect the results as was
shown by the previous convergence analysis, it is possible that the acoustic boundary conditions are still
not adequately reproduced. Moreover, on the physical aspect of this problem, in our simulations, we
assume perfectly clamped boundary conditions at the edges of the hydrofoil, whereas it can be expected
that there be flexibility in the mounting systems of the hydrofoils of these experiments. The clamps used
experimentally are not perfectly rigid and can be assumed to flex, as when the hydrofoil is mounted on
a shaft such as the (Cupr et al. 2018) case. This flexibility would reduce the effective stiffness of the
hydrofoil, therefore reducing the experimental natural frequencies both in vacuum and in fluid at rest, in
comparison with numerical simulations. Secondly, it is also possible that some differences exist in the
materials used here and in the literature, or that different flow conditions might be assumed in the present
method. Thirdly, for the experimental results, there are varying levels of measurement uncertainties that
can explain some discrepancies between our results and the experimental ones. Finally, for the numerical
results, different levels of convergence might have been reached by this method in comparison with the
previously described simulations, which could impact the numerical frequencies obtained. This results
in our simulations predicting frequencies too high in comparison with the literature.

Despite these errors in predicting frequencies, we show in the next section that the flow-added
damping can nevertheless be correctly predicted. Moreover, we also present the hydrofoils’ first bending
modes in vacuum and in resting fluid, as illustrated in figure 3.

It can be observed from these figures that the mode shapes, if not exactly the same, are very similar,
with a difference in amplitude. This can also be observed from the modal assurance criterion (MAC)
(Pastor et al. 2012). Moreover, the order of the modes can vary due to an important variation of natural
frequency and therefore need to be matched together when crossing between the vacuum and resting
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Figure 3. Hydrofoil first bending modes in vacuum and resting fluid: NACA0003’s first bending mode in
(a) vacuum, (b) resting fluid; F0’s first bending mode in (c) vacuum, (d) resting fluid; F1’s first bending
mode in (e) vacuum, ( f) resting fluid; NACA0009 Donaldson’s first bending mode in (g) vacuum, (h)
resting fluid and NACA0009 blunt’s first bending mode in (i) vacuum, ( j) resting fluid.

fluid modes. The MAC evaluates the correspondence of two mode shapes such that

MACi,j =
|{𝝓i,vac}

T{𝝓j,fr}|
2

({𝝓i,vac}
T{𝝓i,vac})({𝝓j,fr}

T{𝝓j,fr})
, (3.1)

where MACi,j is the MAC for the ith mode shape in vacuum and jth mode shape in resting fluid, 𝝓i,vac
is the ith mode shape in vacuum and 𝝓j,fr is the jth mode shape in resting fluid. The value of the MAC
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is close to zero for non-similar mode shapes and near unity for similar modes scaled differently (Pastor
et al. 2012).

The MAC of the first ten corresponding vacuum–resting fluid modes of the different hydrofoils is
presented in table 3, with the mode numbers associated. From table 3, it is observed that the modes in
vacuum and resting fluid are mostly similar, although some resting fluid modes tend to deviate from the
vacuummodes, especially for the F0 and F1 hydrofoils. For all hydrofoils, the first mode in resting water
becomes a rigid body mode with a frequency of around 10−5 Hz and, for the F0 and F1 hydrofoils, the
second mode in resting water becomes a fluid mode with displacements being 10−3 times smaller than
those of structural modes. However, most of the modes are adequately matched, with the lowest MAC
being 0.9653 for the eighth NACA0003 vacuum mode, 0.5572 for the second F0 vacuum mode, 0.6660
for the second F1 vacuum mode, 0.8868 for the sixth NACA0009 Donaldson vacuum mode and 0.8933
for the sixth NACA0009 blunt mode. Therefore, from these analyses, the matrix [P] can be constructed
and implemented into the aeroelastic analysis. For the different hydrofoils studied, the ten first Pi terms
are detailed in table 4.

3.3. Flow-added damping

Once the AVMI matrix is constructed, it is possible to produce the aerodynamic mesh and spline. The
aerodynamic spline used here allows NASTRAN to couple the aerodynamic mesh deformation and load
with the structural elements. Therefore, the spline is effectively a link between structural mechanics
and the modelled aerodynamics (Siemens 2014a). Once again, these meshes are very similar from
one hydrofoil to another. Therefore, only the mesh for the NACA0003 is presented in figure 1(d). It
is important to note that the aerodynamic mesh is composed of CAERO1 elements in NASTRAN,
which are doublet-lattice panels. Therefore, the analysis proposed here is subject to the potential flow
hypotheses, such as the absence of viscosity. Here, the mesh and solver parameters are common to
all five hydrofoils with 16 chordwise panels, 16 spanwise panels and the use of the first ten modes in
(2.13). The chordwise panels are distributed using a cosine distribution while the spanwise panels are
distributed evenly.

Once modelled and simulated, the dimensionless natural frequency and dimensionless damping
of each hydrofoil can be plotted and compared with experimental and numerical results (Roth et al.
2009; Cupr et al. 2018; Bergan et al. 2019a; Zeng et al. 2019), as is observed in figure 4. Each figure
represents the hydrofoil’s flow-added damping 𝜁i,added according to the reduced velocity UR as well as
a dimensionless natural frequency 𝛺i = fi,fr/f1,fr, with fi,fr the resting fluid natural frequency of each
i mode. The experimental and numerical results are presented along with the results obtained from
the methodology proposed. The numerical results obtained from NASTRAN, which are labelled as
hydroelastic, can therefore be compared with the literature. We observed very similar trends between
the hydroelastic results and the existing data, but a constant difference was observed. This difference
is caused by an existing structural damping that is not evaluated by NASTRAN. Therefore, all results
from previous articles which present a structural damping, typically seen from a non-zero damping at
resting flow velocities, need to be corrected by shifting them to a null y-intercept. Here, we only present
the shifted data to allow a fair comparison with our results.

Fromfigure 4, it is possible to observe good agreement between the firstmode obtained byNASTRAN
and the data from the literature, especially for the F1 and F0 hydrofoils. This is true for both the flow-
added damping and the natural frequency. The F0 hydrofoil presents a certain difference in damping
from the literature, while keeping a very similar trend. This difference can be caused by the presence of
lock-in (Bergan et al. 2019a) where the added damping slope changes drastically.

This can be observed both for the F0 and F1 hydrofoils where our results reveal two distinct regions:
the first occurs prior to lock-in, characterized by nearly constant and negligible damping, while the
second region shows a linear increase in damping with flow velocity. This concept was previously
observed by Zeng et al. (2023), who introduced a CEE delineating these two distinct regions of flow-
added damping. Figure 5 presents the comparison of our results in continuous lines with the CEE from
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Figure 4. Dependence of dimensionless frequency 𝛺i and flow-added damping 𝜁i,added on the reduced
velocity UR for the first mode of the studied hydrofoils in comparison with the literature: (a,b) NACA0003
(Cupr et al. 2018); (c,d) F0 (Bergan et al. 2019a); (e, f) F1 (Bergan et al. 2019a): (g,h) NACA0009
Donaldson (Zeng et al. 2019); (i, j) and NACA0009 blunt (Roth et al. 2009; Zeng et al. 2019). The fun-
damental frequencies used for the dimensionless frequencies 𝛺i are found in table 2. Experimental and
numerical results for the first bending mode, presented as data points, are compared with hydroelas-
tic results, presented as continuous lines. The experimental and numerical added damping results are
shifted to account for structural damping. For the F0 and F1 hydrofoils, an estimated vortex shedding
frequency is plotted as observed from experimental results (Bergan et al. 2019a).

Zeng et al. (2023) in dashed lines. As the reduced velocity is defined with the chord in the CEE, the
results of figure 5 are using the same definition of the reduced velocity. Our proposed model and Zeng
et al.’s CEE model agree well for the NACA0009 cases and the NACA0003 case. For the F0 and F1
cases, the slope of the empirical equation is smaller than our model which predicted accurately the
experimental results. In all cases, the CEE predictions and our results are in the same range, though the
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Figure 5. Dependence of flow-added damping 𝜁i,added on the reduced velocity UR for the first mode
of the studied hydrofoils in comparison with the CEE (Zeng et al. 2023): (a) NACA0003; (b) F0; (c)
F1; (d) NACA0009 Donaldson; (e) NACA0009 blunt. The CEE for the first bending mode, presented as
dashed lines, is compared with hydroelastic results, presented as continuous lines.

CEE always predicts a smaller slope. Note that our model is predictive and is based on geometry and
physical quantities without any tuneable parameter.

Lock-in is observed when the vortex shedding frequency is equal to the structure’s natural frequency,
as can be observed in figures 4(c) and 4(e). This difference can be caused by unsteady effects as vortices
are shed on the hydrofoil’s trailing edge. Simply put, in the lock-in range, the Kutta condition is not
respected. Therefore, around the lock-in range, the proposedmethod does not produce reliable results due
to its inability to capture vortices, but it captures regimes outside of the lock-in range. Another important
limitation that can be observed is how the hydroelastic method evaluates the added damping at very low
reduced velocities, such as in figure 4(d). Indeed, for such low reduced velocities, NASTRAN observes
certain instabilities that prevent the method from converging. Therefore, the current methodology is
only reliable at high reduced velocities, such that NASTRAN’s reduced frequencies stay small. From
figures 4(h) and 4( j), we observe that the added damping was a little underestimated compared with
the literature, which is logical considering that the hydrofoils have thicker trailing edges and a generally
thicker aspect ratio. Indeed, thicker hydrofoils tend to undergo greater unsteady effects through larger
vortices shed on the hydrofoil’s trailing edge. However, the estimated flow-added damping still gives
an idea of the true value of the observed damping and, for the blunt trailing edge NACA0009 in
figure 4( j), the general flow-added damping trend is similar. Another error source could be the fact that
the boundary conditions are different than previously presented as they are now clamped–free instead
of clamped–clamped. This difference of boundary condition will impact the flow-added damping, as a
larger amount of fluid is in motion due to larger deformation of the clamped–free hydrofoils. However,
here, we believe the greater discrepancy between the flow-added damping of the NACA0009 cases is
mostly due to their generally thicker profile and thicker trailing edges. Therefore, it is important to
use the current methodology for slender hydrofoils and thin trailing edges, as they experience fewer
vortices than thicker hydrofoils. In short, the current methodology is valid for slender hydrofoils in the
range of large Reynolds numbers, and large reduced velocities. This ensures small reduced frequencies
for NASTRAN, and reduced velocities far from the lock-in range for an irrotational flow. We note that
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Figure 6. Dependence of the dimensionless frequency 𝛺i and flow-added damping 𝜁i,added on the
reduced velocity UR for the first 3 modes of the studied hydrofoils: (a,b) NACA0003; (c,d) F0; (e, f) F1;
(g,h) NACA0009 Donaldson trailing edge; (i, j) and NACA0009 blunt trailing edge. The fundamental
frequencies used for the dimensionless frequencies 𝛺i are found in table 2.

the impact of the inviscid flow hypothesis will have multiple physical effects, such as the inability to
capture vortices and boundary layer dynamics, but will also reduce the overall flow-added damping
that is evaluated. Viscosity will increase dissipation and therefore increase damping, which will not be
captured in our model.

Using the methodology presented, it is also possible to evaluate the flow-added damping of higher-
order modes, while keeping low computation times. In figure 6, the dimensionless frequency and
dimensionless damping are plotted against the reduced velocity for the five presented hydrofoils, while
studying the first three modes of each hydrofoil. As is expected, the dimensionless natural frequencies
of the different modes increase, but we can also observe that, according to this method, the flow-added
damping decreases for higher-order modes. Most of the literature only covers the first bending mode,
validating these results therefore lies outside the scope of this paper.
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Since this method does not rely on RANS simulations, its simulation time is shorter than typically
observed with CFD-coupled methods. The different illustrated cases were solved in different amounts
of time ranging from 12 to 22 minutes, considering the set-up, writing, solution and analysis time from
the custom Python script, while producing results presenting good agreement with existing data. It is
important to note that these times could be improved by optimizing the custom Python script, using
parallel computing, using a pre-compiled programming language or by upgrading the used machine.
These specific times were obtained on a laptop equipped with an Intel Core i7-9750H CPU and 12G of
RAM.

4. Conclusion and further work

Added damping associated with a heavy fluid flowing around a structure is a challenge to compute
efficiently. For hydraulic turbines, those computations are important to evaluate the durability of the
runner, guide vanes and stay vanes. The present article offers a new, simpler and computationally
cheaper method using NASTRAN’s modal analysis, vibro-acoustic analysis and aeroelasticity modules
to evaluate this added damping with some accuracy. The key to this method is to use an AVMI matrix in
the flutter solution of the aeroelasticity module, which is obtained from resting fluid and vacuum modal
analyses. When comparing the results of this new method with published results on simple hydrofoils,
a good fit between the extracted data and the numerical prediction is obtained.

Thismethod therefore presents very promising and interesting results. However, it is important to note
its limitations and restrictions. First, the minimum flow velocity is limited by NASTRAN. Secondly, the
fact that the flutter solution used is based on a potential flow approach limits the accuracy of the solution
for FSI where viscous effects cannot be neglected. We note that the current methodology’s potential is
limited by the demonstrated cases. We limited our analyses to hydrofoil geometries obtainable from the
literature, which are typically standalone, non-cambered hydrofoils with no angle of attack, twist, sweep
angle or confinement. A sweeping angle could be added without any modifications, while the software
could be modified to include angles of attack, camber and twist using the available downwash matrix
and cascades could be accounted for by coupling the hydrofoil modes together. As for confinement, it
would be more difficult to represent numerically. These different cases are currently being addressed by
a follow-up project.

Another important aspect in the development of such a methodology is the availability of accurate
and detailed experimental data. A comprehensive research effort to evaluate flow-added damping on
a model Francis turbine runner is currently underway at the Heki innovation centre of the Université
Laval (Châteauvert et al. 2021). Using a model of a turbine in operation, measurements on a structurally
homologous runner are performed, specifically with the goal of quantifying flow-added damping in
different operating conditions, including no-load conditions. Our method will have to be adapted to
consider the geometrical complexity of a real three-dimensional runner.

In the future, this method could be part of a set of tools to quickly compute the residual life of
hydraulic turbines through, for example, stability maps using multiple modes and to implement FSI
analyses into the turbines’ design workflow. We could also imagine turbine runner designs optimized
to increase the flow-added damping and thus exhibit improved longevity in off-design operations.
Such an improvement in runner design would allow a better integration of other clean energy sources
complementary to hydroelectric power, such as wind and solar, into the energy grid.
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