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The known methods of "summing" divergent series, e.g. the
means of Cesaro, Riesz, Borel, Lindelof, Mittag-Leffler are particular
cases of the transformation of a sequence (formed from the partial
sums) by a T-matrix. An equivalent method is that of the trans-
formation of the series by a y-matrix, the fundamental properties of
which have been proved by Carmichael, Perron and Bosanquet.x

The employment of y-matrices has several advantages, namely:
(a) y-matrices are defined by two conditions,1 whereas T-matrices

are defined by three;2

(b) y-matrices are applied to the terms of the series, while the
application of T-matrices requires the formation of the partial sums;

(c) y-matrices, as proved by Dienes, are more general, since to
every ^-matrix corresponds an equivalent y-matrix, while there are
•y-matrices having no equivalent T-matrix.3

A disadvantage of y-matrices is that the matrix product of two
y-matrices may not exist, or may not be a y-matrix.4

The paper presented here outlines a possible pseudo-algebra of
y-matrices by introducing the A-mean and the term-product. Further
topics treated are: operations on y-matrices yielding another y-matrix;
applications to the binomial series ; the connection between semi-
regularity and " r i gh t " value ; the increase of the effective range by
contracting the series; y-matrices efficient at isolated points.

1. Definition and formal properties of y-matrices.

An infinite matrix G=(gn, k) is a y-matrix if it satisfies the follow-
ing two conditions.1

00

M for every n ^ 1,

for every fixed h.
1 P . Dienes, The Taylor Series (Oxford, 1931), 396-397. This book will be referred

to as T.S.
2 T.S. 389. 3 T.S. 399.
•* P. Vermes, "Product of a T-matrix and a 7-matrix." Journal London Math.

Soc. 21 (1946), 129-134 (129).
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2 P. VERMES

0

[1.1] The elements of a y-matrix are bounded.
For by (1.1) and (1.2)

(1.3) gn,k | ^ | gnik-gn,x | + I gn,i i ^ | gn,i \ + M ^ K.

[ l . I I ] If G^ are y-matrices (i = 0, 1, 2,..p) and 1=1, A; 4= °> then

the matrix H = j- Z A; Gw is a y-matrix.

Proof: By hypothesis S gn
ii

k~9,l% + 1 ^ -^i 5 hence

00 1 p I °° • 1 2 , • |

4 = 1 ' ' ' \ I \ ( = 0 ' 4 = 1 ' "' ' I I i = «

Thus fl' satisfies (1.1) and obviously also (1.2).

(1.4) Definition. We shall call the matrix H the X-mean of the
matrices GHK

[l.III] The X-mean of an infinity of y-matrices is a y-matrix provided
that

(a) | 9^1). I ;§= K for every i, n, and k\
CO

2 ! gjj>k — g^\.+1 I ̂  -M /oy every i and n;

oo . . °°
(A) S ^i = L exists and is finite, and S Xt =1 =b0.

Proof:
# exists since

Also

| I | 2 | An.t - hn.k+1 | ^ I | A,- | £ | gwk -gftM | ^LM foreveryn.
t=l i=0 4=0

Again the series S A, g<j't converge uniformly for every n by (a) and
i = 0

(b); hence for every k

lim hn,k = * lim S A^w, = i S A, lim ^;>, = 1 .
n—»» I n—>oo 1=0 * i = 0 n-^oo

(1.5) Definition. T h e m a t r i x C = (cn ,k) = (ank bn>k) is t h e term-product

of 4 = (aB)i) and 5=(6n,A.).

[l.IV] The term product of y-matrices is a y-matrix.
The proof follows from the identity
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ON y-MA TRICES AND THEIR APPLICATION TO THE BINOMIAL SERIES 3

whence by (1.1) and (1.3)

Also cn k -=• 1 as n -> <x> b y (1.2) .

[l.V] / / A is a y-matriz, the matrix (l/a,lik) is a y-matrix if and

only if\an,k ^ L > 0.
The sufficiency of the condition follows from:

_ lim — =1 .

The necessity follows from (1.3) for the matrix (I/a,,,*).1

NOTE: It appears from section 1 that a pseudo-algebra of
•y-matrices could be formulated in which A-mean and term-product
would represent sum and product, and the y-matrix un k=\ for every

n and k would replace the unit matrix.

2. Definitions of y-sums, consistency, regularity, semi-regularity.

Definition. The generalized sum of the series 2c4 by the matrix G

is
CO

5 = 1 ^ 2 gn,k ck

provided that the infinite series on the right-hand side is convergent
for every n and the limit of its sum, as n->co , exists.

G sums every convergent series to its correct sum if and only if
(2.1) G is a y-matrix.2

We say that B is consistent with A if3

CO 00

(2.2) lim 2 anikckZ^ lim 2 bnkck

where the symbol (1^) indicates that the existence of the left-hand
side implies that of the right-hand side and the equality of the two

limits.
If the existence of either side implies that of the other and the

equality of the limits, we write

(2.3) lim 2 ank ck ;2 lim 2 bnk ck,

and A and B are said to be mutually consistent.
The matrix G is regular 4 if

to to

(2.4) lim 2 gn_ k ck ^ t lim 2 gn, k+1 ck.
n—>=o 4 = 1 n—>°o 4 = 1

G is semi-regularh if
1 This remark is due to Mr H. Kestelman.
2 T.S. 393. 396-397. 3 T.S. 411-412. * T.S. 418. 5 J'.S. 420.
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4 P. VERMES

00 CO

(2.5) Hm S gn,kckZ$ Mm £ ?„,*+, et.
n—>*> A"=l n—>•» k — 1

A matrix may not be regular or semi-regular in general as defined
above, but may be regular or semi-regular with respect to a particular
class of series.1

3. Operations on y-matrices.
The suppression of a finite number of columns, or the addition of

certain columns, yields another y-matrix. These changes may affect
the existence and value of the y-sums.

(3.1) Definition. Removing the first p columns of a matrix A, we
obtain the matrix A ip) =(an,k+p). I t will be called the p-th diminutive
of A.
[3.1] The diminutive of a y-matrix 0 is a y-matrix. If G is regular or
semi-regular, so is G(v).

Obviously (1.1) and (1.2) are satisfied by G(/l). Regularity or
semi-regularity follows from the identity

2 gn,k+r> ck ~ ^ 9»,t ck-v
/fc = l k=l+p

and from (2.4) or (2.5).
(3.2) Definition. Adding p new columns a,hi (t = 0,—1, —2,. . . .) to the
matrix A on the left, we obtain the matrix A+r>=(an k_p). I t will be
called the p-th extension of A.
(3.3) If in addition in the new columns aH,,—>1 as ?i->c© , we call A+J>

a proper extension of A.

[3.II] The proper extension of a y-matrix G is a y-matrix. If G is
regular or semi-regular, so is G+p.

The matrix G+p satisfies (1.1) and (1.2) since the elements in the
new columns are bounded if they satisfy (3.3).

If G is regular, we have from (2.4) and (3.3) for the series

2 gnk ck •£ lim 2 gn,k+xck
n—^oo A- = 0 n—>°° /l=0

Hence G+1 is regular.
By repeating the argument, we prove that G+p is regular. The

case when G is semi-regular can be proved similarly.

(3.4) Definition. The matrix Avx, obtained from the matrix A by
repeating each column p times, will be called ap-fold stretched matrix.

1 See for example [3.IV] of this paper.
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ON y-MATRICES AND THEIR APPLICATION TO THE BINOMIAL SERIES 5

[3.Ill] A stretched y-matrix is a y-matrix. Stretching may destroy
regularity or semi-regularity.

If A satisfies (1.1) and (1.2), ApK obviously does. As an example
of regularity being destroyed, we consider Borel's y-matrix *

(3.5) gn,t = TT)e>raf=i-e { ! + „ + - + . . . + ^ ) {k, n^

which sums the series 1 — 1 + 1 — to the value .
2

Here applying the matrix (?2X we obtain
an = 2?nX* ( —!)* =9n.O — 9n.O + 9n,l —9n,\ + • • • = °>

k

and
a n = ^ S'n, A- +1 ( — 1 )* = ?», 0 ~ 9n, 1 + S'n, 1 — 9n, 2 + • • • = 9n, 0-

Thus un->0, o^-»l, showing tha t (? 2 x is not semi-regular, while G is
semi-regular.2 The example also shows that G2X is not consistent
with G.

A related problem of contracting the series will be discussed later
in [5. VI].

[3.IV] The X-mean H, formed from a y-matrix G, its first p proper
extensions and its first q diminutives is a y-matrix. If G is regular
(semi-regular), so is H with respect to the class of series Scfc satisfying

(3.6) gn,k
ck-i-*Q a8 k-¥<x> for i = — p , — p - \ - 1 , . . .0, 1, 2 , . . . q.

Proof. I t follows from [l.II] that H is a y-matrix.
Also since (3.6) holds we can rewrite the sum

(6.i) Zi nn k ck= 2,

where c0, c_j, c_2 , . . . are a finite number of zero terms. Thus if H sums
the series S ck, and G is regular or semi-regular, (3.7) establishes the
same property for H.

NOTE: Condition (3.6) is satisfied in particular when
(3.8) G is row-finite,
(3.9) G is regular and sums the series S ck.

4. The y-sum of the series 2 ck.
In this section we give a few results concerning generalized sums

by X-means; and a theorem on inefficiency.

[4.1] / / the matrices Gw (i = 1, 2 p) sum the series Scfc to s(i)

1 T.S. 401. - T.S. 419-420.
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6 P. VERMES

respectively, then their X-mean H sums the series to the X-mean of the s(l).
This follows from

i l l\i X, g<»k) ck.

[4.II] The X-mean formed from a semi-regular y-matrix G, and a finite
number of its diminutives, is consistent with G.

[4.Ill] The X-mean formed from a regular y-matrix G, and a finite
number of its diminutives and proper extensions, is consistent tvith G.

Both results follow from [4.1] since s u) = s for every i.

NOTE: In the last two theorems H was proved to be consistent
with G. But G need not be consistent with H. An example will be
given in (5.13).

[4.IV] A semi-regular y-matrix is inefficient for the series Scfc if ck tends
to a finite non-zero limit as & —> oo .

Proof: We assume that G sums the series, and we have, since
G is semi-regular,

00 00

(4.0) lim S j . , ^ 4 lim 2 gn,k+1ck = s,

or rewriting the right-hand side
00

(4-1) ]im S gn<kck_x = s.
n—>oo k = 2

Subtraction of (4.1) from (4 0) gives
00

(4.2) Hm fgnac1 + 2 g k (ck - cfc_i)l =0 .
00

But by hypothesis Cj + 2 (ck — cfc_,) = lim ck = Z=j=O, and hence
7c = 2 k—>oo

by (2.1) its generalized sum by the y-matrix G exists and is different
from zero. This is contradicted by (4.2), showing that the original
assumption, that G is efficient, is not true.

5. The y-sum of the binomial series.
Dienes proved x that if the regular y-matrix G sums the series Ez*,

then this sum is the ." right " value (1 — z)~x. We apply his method
to the binomial series

<5.1) ?, (P , ~ \ zk (p any real number),
k=o\ K )

which is the Taylor expansion about the origin of the function
(5.2) /(z) = ( l - * ) - » .

1 T.S. 418.

https://doi.org/10.1017/S0013091500027632 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500027632


ON y-MATRICES AND THEIR APPLICATION TO THE BINOMIAL SERIES 7

We denote by Sp (z) the y sum of the series (5.1) by the semi-
regular G, i.e.

(5.3) Sp (z) = lim S gn,k [
P + \ ~ l \ * (p real).

n->» i=0 \ K /

[5.1] / / Sp (z) exists for z = z0, then #,,_! (z0) exists and

Sp-l(Zo) = (1—20) <Sj,(20).

Proof: The theorem is trivial for p == 0, — 1, — 2, when the
series is finite. Assuming p=$= 0, — 1, — 2, . . . . , by hypothesis (5.3)
holds for z0, and since 0 is semi-regular, (5.3) implies

lim £ gn,k+

which multiplied by z0 can be rewritten as

(5 4) lim S ^ .

Thus substituting z0 into (5.3) and subtracting (5.4) we obtain

(5.5) if 3»4= 1, lim £ gn<k (
P + \ " 2 ) z* = {l-zo)8p (z0),

(5.6) iip = \, \ = (l-zo)8l.

Thus the theorem is proved for every real p.

[5.II] / / SP (z) exists for z = z0 and p is a positive integer, then
Sp(z0) = (1 — ZO)-P, the " right " value.

The proof follows from [5.1] by induction.

NOTE: Dienes' theorem is a special case of this theorem for p= I,
and has now been proved on the weaker supposition that G is semi-
regular.

[5.Ill] If the y-matrix G sums the series S?„'•' to its "right" value
(1—2^-1, then G is regular with respect to this series.

Proof: By hypothesis
CO J

(5.7) lim 2 gn<kzo= i •

Hence

n—>co / = 1 * z o 1—zo

since gHii,->l, so that

(5.8) lim S gni.+lZ^J—m
n—><» * = 0 l z 0

Thus (5.7) implies (5.8), and reversing the order of argument we see
that (5.8) implies (5.7). This proves the theorem.
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8 P. VERMES

[5.IV] / / the y-malrix G sums the series S (* , j zo
k

2 ( p ^ \ zo
k: (p real) to their "right" values (1 — zQ) ~p and

(1 — zo)~
p+l respectively, then G is semi-regular with respect to the

first series.
Proof: By hypothesis

00

(5.9) lim E g k

lim 2 gn ,.
n_>oo k- =0

Subtraction gives

L-Zo)*
1

Dividing by z0 and rewriting, we obtain

(5.10) lim £ , - i t + 1 (* + * - ! W

Thus (5.9) implies (5.10), which proves the theorem.

£ j 2* <o <S (z) in a

domain D, then the matrix1

where zQ =j= 1 i s i n Z) , sums the series S I . j z0
4' <o <Ae s w m /S(z0) / ( I — z 0 )

for all real values of p except p = 0. / n particular if G is semi-regular
and p a positive integer, the H-sum is the " right " value (1 — z0) "~r ~p.

Proof: The theorem is trivial if p is a negative integer.
Otherwise we have by hypothesis

<5.10)o lim S gn,k(P
+ f " A

and we can rewrite the right-hand side in the form

(5.11) lim S (Pt )(gn.t-zo9n,t+i)zot = 8{z,)

( 5.12) provided that grn t (^ ̂  j ZQ-»O as A->oo for every fixed n.

denotes the first diminutive of G, defined in (3.1).
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ON y-MATRICES AND THEIR APPLICATION TO THE BINOMIAL SERIES 9

By hypothesis the power series (5.lO)a converges for every fixed n
and z in D, and hence it can be differentiated so that

/p + k - l>
k as

i.e., ~ -

showing that (5.12) holds. We have therefore from (5.11), dividing
it by (1 — z0), the first part of the theorem.

The second part then follows from [5.II].
Corollary 1. By repeated application of the theorem we have
The matrix

r

sums the series S (p + k 7 l + r) zo
k to S (z0) / (1 — z0)r, with the re-

•striction that if p is a negative integer, p + r ^ 0. If G is semi-regular
and p a positive integer, the H-sum is the " right" value (1 — z0) ~

v ~r.

Corollary 2. If 0 is row-finite, the restrictions p^-0, and that G sums
the series in a domain, can be omitted, since (5.12) is always satisfied.
The theorem then holds for every real p, even if z0 is an isolated point of
•G-summability. (See section 6.)

{5.13) Example. The lower-semi-y-matrix of arithmetic means1

{5.14) ank = (n — k + 1) / {n + 1) for k g, n, an k=0 for k>n, n, k ^ 0,
sums the series S z ' at z= — 1 to the " r i g h t " value i. I t is
inefficient for the series £ (k + 1)2* at the same point. But the
matrix H given by hn< k = \ (a,h k + an_ k + x) sums the second series to its
" r ight" value £ and the first series to £. Here H is consistent with
A, but not A with H.

Contraction of the binomial series. This method is closely related to
the stretching of the matrix (3.4), though not equivalent. Given the
series c0 + cx + c2 + . . . . , and writing

(t + l)r - 1
(5.15) dk= S c; (r = 2 ,3 , 4 ),

we call the series d0 -f- d7 + d2 + •. • • the r-fold contracted series,
and the r subseries c0+ t + cr + i + c 2 r + i + . . . . (i = 0, 1, 2,. .»• — 1)
<Ae subseries of r-fold contraction.

1 T.& 399. Theorem VI was used to construct the y-matrix.
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10 P. VBRMES

[5. VI] The semi-regular y-matrix G sums all the subseries of the r-fold

contracted series 2 (J* , ) z k (p a positive integer) for all values of

z for which G sums the series Swt, where uk=(P , \zrk. The
\ ic j

sum obtained by contraction is the " right " value (1 — z)'p.
We give the proof for r = 3. The general case can be proved

similarly.
The identity

(1 + X + X2)p (1 — X3) ~P = (1 —X) ~p

can be expanded for | x \ < 1 in the form

where C^ = 0 for i > 2p. Equating coefficients we have

V /fY\ 1 . /y _ _ 1 _ _ a \ /(v\ I Q*"/ _ _ 1 I ny> \ n~\ ^ > I ft ^ ^ ()

[ ' ito 3i+m \ q — i / V 3q + m ) , m=0, 1, 2.

By hypothesis £ sums the series Hut; by [5.II] the (?-sum is the-
" right " value, i.e.

lim S
n—>oo 4 = 0

and since G is semi-regular

l i m £ f/ • / ^ ~T-"^ ^ \ g 3̂  ^ / j ^ 3 ) ~ ^ (i = 0 1 2 . . . . )

which multiplied by z 3i can be rewritten

(5.17) lim 2 r/t

Multiplying the series for the different values of i in turn by C3i+mzm

(w = 0, ] , or 2), and adding them, we obtain by the identity (5.16),.
for m = 0 , 1, 2,

(5.18) lim S ^

= (Gm zm + Cm+3 Z-+3 + Cm+i zm+B + . . . ) (1 - z

which proves the first statement.
Adding the three equations (m = 0, 1, 2) of (5.18) we have

where Sdt is the threefold contracted series.
This concludes the proof.

https://doi.org/10.1017/S0013091500027632 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500027632


O N y-MATRICES AND THEIR APPLICATION TO THE BINOMIAL SERIES 11

•(5.19) Example. We consider Borel's exponential summation by
the y-matrix (3.5). Write z = peie, (p^O). The series S%. is
summable (B) if the real part of zr is less than 1, i.e. if

(5.?0) P
rcosr8<l ( r = l , 2, 3 ).

For r = 1, i.e. for the original series, the domain of summability is the
half-plane B (z) < 1. For r = 2 the domain lies between the two
branches of the hyperbola x2 — y2 = 1.

Thus the domain of (B) summability for the binomial series
varies with the contraction. Given any particular value of z in the
star-domain, (i.e. excluding z = 1 and all points of the real axis to
the right of z = 1), we can find a suitable contraction for which the
series is summable (B). For (5.20) is satisfied if cos rd^O, i.e. for
r = 2« if 77/2 »+1 <; | 0 | <S 7r/2», which for q = 0, 1, 2 , . . . . covers
all the points in question.

•6. y-matrices efficient at isolated point*.

R. G. Cooke and P. Dienes 1 constructed T-matrices that sum the
.series £ zk at an isolated point z = z0 outside the circle of convergence.
Similar results are obtained in this section for y-matrices and extended
to the expansion of (1 — z) ~p, using operations developed in this
paper.

We consider the lower semi-y-matrix 0, given by

(6.1) yn,k = 1 for k 5S n, gn< k = 0 for k > n, (k, n = 0, 1, 2 ),

and form from it the y-matrix H(p, z0) as in corollary 1 of theorem

[6.V]:

<6.2) h(p,z0)n,k=(l-z0)-px
3=0

= 0 (n < k).

We shall apply this matrix to the series

<6.3) 4 S ( r + J - 1 ) « k (r = 1 , 2 , . . . . ) •

[6.1] If | z01 > 1, then H (p, z0) is a regular y-matrix. If in addition
1 <* r ^ p, H is efficient for the series (6.3) (summing it to its " right"
value) at z = z0 and at no other point outside the unit circle: if r >p,
H is inefficient everywhere outside the unit circle.

Proof: 0 is obviously regular and so is H by [3.IV] and (3.8).

1 R. G. Cooke and P. Dienes, "On the effective range of generalized limit pro.
•cesses," Proc. London Math. Soc. (2) 45 (1939), 45-63 (53-55).
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12 P. VERMES

G is efficient for the series (6.3) when r = 0 at z = z0, i.e. for the series
1 + O.zo + 0.z0

2 + and thus by theorem [5.V] and both corollaries,
H is efficient for the series (6.3) at z = z0 when r = p. Hence by [5.1]
H is efficient when r<p and by [5.II] the H-sum is the " r i g h t "
value. To prove that z0 is an isolated point of efficiency, we consider
the transform of £z* by the (n + 1)th row of H, for n> p, i.e.

an(z) = 1 +z + z2+ .. .. + zn-P'1 + ( l_z o ) - J> z»-r> S,

where

Hence

1 _ ±—«>\ Z-1- + 1
l - z t \ i - 20y

Thus if | z | 2> 1, CT«(Z) diverges except for z = z0. Hence £T is in-
efficient for the series (6.3) when r = 1, and therefore by [5.1] cannot
be efficient for r > 1, if z=|=z0. Hence z0 is an isolated point of
efficiency.

Again if H is efficient at z0 for r = p + 1, it follows from the
identity (cf. (5.10)a and (5.11))

2 h(p,zo)n,J
k = 0 \ lc

that G is efficient for the series S zo
k, which is obviously not the case

when | z0 \ > 1. This proves the last statement.
We may now consider several distinct points zu zt,.. .zm outside

the circle \z\ = 1. Replacing the matrix G by H(p, zx) we obtain
the matrix H(p, zlt z2) as in corollary 1 of [5.V]. Obviously
H(p, zlt z2) = H(p, z2, 0X). Repeating this operation we finally
obtain the matrix H(p, zlt zz,... zm), which is given by the formula

n-k Imp

(6.4) h (p, Zl, z2, ... zm) k = 2 uJ S Uj,
j=o / i=o

where Uj is defined by the identity

| ( , ) Y x + uiX
2 -^ ... +ump

Thus denoting the matrix briefly by H, we have

hn,k — 1 f ° r ^ = n — mp, hnk = 0 for k > n.
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O N y-JIATBICES AND THEIR APPLICATION TO THE BINOMIAL SERIES 13

[6.II] / / zv z2, ... zm are distinct 'points outside the unit circle*
and ] ^ r ^ p, H (p, zu z2, .., zm) is regular and efficient for the series
(6.3) outside the unit circle at these points only. It is inefficient outside
the unit circle when r > p.

Proof: H (p, zx) is efficient for the series 1 + O..?2 + O.z2
a + . . •

and by [6.1] inefficient for the series (6.3) at z = s2 when r ^ 1.
Hence we can replace G by H (j), z±) for these series and then obtain
our result for m = 2 in the same way as in [6.1]. Replacing then G
by H (p, zx, zt) and applying it to the series (6.3) at z = zz we obtain
the result for m = 3. Continuing in this way, we obtain the result for
the general case.

Examples.

If we take p = 1, m = 2, we have
it0 = 1, M, = —(z1 + z2), t̂2 = 2, z2, u3 = Ui= ... = 0 .

We then obtain the matrix

= (i _ g., _ ^ ) / ( i _ Zl) (i _ ,2) for k = n - 1
= 1 for k < n — 1
= 0 for k > n.

This matrix transforms the series £z4 into

which illustrates the theorem.

If zy, s2l. ..zm are the m distinct values of z0
1/m, we have a simple

expression for hnik. For example if p = i, m = 3, we obtain

hn t = 1 for A; < n — 2
= (1 — zc)'

x for k = n — 2,n— I, n
= 0 for & > n.

This transforms the series 23s* into

" x ' 1 - *

which is divergent for | z \ > 1 except for z3 = z0.
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