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Abstract

A ∗-ring R is called (strongly) ∗-clean if every element of R is the sum of a unit and a projection (that
commute). Vaš [‘∗-Clean rings; some clean and almost clean Baer ∗-rings and von Neumann algebras’,
J. Algebra 324(12) (2010), 3388–3400] asked whether there exists a ∗-ring that is clean but not ∗-clean
and whether a unit regular and ∗-regular ring is strongly ∗-clean. In this paper, we answer these two
questions. We also give some characterisations related to ∗-regular rings.
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1. Introduction

Rings in which every element is the product of a unit and an idempotent are said to be
unit regular, and have been extensively studied. Camillo and Khurana [2] show that
every element of a unit regular ring can also be written as the sum of a unit and an
idempotent. Recall that an element of a ring R is called clean if it is the sum of an
idempotent and a unit, and R is called clean if every element of R is clean. Clean rings
were introduced by Nicholson [4] in relation to exchange rings. In 1999, Nicholson [5]
called an element of a ring R strongly clean if it is the sum of a unit and an idempotent
that commute with each other, and R is strongly clean if each of its elements is strongly
clean. Clearly, a strongly clean ring is clean, and the converse holds for abelian rings
(that is, all idempotents in the ring are central). Local rings and strongly π-regular
rings are well-known examples of strongly clean rings.

A ring R is a ∗-ring (or ring with involution) if there exists an operation ∗ : R→ R
such that for all x, y ∈ R,

(x + y)∗ = x∗ + y∗, (xy)∗ = y∗x∗ and (x∗)∗ = x.
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An element p of a ∗-ring R is said to be a projection if p2 = p = p∗. Recently, Vaš [6]
introduced the concepts of a ∗-clean ring and a strongly ∗-clean ring. An element of
a ∗-ring R is called (strongly) ∗-clean if it can be expressed as the sum of a unit and a
projection (that commute), and R is called ∗-clean (respectively, strongly ∗-clean) if all
of its elements are ∗-clean (respectively, strongly ∗-clean). Strongly ∗-clean rings are
strongly clean and ∗-clean, and ∗-clean rings are clean, but Vaš asked whether there is
a ∗-ring that is clean but not ∗-clean.

An involution ∗ of R is called proper if x∗x = 0 implies x = 0 for any x ∈ R. Due to
[1, Proposition 3], a ∗-ring R is ∗-regular if one of the following equivalent conditions
holds: (1) R is a (von Neumann) regular and Rickart ∗-ring (that is, the right annihilator
of each element is generated by a projection); (2) R is regular and the involution is
proper; (3) for every x in R there exists a projection p such that xR = pR. It was shown
that every ∗-abelian (that is, ∗-rings in which every projection is central) and ∗-regular
ring is strongly ∗-clean [6]. Vaš asked whether a unit regular and ∗-regular ring is
strongly ∗-clean.

In this paper, we answer the two questions raised by Vaš in [6] and investigate some
properties of (strongly) ∗-clean rings. In particular, we show that a strongly clean ring
R is strongly ∗-clean if and only if the set of all projections of R coincides with the
set of all idempotents of R. In addition, we present some characterisations related to
∗-regular rings.

All rings considered in this paper are associative with unity. For a ring R, the set of
all idempotents, all projections and all units of R are denoted by Id(R), P(R) and U(R),
respectively. The symbol l(X) (respectively, r(X)) stands for the left (respectively,
right) annihilator of a subset X ⊆ R. We write Mn(R) for the ring of all n × n matrices
over R.

2. Main results

We begin with the following result.

T 2.1. Let R be a ∗-ring and p ∈ P(R). Then a ∈ pRp is strongly ∗-clean in R if
and only if a is strongly ∗-clean in pRp.

P. Assume that a is strongly ∗-clean in pRp. Then there exist e ∈ P(pRp) and
u ∈ U(pRp) such that a = e + u and ue = eu. Let f = e + (1 − p) and v = u − (1 − p).
Then a = f + v and f v = v f , where f ∈ P(R) and v ∈ U(R). So a is strongly ∗-clean
in R.

Conversely, suppose that a ∈ pRp is strongly ∗-clean in R. Let a = e + u with
e ∈ P(R), u ∈ U(R) and ue = eu. Since a = pap, 1 − p ∈ r(a) ∩ l(a). By [5, Theorem 2],
r(a) ⊆ eR and l(a) ⊆ Re. So 1 − p ∈ eR ∩ Re = eRe, and then (1 − p)e = e(1 − p),
whence ep = pe. Note that both e and p are projections. Then pep ∈ P(pRp). Since
ap = pa and u = a − e, we obtain up = pu. It follows that pup ∈ U(pRp), and pep
commutes with pup. Therefore, a = pep + pup is strongly ∗-clean in pRp. �
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C 2.2. If R is a strongly ∗-clean ring, then pRp is strongly ∗-clean for any
p ∈ P(R).

The following result is crucial for constructing a counterexample of a ∗-ring that is
strongly clean but not strongly ∗-clean.

T 2.3. Let R be a ∗-ring. Then R is strongly ∗-clean if and only if R is strongly
clean and P(R) = Id(R).

P. Suppose that R is strongly ∗-clean. We only need to show that Id(R) ⊆ P(R).
For any e2 = e ∈ R, we have e = p + u where p ∈ P(R), u ∈ U(R) and e, p and u
commute with each other. If p = 0 then e = 1, and if p = 1 then e = 0. So we may
assume that p , 0 and p , 1. Then pRp and (1 − p)R(1 − p) are nonzero ∗-rings.
Now, multiplying e = p + u by p yields ep = p + up. It follows that −up = p − ep =

(1 − e)p ∈ U(pRp) ∩ Id(pRp) = {p}. Thus ep = 0. Analogously, multiplying both
sides of e = p + u by 1 − p gives e(1 − p) = u(1 − p) ∈ U((1 − p)R(1 − p)) ∩
Id((1 − p)R(1 − p)) = (1 − p). So e − ep = 1 − p. Since ep = 0, e = 1 − p ∈ P(R). This
proves that Id(R) = P(R). The other direction is trivial. �

According to [6], if R is a ∗-ring, Mn(R) has a natural involution inherited from R:
if A = (ai j) ∈ Mn(R), A∗ is the transpose of (a∗i j). Henceforth we consider Mn(R) as a
∗-ring with respect to this natural involution. Vaš [6, Proposition 4] showed that Mn(R)
is a ∗-clean ring whenever R is ∗-clean. Since, for n ≥ 2, Mn(R) has idempotents that
are not projections, Theorem 2.3 implies the following result.

C 2.4. Let R be a ∗-ring. Then Mn(R) is not strongly ∗-clean for any n ≥ 2.

Note that a local ring R with any involution ∗ is strongly ∗-clean. So, Mn(R) is
∗-clean, but it is not strongly ∗-clean if n ≥ 2. Vaš [6] asked whether there is a ∗-ring
that is clean but not ∗-clean. We answer this question affirmatively by the following
example.

E 2.5. Let R = Z2 ⊕ Z2, where Z2 is the ring of integers Z modulo 2. Then R
is strongly clean and R = Id(R). Define a map ∗ : R→ R by (a, b)∗ = (b, a). Then ∗ is
an involution of R. Note that P(R) = {(0, 0), (1, 1)} , Id(R). By Theorem 2.3, R is not
strongly ∗-clean, and thus not ∗-clean because R is commutative.

R 2.6. Example 2.5 shows that strongly clean ∗-rings need not be ∗-clean. The
following implications hold:

strongly ∗-clean ring

��

+3 ∗-clean ring

��
strongly clean ring +3 clean ring

In this diagram, each of the implications is irreversible, and there are no other
implications between these rings.
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Recall that a ring R is right P-injective if lr(a) = Ra for each a ∈ R. Regular rings
are clearly right P-injective.

P 2.7. Let R be a ∗-ring. Then the following are equivalent.

(1) R is regular and the involution is proper (that is, R is ∗-regular).
(2) R is right P-injective and the involution is proper.
(3) For every a ∈ R, Ra = Ra∗a.

P. (1)⇒ (2). This is clear.
(2)⇒ (3). Given a ∈ R, let y ∈ r(a∗a). Then a∗ay = 0. It follows that 0 = y∗a∗ay =

(ay)∗(ay). Since the involution ∗ is proper, ay = 0. Thus y ∈ r(a), which implies
that r(a∗a) = r(a). By the right P-injectivity of R, we obtain Ra = lr(a) = lr(a∗a) =

Ra∗a.
(3)⇒ (1). For any a ∈ R, there exists t ∈ R such that a = ta∗a. Then at∗a =

(ta∗a)t∗a = t(a∗at∗)a = t(ta∗a)∗a = ta∗a = a. Thus R is a regular ring. To show that
the involution is proper, we let x∗x = 0 with x ∈ R. Then Rx = Rx∗x = 0, so x = 0,
as desired. �

A ring R is strongly regular if it is an abelian regular ring, or equivalently, for any
a ∈ R, a = eu = ue for some e ∈ Id(R) and u ∈ U(R) (see [5]). It is well known that
strongly regular rings are unit regular, and unit regular rings are regular.

P 2.8. Let R be a ∗-ring. Then the following are equivalent.

(1) R is strongly regular and the involution is proper.
(2) R is strongly regular and P(R) = Id(R).
(3) R is ∗-abelian and, for every a ∈ R, there exist p ∈ P(R) and u ∈ U(R) such that

a = p + u and aR ∩ pR = 0.
(4) For every a ∈ R, a = pu = up for some p ∈ P(R) and u ∈ U(R).

P. (1)⇒ (2). In view of Proposition 2.7, R is ∗-regular. By [6, Lemma 3],
P(R) = Id(R) since R is abelian.

(2)⇒ (3). Note that every abelian ∗-ring is ∗-abelian. So the rest follows from
[2, Theorem 1].

(3)⇒ (4). Let a ∈ R. Then there exist 1 − p ∈ P(R) and u ∈ U(R) such that a =

(1 − p) + u and aR ∩ (1 − p)R = 0. Since R is ∗-abelian, a(1 − p) ∈ aR ∩ R(1 − p) =

aR ∩ (1 − p)R = 0. Then a = ap. Note that a = (1 − p) + u. Hence, a = pu = up.
(4)⇒ (1). It suffices to show that the involution is proper. Let x ∈ R with x∗x = 0.

Then x = pu = up for some p ∈ P(R) and u ∈ U(R). So we have 0 = x∗x = (pu)∗pu =

u∗pu. Notice that U(R)∗ = U(R). Thus p = 0, and so x = 0. This proves that the
involution ∗ of R is proper. �

A ring R is said to have stable range 1 provided that whenever aR + bR = R
for any a, b ∈ R, there exists t ∈ R such that a + bt ∈ U(R). Next we give some
characterisations of unit regular and ∗-regular rings.
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T 2.9. Let R be a ∗-ring. Then the following are equivalent.

(1) R is unit regular and the involution is proper.
(2) R is unit regular and ∗-regular.
(3) For every a ∈ R, a = pu where p ∈ P(R) and u ∈ U(R).
(4) For every a ∈ R, a = vq where q ∈ P(R) and v ∈ U(R).

P. (1)⇒ (2). This follows by Proposition 2.7.
(2)⇒ (3). For any a ∈ R, there exist e ∈ Id(R) and w ∈ U(R) such that a = ew. Since

R is ∗-regular, eR = pR for some projection p ∈ R. Thus e = pe and eR + (1 − p)R = R.
Since R is unit regular, by [3, Proposition 4.12], R has stable range 1. So there exists
t ∈ R satisfying e + (1 − p)t ∈ U(R). Let v = e + (1 − p)t. Then pe = pv. It follows that
e = pe = pv, and a = ew = p(vw). Write u = vw. Then a = pu and u ∈ U(R).

(3)⇒ (4). Given a ∈ R, let b = a∗. By hypothesis, b = pu with p ∈ P(R) and u ∈
U(R). Then a = b∗ = u∗p. Write v = u∗ and q = p. Then v ∈ U(R), q ∈ P(R) and a = vq.

(4)⇒ (1). The ring R is clearly unit regular, so we only need to show that the
involution is proper. Let a ∈ R with a∗a = 0. By (4), a∗ = vq for some v ∈ U(R)
and q ∈ P(R). Thus 0 = a∗a = (vq)(qv∗) = vqv∗. So q = 0, which implies that a = 0, as
required. �

D 2.10. A ∗-ring R is called ∗-unit regular if R satisfies the conditions in
Theorem 2.9.

P 2.11. Let R be a ∗-ring and n a positive integer. The following are
equivalent.

(1) Mn(R) is ∗-unit regular.
(2) R is unit regular and a∗1a1 + a∗2a2 + · · · + a∗nan = 0 implies ai = 0 for all i.

P. (1)⇒ (2). Since Mn(R) is ∗-unit regular, it is unit regular. By [3, Corollary 4.7],
R is unit regular. Suppose that a∗1a1 + a∗2a2 + · · · + a∗nan = 0 for some ai ∈ R. Let

A =


a1 0 · · · 0
a2 0 · · · 0
...

...
. . .

...
an 0 · · · 0

 ∈ Mn(R).

Then A∗A = 0. Since the involution ∗ of Mn(R) is proper, A = 0. Thus, a1 = a2 = · · · =

an = 0.
(2)⇒ (1). By [3, Corollary 4.7], Mn(R) is unit regular since R is a unit regular ring.

Next we show that the involution ∗ of Mn(R) is proper. Let A = (ai j) ∈ Mn(R) with
A∗A = 0. Then

a∗1 ja1 j + a∗2 ja2 j + · · · + a∗n jan j = 0

where j = 1, . . . , n. By hypothesis, ai j = 0 for all i, j. Thus A = 0, and the proof is
complete. �
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Proposition 2.11 yields the following examples.

E 2.12. Clearly, the number fields R and C are unit regular rings.

(1) Let ∗ = 1R be the identity map of R. Then Mn(R) is ∗-unit regular.
(2) Define an involution ∗ of C by x 7→ x̄, where x̄ is the conjugation of x. By a direct

computation, Mn(C) is ∗-unit regular.
(3) Let R = R × R be a ring with the usual addition and multiplication. Let ∗ = 1R.

Then R is unit regular and Mn(R) is ∗-unit regular.
(4) Let ∗ : x 7→ x be an involution of Z2. By Proposition 2.11, M2(Z2) is not ∗-unit

regular because 1∗ · 1 + 1∗ · 1 = 0 but 1 , 0.

In [5], Nicholson asked whether a unit regular ring is strongly clean; this is still
an open problem. Vaš [6] raised the question of their ∗-versions. We give a negative
answer.

E 2.13. Let R be a ∗-ring as given in Example 2.12(1), (2) or (3). Then M2(R)
is ∗-unit regular. But M2(R) is not strongly ∗-clean by Corollary 2.4.

According to Example 2.12(4), one may see that the matrix ring of a ∗-unit regular
ring need not be ∗-unit regular. However, we have the following result for the corner
rings.

P 2.14. If R is a ∗-unit regular ring, then pRp is ∗-unit regular for every
p ∈ P(R).

P. Let p ∈ P(R) and S = pRp. In view of [3, Corollary 4.7], S is unit regular since
R is unit regular. Let a ∈ S (⊆R) with a∗a = 0. Since R is ∗-unit regular, we get a = 0.
So the involution of S is proper. By Theorem 2.9, S = pRp is ∗-unit regular. �
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