On γ -matrices and their application to the binomial series.

By P. VERMES.

(Received 26th November 1945. Read 8th December 1945. Revised manuscript received 13th June 1946.)

The known methods of "summing" divergent series, e.g. the means of Cesàro, Riesz, Borel, Lindelöf, Mittag-Leffler are particular cases of the transformation of a sequence (formed from the partial sums) by a *T*-matrix. An equivalent method is that of the transformation of the series by a γ -matrix, the fundamental properties of which have been proved by Carmichael, Perron and Bosanquet.¹ The employment of γ -matrices has several advantages, namely:

(a) γ -matrices are defined by two conditions,¹ whereas T-matrices are defined by three;²

(b) γ -matrices are applied to the terms of the series, while the application of *T*-matrices requires the formation of the partial sums;

(c) γ -matrices, as proved by Dienes, are more general, since to every *T*-matrix corresponds an equivalent γ -matrix, while there are γ -matrices having no equivalent *T*-matrix.³

A disadvantage of γ -matrices is that the matrix product of two γ -matrices may not exist, or may not be a γ -matrix.⁴

The paper presented here outlines a possible pseudo-algebra of γ -matrices by introducing the λ -mean and the term-product. Further topics treated are: operations on γ -matrices yielding another γ -matrix; applications to the binomial series; the connection between semi-regularity and "right" value; the increase of the effective range by contracting the series; γ -matrices efficient at isolated points.

1. Definition and formal properties of y-matrices.

An infinite matrix $G \equiv (g_{n,k})$ is a γ -matrix if it satisfies the following two conditions.¹

(1.1)
$$\sum_{k=1}^{\infty} \left| g_{n,k} - g_{n,k+1} \right| \leq M \quad \text{for every } n \geq 1,$$

(1.2)
$$g_{n,k} \to 1 \text{ as } n \to \infty$$
 for every fixed k.

¹ P. Dienes, The Taylor Series (Oxford, 1931), 396-397. This book will be referred to as T.S.

² T.S. 389. ³ T.S. 399.

⁴ P. Vermes, "Product of a T-matrix and a γ-matrix." Journal London Math. Soc. 21 (1946), 129-134 (129).

- [1.1] The elements of a γ -matrix are bounded. For by (1.1) and (1.2)
- $(1.3) g_{n,k} | \leq |g_{n,k} g_{n,1}| + |g_{n,1}| \leq |g_{n,1}| + M \leq K.$
- [1.II] If $G^{(i)}$ are γ -matrices (i=0, 1, 2, ..., p) and $l = \sum_{i=0}^{p} \lambda_i \neq 0$, then

the matrix $H \equiv \frac{1}{l} \sum_{i=0}^{p} \lambda_i G^{(i)}$ is a γ -matrix.

Proof: By hypothesis $\sum_{k=1}^{\infty} \left| g_{n,k}^{(i)} - g_{n,k+1}^{(i)} \right| \leq M_i$; hence

$$\sum_{k=1}^{\infty} |h_{n,k} - h_{n,k+1}| \leq \frac{1}{|l|} \sum_{i=0}^{p} |\lambda_i| \sum_{k=1}^{\infty} |g_{n,k}^{(i)} - g_{n,k+1}^{(i)}| \leq \frac{1}{|l|} \sum_{i=0}^{p} |\lambda_i| M_i.$$

Thus H satisfies (1.1) and obviously also (1.2).

(1.4) Definition. We shall call the matrix H the λ -mean of the matrices $G^{(i)}$.

[1.III] The λ -mean of an infinity of γ -matrices is a γ -matrix provided that

(a)
$$|g_{n,k}^{(i)}| \leq K$$
 for every *i*, *n*, and *k*;

$$\sum_{k=1}^{\infty} |g_{n,k}^{(i)} - g_{n,k+1}^{(i)}| \leq M$$
 for every *i* and *n*;
(b) $\sum_{i=0}^{\infty} |\lambda_i| = L$ exists and is finite, and $\sum_{i=0}^{\infty} \lambda_i = l \neq 0$

Proof:

H exists since

$$|l| . |h_{n,k}| \leq \sum_{i=0}^{\infty} |\lambda_i| . |g_{n,k}^{(i)}| \leq K L.$$

 $|l| \sum_{k=1}^{\infty} |h_{n,k} - h_{n,k+1}| \leq \sum_{i=0}^{\infty} |\lambda_i| \sum_{k=0}^{\infty} |g_{n,k}^{(i)} - g_{n,k+1}^{(i)}| \leq L M \text{ for every } n.$

Again the series $\sum_{i=0}^{\infty} \lambda_i g_{n,k}^{(i)}$ converge uniformly for every n by (a) and (b); hence for every k

$$\lim_{n\to\infty} h_{n,k} = \frac{1}{l} \lim_{n\to\infty} \sum_{i=0}^{\infty} \lambda_i g_{n,k}^{(i)} = \frac{1}{l} \sum_{i=0}^{\infty} \lambda_i \lim_{n\to\infty} g_{n,k}^{(i)} = 1.$$

(1.5) Definition. The matrix $C \equiv (c_{n,k}) = (a_{n,k} \ b_{n,k})$ is the term-product of $A \equiv (a_{n,k})$ and $B \equiv (b_{n,k})$.

[1.IV] The term product of γ -matrices is a γ -matrix. The proof follows from the identity

 $c_{n,k}-c_{n,k+1}=a_{n,k}(b_{n,k}-b_{n,k+1})+b_{n,k+1}(a_{n,k}-a_{n,k+1}),$

whence by (1.1) and (1.3)

$$\sum_{k=1}^{\infty} |c_{n,k} - c_{n,k+1}| \leq K_1 M_2 + K_2 M_1.$$

Also $c_{n,k} \to 1$ as $n \to \infty$ by (1.2).

[1.V] If A is a γ -matrix, the matrix $(1/a_{n,k})$ is a γ -matrix if and only if $|a_{n,k}| \geq L > 0$.

The sufficiency of the condition follows from:

$$\sum_{k=1}^{\infty} \left| \frac{1}{a_{n,k}} - \frac{1}{a_{n,k+1}} \right| = \sum_{k=1}^{\infty} \left| \frac{a_{n,k} - a_{n,k+1}}{a_{n,k}} \right| \leq \frac{M}{L^2} \text{ and } \lim_{n \to \infty} \frac{1}{a_{n,k}} = 1.$$

The necessity follows from (1.3) for the matrix $(1/a_{n,k})$.¹

NOTE: It appears from section 1 that a pseudo-algebra of γ -matrices could be formulated in which λ -mean and term-product would represent sum and product, and the γ -matrix $u_{n,k} = 1$ for every n and k would replace the unit matrix.

2. Definitions of γ -sums, consistency, regularity, semi-regularity.

Definition. The generalized sum of the series $\sum c_k$ by the matrix G is

$$s = \lim_{n \to \infty} \sum_{k=1}^{\infty} g_{n,k} c_k$$

provided that the infinite series on the right-hand side is convergent for every n and the limit of its sum, as $n \rightarrow \infty$, exists.

G sums every convergent series to its correct sum if and only if (2.1) G is a γ -matrix.²

We say that B is consistent with A if³

(2.2)
$$\lim_{n\to\infty}\sum_{k=1}^{\infty}a_{n,k}\ c_k\rightrightarrows\lim_{n\to\infty}\sum_{k=1}^{\infty}b_{n,k}\ c_k$$

where the symbol (\rightrightarrows) indicates that the existence of the left-hand side implies that of the right-hand side and the equality of the two limits.

If the existence of either side implies that of the other and the equality of the limits, we write

(2.3)
$$\lim_{n\to\infty}\sum_{k=1}^{\infty}a_{n,k}\ c_k \rightleftharpoons \lim_{n\to\infty}\sum_{k=1}^{\infty}b_{n,k}\ c_k,$$

and A and B are said to be mutually consistent. The matrix G is regular⁴ if

(2.4)
$$\lim_{n\to\infty}\sum_{k=1}^{\infty}g_{n,k}c_k \gtrsim \lim_{n\to\infty}\sum_{k=1}^{\infty}g_{n,k+1}c_k.$$

G is semi-regular⁵ if

¹ This remark is due to Mr H. Kestelman.

² T.S. 393, 396-397. ³ T.S. 411-412. ⁴ T.S. 418. ⁵ T.S. 420.

P. VERMES

(2.5)
$$\lim_{n\to\infty}\sum_{k=1}^{\infty}g_{n,k} c_k \rightrightarrows \lim_{n\to\infty}\sum_{k=1}^{\infty}g_{n,k+1} c_k.$$

A matrix may not be regular or semi-regular in general as defined above, but may be regular or semi-regular with respect to a particular class of series.¹

3. Operations on γ -matrices.

The suppression of a finite number of columns, or the addition of certain columns, yields another γ -matrix. These changes may affect the existence and value of the γ -sums.

(3.1) Definition. Removing the first p columns of a matrix A, we obtain the matrix $A^{(p)} \equiv (a_{n,k+p})$. It will be called the p-th diminutive of A.

[3.1] The diminutive of a γ -matrix G is a γ -matrix. If G is regular or semi-regular, so is $G^{(p)}$.

Obviously (1.1) and (1.2) are satisfied by $G^{(\nu)}$. Regularity or semi-regularity follows from the identity

$$\sum_{k=1}^{\infty} g_{n,k+p} c_k = \sum_{k=1+p}^{\infty} g_{n,k} c_{k-p}$$

and from (2.4) or (2.5).

(3.2) Definition. Adding p new columns $a_{n,i}$ (i=0,-1,-2,...) to the matrix A on the left, we obtain the matrix $A^{+p} \equiv (a_{n,k-p})$. It will be called the p-th extension of A.

(3.3) If in addition in the new columns $a_{n,i} \rightarrow 1$ as $n \rightarrow \infty$, we call A^{+p} a proper extension of A.

[3.11] The proper extension of a γ -matrix G is a γ -matrix. If G is regular or semi-regular, so is G^{+p} .

The matrix G^{+p} satisfies (1.1) and (1.2) since the elements in the new columns are bounded if they satisfy (3.3).

If G is regular, we have from (2.4) and (3.3) for the series $0+c_1+c_2+\ldots$

$$\lim_{n\to\infty}\sum_{k=0}^{\infty} g_{n,k} c_k \gtrsim \lim_{n\to\infty}\sum_{k=0}^{\infty} g_{n,k+1} c_k$$

Hence G^{+1} is regular.

By repeating the argument, we prove that G^{+p} is regular. The case when G is semi-regular can be proved similarly.

(3.4) Definition. The matrix $A^{p\times}$, obtained from the matrix A by repeating each column p times, will be called a p-fold stretched matrix.

https://doi.org/10.1017/S0013091500027632 Published online by Cambridge University Press

4

¹ See for example [3.IV] of this paper.

[3.III] A stretched γ -matrix is a γ -matrix. Stretching may destroy regularity or semi-regularity.

If A satisfies (1.1) and (1.2), $A^{p^{\chi}}$ obviously does. As an example of regularity being destroyed, we consider Borel's γ -matrix¹

(3.5)
$$g_{n,k} = \frac{1}{k!} \int_{0}^{n} e^{-tt^{k}} dt = 1 - e^{-n} \left(1 + n + \frac{n^{2}}{2!} + \dots + \frac{n^{k}}{k!} \right) (k, n \ge 0)$$

which sums the series $1-1+1-\ldots$ to the value $\frac{1}{2}$.

Here applying the matrix $G^{2\times}$ we obtain

$$\sigma_n = \sum_k g_{n,k}^{2\chi} (-1)^k = g_{n,0} - g_{n,0} + g_{n,1} - g_{n,1} + \ldots = 0,$$

and

 $\sigma_{n}^{1} = \sum g_{n,k+1}^{2X} (-1)^{k} = g_{n,0} - g_{n,1} + g_{n,1} - g_{n,2} + \ldots = g_{n,0}.$

Thus $\sigma_n \rightarrow 0$, $\sigma_n^1 \rightarrow 1$, showing that G^{2x} is not semi-regular, while G is semi-regular.² The example also shows that G^{2x} is not consistent with G.

A related problem of contracting the series will be discussed later in [5.VI].

[3.IV] The λ -mean H, formed from a γ -matrix G, its first p proper extensions and its first q diminutives is a γ -matrix. If G is regular (semi-regular), so is H with respect to the class of series Σc_k satisfying

(3.6) $g_{n,k} c_{k-i} \rightarrow 0$ as $k \rightarrow \infty$ for $i = -p, -p+1, \ldots 0, 1, 2, \ldots q$. Proof. It follows from [1.11] that H is a γ -matrix.

Also since (3.6) holds we can rewrite the sum

$$(3.7) \quad \sum_{k=1}^{\infty} h_{n,k} \ c_k \equiv \frac{1}{l} \ \sum_{k=1}^{\infty} \left(\sum_{i=-p}^{q} \lambda_i \ g_{n,k+i} \right) c_k \rightleftharpoons \frac{1}{l} \ \sum_{k=1}^{\infty} g_{n,k} \left(\sum_{i=-p}^{q} \lambda_i \ c_{k-i} \right)$$

where $c_0, c_{-1}, c_{-2}, \ldots$ are a finite number of zero terms. Thus if H sums the series $\sum c_k$, and G is regular or semi-regular, (3.7) establishes the same property for H.

NOTE: Condition (3.6) is satisfied in particular when (3.8) G is row-finite,

(3.9) G is regular and sums the series $\sum c_k$.

4. The γ -sum of the series $\sum c_k$.

In this section we give a few results concerning generalized sums by λ -means; and a theorem on inefficiency.

[4.I] If the matrices $G^{(i)}$ (i = 1, 2, ..., p) sum the series $\sum c_k$ to $s^{(i)}$

¹ T.S. 401. ² T.S. 419-420.

respectively, then their λ -mean H sums the series to the λ -mean of the s⁽ⁱ⁾. This follows from

$$\frac{1}{l}\sum_{i=1}^{p}\lambda_{i}s^{(i)} = \frac{1}{l}\sum_{i=1}^{p}\lambda_{i}\lim_{n\to\infty}\sum_{k=1}^{\infty}g_{n,k}^{(i)}c_{k} \rightrightarrows \lim_{n\to\infty}\sum_{k=1}^{\infty}\left(\frac{1}{l}\sum_{i=1}^{p}\lambda_{i}g_{n,k}^{(i)}\right)c_{k}.$$

[4.11] The λ -mean formed from a semi-regular γ -matrix G, and a finite number of its diminutives, is consistent with G.

[4.III] The λ -mean formed from a regular γ -matrix G, and a finite number of its diminutives and proper extensions, is consistent with G.

Both results follow from [4.1] since $s^{(i)} = s$ for every *i*.

NOTE: In the last two theorems H was proved to be consistent with G. But G need not be consistent with H. An example will be given in (5.13).

[4.IV] A semi-regular γ -matrix is inefficient for the series $\sum c_k$ if c_k tends to a finite non-zero limit as $k \to \infty$.

Proof: We assume that G sums the series, and we have, since G is semi-regular,

(4.0)
$$\lim_{n\to\infty}\sum_{k=1}^{\infty}g_{n,k}c_k \rightrightarrows \lim_{n\to\infty}\sum_{k=1}^{\infty}g_{n,k+1}c_k = s,$$

or rewriting the right-hand side

(4.1)
$$\lim_{n\to\infty} \sum_{k=2}^{\infty} g_{n,k} c_{k-1} = s.$$

Subtraction of (4.1) from (4.0) gives

(4.2)
$$\lim_{n\to\infty} \left\{ g_{n,1} c_1 + \sum_{k=2}^{\infty} g_{n,k} (c_k - c_{k-1}) \right\} = 0.$$

But by hypothesis $c_1 + \sum_{k=2}^{\infty} (c_k - c_{k-1}) = \lim_{k \to \infty} c_k = l \neq 0$, and hence by (2.1) its generalized sum by the γ -matrix G exists and is different from zero. This is contradicted by (4.2), showing that the original assumption, that G is efficient, is not true.

5. The γ -sum of the binomial series.

Dienes proved ¹ that if the regular γ -matrix G sums the series Σz^k , then this sum is the "right" value $(1-z)^{-1}$. We apply his method to the binomial series

(5.1)
$$\sum_{k=0}^{\infty} {p+k-1 \choose k} z^k \quad (p \text{ any real number}),$$

which is the Taylor expansion about the origin of the function (5.2) $f(z) \equiv (1-z)^{-p}$.

¹ T.S. 418.

We denote by $S_p(z)$ the γ -sum of the series (5.1) by the semiregular G, i.e.

(5.3)
$$S_p(z) \equiv \lim_{n \to \infty} \sum_{k=0}^{\infty} g_{n,k} {p+k-1 \choose k} z^k \qquad (p \text{ real}).$$

[5.I] If $S_p(z)$ exists for $z = z_0$, then $S_{p-1}(z_0)$ exists and $S_{p-1}(z_0) = (1-z_0) S_p(z_0)$.

Proof: The theorem is trivial for $p = 0, -1, -2, \ldots$, when the series is finite. Assuming $p \neq 0, -1, -2, \ldots$, by hypothesis (5.3) holds for z_0 , and since G is semi-regular, (5.3) implies

$$\lim_{n\to\infty}\sum_{k=0}^{\infty}g_{n,k+1}\binom{p+k-1}{k}z_{0}^{k}=S_{p}(z_{0}),$$

which multiplied by z_0 can be rewritten as

(54)
$$\lim_{n \to \infty} \sum_{k=1}^{\infty} g_{n,k} {p+k-2 \choose k-1} z_0^k = z_0 S_p (z_0).$$

Thus substituting z_0 into (5.3) and subtracting (5.4) we obtain

(5.5) if
$$p \neq 1$$
, $\lim_{n \to \infty} \sum_{k=0}^{\infty} g_{n,k} \begin{pmatrix} p+k-2\\k \end{pmatrix} z_0^k = (1-z_0) S_p(z_0),$
(5.6) if $p = 1$, $1 = (1-z_0) S_1.$

Thus the theorem is proved for every real p.

[5.II] If
$$S_p(z)$$
 exists for $z = z_0$ and p is a positive integer, then
 $S_p(z_0) = (1 - z_0)^{-p}$, the "right" value.

The proof follows from [5.I] by induction.

NOTE: Dienes' theorem is a special case of this theorem for p=1, and has now been proved on the weaker supposition that G is semiregular.

[5.III] If the γ -matrix G sums the series $\sum z_0^k$ to its "right" value $(1-z_0)^{-1}$, then G is regular with respect to this series.

Proof: By hypothesis

(5.7)
$$\lim_{n \to \infty} \sum_{k=0}^{\infty} g_{n,k} z_0^k = \frac{1}{1-z_0}$$

Hence

$$\lim_{k \to \infty} \sum_{k=1}^{\infty} g_{n,k} z_0^k = \frac{1}{1 - z_0} - 1 = \frac{z_0}{1 - z_0}$$

since $g_{n,0} \rightarrow 1$, so that

(5.8)
$$\lim_{n \to \infty} \sum_{k=0}^{\infty} g_{n,k+1} z_0^k = \frac{1}{1-z_0}.$$

Thus (5.7) implies (5.8), and reversing the order of argument we see that (5.8) implies (5.7). This proves the theorem.

P. VERMES

[5.IV] If the γ -matrix G sums the series $\sum \binom{p+k-1}{k} z_0^k$ and $\sum \binom{p+k-2}{k} z_0^k$ (p real) to their "right" values $(1-z_0)^{-p}$ and $(1-z_0)^{-p+1}$ respectively, then G is semi-regular with respect to the first series.

Proof: By hypothesis

(5.9)
$$\lim_{n \to \infty} \sum_{k=0}^{\infty} g_{n,k} \left(\frac{p+k-1}{k} \right) z_0^k = \frac{1}{(1-z_0)^p} \\ \lim_{n \to \infty} \sum_{k=0}^{\infty} g_{n,k} \left(\frac{p+k-2}{k} \right) z_0^k = \frac{1}{(1-z_0)^{p-1}} .$$

Subtraction gives

$$\lim_{n\to\infty}\sum_{k=1}^{\infty} g_{n,k} \left(\frac{p+k-2}{k-1} \right) z_0^{k} = \frac{z_0}{(1-z_0)^p}.$$

Dividing by z_0 and rewriting, we obtain

(5.10)
$$\lim_{n \to \infty} \sum_{k=0}^{\infty} g_{n,k+1} \left(\frac{p+k-1}{k} \right) z_0^k = \frac{1}{(1-z_0)^p}.$$

Thus (5.9) implies (5.10), which proves the theorem.

[5.V] If the γ -matrix G sums the series $\sum {\binom{p+k-1}{k}} z^k$ to S(z) in a domain D, then the matrix¹

$$H \equiv (G - z_0 G^{(1)}) / (1 - z_0),$$

where $z_0 \neq 1$ is in D, sums the series $\sum {\binom{p+k}{k}} z_0^k$ to the sum $S(z_0) / (1-z_0)$ for all real values of p except p = 0. In particular if G is semi-regular

and p a positive integer, the H-sum is the "right" value $(1 - z_0)^{-1-p}$. Proof: The theorem is trivial if p is a negative integer.

Otherwise we have by hypothesis

(5.10)
$$a \lim_{n \to \infty} \sum_{k=0}^{\infty} g_{n,k} \left(p + k - 1 \right) z_0^k$$

$$= \lim_{n \to \infty} \left[g_{n,0} + \sum_{k=1}^{\infty} g_{n,k} \left\{ \begin{pmatrix} p+k \\ k \end{pmatrix} - \begin{pmatrix} p+k-1 \\ k-1 \end{pmatrix} \right\} \right] z_0^k = S(z_0),$$
and we can rewrite the right-hand side in the form

(5.11)
$$\lim_{n \to \infty} \sum_{k=0}^{\infty} {p+k \choose k} (g_{n,k} - z_0 g_{n,k+1}) z_0^k = S(z_0)$$

(5.12) provided that
$$g_{n,k} \binom{p+k}{k} z_0^k \rightarrow 0$$
 as $k \rightarrow \infty$ for every fixed n.

¹ G(1) denotes the first diminutive of G, defined in (3.1).

By hypothesis the power series (5.10)a converges for every fixed n and z in D, and hence it can be differentiated so that

$$g_{n,k} \begin{pmatrix} p+k-1\\k \end{pmatrix} k z_0^{k-1} \to 0 \text{ as } k \to \infty,$$

i.e.,
$$\frac{k p}{(p+k) z_0} \left[g_{n,k} \begin{pmatrix} p+k\\k \end{pmatrix} z_0^k \right] \to 0,$$

showing that (5.12) holds. We have therefore from (5.11), dividing it by $(1 - z_0)$, the first part of the theorem.

The second part then follows from [5.11]. Corollary 1. By repeated application of the theorem we have The matrix

$$H \equiv (1 - z_0)^{-r} \sum_{i=0}^{r} (-1)^i {r \choose i} z_0^i G^{(i)} \qquad (z_0 \text{ in } D)$$

sums the series $\sum {\binom{p+k-1+r}{k}} z_0^k$ to $S(z_0) / (1-z_0)^r$, with the restriction that if p is a negative integer, $p+r \leq 0$. If G is semi-regular and p a positive integer, the H-sum is the "right" value $(1-z_0)^{-p-r}$.

Corollary 2. If G is row-finite, the restrictions $p \neq 0$, and that G sums the series in a domain, can be omitted, since (5.12) is always satisfied. The theorem then holds for every real p, even if z_0 is an isolated point of G-summability. (See section 6.)

(5.13) Example. The lower-semi- γ -matrix of arithmetic means 1 (5.14) $a_{n,k} = (n - k + 1) / (n + 1)$ for $k \leq n$, $a_{n,k} = 0$ for k > n, $n, k \geq 0$, sums the series $\sum z^k$ at z = -1 to the "right" value $\frac{1}{2}$. It is inefficient for the series $\sum (k + 1)z^k$ at the same point. But the matrix H given by $h_{n,k} = \frac{1}{2} (a_{n,k} + a_{n,k+1})$ sums the second series to its "right" value $\frac{1}{4}$ and the first series to $\frac{1}{2}$. Here H is consistent with A, but not A with H.

Contraction of the binomial series. This method is closely related to the stretching of the matrix (3.4), though not equivalent. Given the series $c_0 + c_1 + c_2 + \ldots$, and writing

(5.15)
$$d_{k} = \sum_{i=1}^{(k+1)r-1} c_{i} \qquad (r = 2, 3, 4, \ldots),$$

we call the series $d_0^{i + i} + d_1 + d_2 + \dots$ the r-fold contracted series, and the r subseries $c_{0+i} + c_{r+i} + c_{2r+i} + \dots$ $(i = 0, 1, 2, \dots r - 1)$ the subseries of r-fold contraction.

¹ T.S. 399. Theorem VI was used to construct the γ -matrix.

[5.V1] The semi-regular γ -matrix G sums all the subseries of the r-fold contracted series $\sum {\binom{p+k-1}{k}} z^k$ (p a positive integer) for all values of z for which G sums the series Σu_k , where $u_k = {\binom{p+k-1}{k}} z^{rk}$. Thesum obtained by contraction is the "right" value $(1-z)^{-p}$.

We give the proof for r = 3. The general case can be proved similarly.

The identity

$$(1 + x + x^2)^p (1 - x^3)^{-p} \equiv (1 - x)^{-p}$$

can be expanded for |x| < 1 in the form

$$\left(\sum_{i=0}^{2p} C_i x^i\right) \left\{\sum_{j=0}^{\infty} \binom{p+j-1}{j} x^{3j}\right\} = \sum_{k=0}^{\infty} \binom{p+k-1}{k} x^k,$$

where $C_i = 0$ for i > 2p. Equating coefficients we have

(5.16)
$$\sum_{i=0}^{q} C_{3i+m} \left(\begin{array}{c} p+q-1-i \\ q-i \end{array} \right) = \left(\begin{array}{c} p+3q-1+m \\ 3q+m \end{array} \right), \begin{array}{c} p \ge 1, q \ge 0, \\ m=0, 1, 2. \end{array}$$

By hypothesis G sums the series Σu_k ; by [5.11] the G-sum is the "right" value, i.e.

$$\lim_{k\to\infty}\sum_{k=0}^{\infty}g_{n,k}\binom{p+k-1}{k}z^{3k}=(1-z^{3})^{-p},$$

and since G is semi-regular

 $\lim_{n \to \infty} \sum_{k=0}^{\infty} g_{n,k+i} \left(\frac{p+k-1}{k} \right) z^{3k} = (1-z^3)^{-p}, \qquad (i=0, 1, 2, \ldots),$

which multiplied by z^{3i} can be rewritten

(5.17)
$$\lim_{n\to\infty}\sum_{k=i}^{\infty}g_{n,k}\binom{p+k-1-i}{k-i}z^{3k}=z^{3i}(1-z^{3})^{-p}, (i=0, 1, 2, ...).$$

Multiplying the series for the different values of *i* in turn by $C_{3i+m}z^m$ (m=0, 1, or 2), and adding them, we obtain by the identity (5.16), for m = 0, 1, 2,

(5.18)
$$\lim_{n \to \infty} \sum_{k=0}^{\infty} g_{n,k} \left(\frac{p+3k-1+m}{3k+m} \right) z^{3k+m} = (C_m z^m + C_{m+3} z^{m+3} + C_{m+6} z^{m+6} + \dots) (1-z^3)^{-p},$$

which proves the first statement.

Adding the three equations (m = 0, 1, 2) of (5.18) we have

$$\lim_{n\to\infty}\sum_{k=0}^{\infty} g_{n,k} d_k = (1+z+z^2)^p (1-z^3)^{-p} = (1-z)^{-p},$$

where Σd_k is the threefold contracted series.

This concludes the proof.

On γ -matrices and their application to the binomial series 11

(5.19) Example. We consider Borel's exponential summation by the γ -matrix (3.5). Write $z = \rho e^{i\theta}$, $(\rho \ge 0)$. The series Σu_k is summable (B) if the real part of z^r is less than 1, *i.e.* if

(5.20) $\rho^r \cos r\theta < 1$ (r = 1, 2, 3, ...).For r = 1, *i.e.* for the original series, the domain of summability is the half-plane R(z) < 1. For r = 2 the domain lies between the two branches of the hyperbola $x^2 - y^2 = 1$.

Thus the domain of (B) summability for the binomial series varies with the contraction. Given any particular value of z in the star-domain, (*i.e.* excluding z = 1 and all points of the real axis to the right of z = 1), we can find a suitable contraction for which the series is summable (B). For (5.20) is satisfied if $\cos r\theta \leq 0$, *i.e.* for $r = 2^q$ if $\pi/2^{q+1} \leq |\theta| \leq \pi/2^q$, which for $q = 0, 1, 2, \ldots$ covers all the points in question.

6. γ -matrices efficient at isolated points.

R. G. Cooke and P. Dienes¹ constructed *T*-matrices that sum the series Σz^k at an isolated point $z = z_0$ outside the circle of convergence. Similar results are obtained in this section for γ -matrices and extended to the expansion of $(1-z)^{-p}$, using operations developed in this paper.

We consider the lower semi- γ -matrix G, given by

(6.1) $g_{n,k} = 1$ for $k \leq n$, $g_{n,k} = 0$ for k > n, (k, n = 0, 1, 2, ...), and form from it the γ -matrix $H(p, z_0)$ as in corollary 1 of theorem [5.V]:

(6.2)
$$h(p, z_0)_{n, k} = (1 - z_0)^{-p} \sum_{j=0}^{n-k} {p \choose j} (-z_0)^j \qquad (n \ge k \ge 0),$$

= 0 $(n < k).$

We shall apply this matrix to the series

(6.3)
$$\sum_{k=0}^{\infty} {\binom{r+k-1}{k}} z^k \qquad (r=1, 2, \ldots).$$

[6.1] If $|z_0| > 1$, then $H(p, z_0)$ is a regular γ -matrix. If in addition $1 \leq r \leq p$, H is efficient for the series (6.3) (summing it to its "right" value) at $z = z_0$ and at no other point outside the unit circle: if r > p, H is inefficient everywhere outside the unit circle.

Proof: G is obviously regular and so is H by [3.IV] and (3.8).

¹ R. G. Cooke and P. Dienes, "On the effective range of generalized limit processes," Proc. London Math. Soc. (2) 45 (1939), 45-63 (53-55). G is efficient for the series (6.3) when r = 0 at $z = z_0$, *i.e.* for the series $1 + 0.z_0 + 0.z_0^2 + \ldots$, and thus by theorem [5.V] and both corollaries, H is efficient for the series (6.3) at $z = z_0$ when r = p. Hence by [5.I] H is efficient when r < p and by [5.II] the H-sum is the "right" value. To prove that z_0 is an isolated point of efficiency, we consider the transform of Σz^k by the (n + 1)th row of H, for n > p, *i.e.*

$$\sigma_n(z) = 1 + z + z^2 + \ldots + z^{n-p-1} + (1-z_0)^{-p} z^{n-p} S,$$

where

$$S = z^{p} + z^{p-1} \left\{ 1 - {p \choose l} z_{0} \right\} + z^{p-2} \left\{ 1 - {p \choose l} z_{0} + {p \choose 2} z_{0}^{2} \right\} + \ldots + (1 - z_{0})^{p}$$
$$= (1 - z)^{-1} \left\{ (1 - z_{0})^{p} - z(z - z_{0})^{p} \right\}.$$

Hence

$$\sigma_n(z) = \frac{1-z^{n-p}}{1-z} + \frac{z^{n-p} \left\{ (1-z_0)^p - z (z-z_0)^p \right\}}{(1-z) (1-z_0)^p} = \frac{1}{1-z} \left\{ 1 - \left(\frac{z-z_0}{1-z_0} \right)^p z^{n-p+1} \right\}.$$

Thus if $|z| \ge 1$, $\sigma_n(z)$ diverges except for $z = z_0$. Hence *H* is inefficient for the series (6.3) when r = 1, and therefore by [5.1] cannot be efficient for r > 1, if $z \neq z_0$. Hence z_0 is an isolated point of efficiency.

Again if H is efficient at z_0 for r = p + 1, it follows from the identity (cf. (5.10)*a* and (5.11))

$$\sum_{k=0}^{\infty} h (p, z_0)_{n,k} {q+k-1 \choose k} z_0^k \gtrsim \sum_{k=0}^{\infty} h (p+1, z_0)_{n,k} {q+k \choose k} z_0^k$$

that G is efficient for the series $\sum z_0^k$, which is obviously not the case when $|z_0| > 1$. This proves the last statement.

We may now consider several distinct points $z_1, z_2, \ldots z_m$ outside the circle |z| = 1. Replacing the matrix G by $H(p, z_1)$ we obtain the matrix $H(p, z_1, z_2)$ as in corollary 1 of [5.V]. Obviously $H(p, z_1, z_2) = H(p, z_2, z_1)$. Repeating this operation we finally obtain the matrix $H(p, z_1, z_2, \ldots, z_m)$, which is given by the formula

(6.4)
$$h(p, z_1, z_2, \ldots z_m)_{n,k} = \sum_{j=0}^{n-k} u_j / \sum_{j=0}^{mp} u_j,$$

where u_i is defined by the identity

$$\left\{ (1-z_1 x) (1-z_2 x) \dots (1-z_m x) \right\}^p \equiv 1+u_1 x+u_2 x^2+\dots+u_{mp} x^{mp}.$$

Thus denoting the matrix briefly by *H*, we have

$$h_{n,k} = 1$$
 for $k \leq n - mp$, $h_{n,k} = 0$ for $k > n$.

[6.II] If $z_1, z_2, \ldots z_m$ are distinct points outside the unit circle. and $1 \leq r \leq p$, $H(p, z_1, z_2, \ldots, z_m)$ is regular and efficient for the series (6.3) outside the unit circle at these points only. It is inefficient outside the unit circle when r > p.

Proof: $H(p, z_1)$ is efficient for the series $1 + 0.z_2 + 0.z_2^2 + ...$ and by [6.1] inefficient for the series (6.3) at $z = z_2$ when $r \ge 1$. Hence we can replace G by $H(p, z_1)$ for these series and then obtain our result for m = 2 in the same way as in [6.1]. Replacing then Gby $H(p, z_1, z_2)$ and applying it to the series (6.3) at $z = z_3$ we obtain the result for m = 3. Continuing in this way, we obtain the result for the general case.

Examples.

If we take p = 1, m = 2, we have $u_0 = 1$, $u_1 = -(z_1 + z_2)$, $u_2 = z_1 z_2$, $u_3 = u_4 = ... = 0$. We then obtain the matrix

$$\begin{array}{ll} h_{n,\,k} \,=\, 1/(1-z_1)\,\,(1-z_2) & \text{for } k=n \\ &=\, (1-z_1-z_2)\,/\,(1-z_1)\,\,(1-z_2) & \text{for } k=n-1 \\ &=\, 1 & \text{for } k< n-1 \\ &=\, 0 & \text{for } k>n. \end{array}$$

This matrix transforms the series Σz^k into

$$\sigma_n(z) = \frac{1}{1-z} \left\{ 1 - \frac{z^{n-1} (z-z_1) (z-z_2)}{(1-z_1) (1-z_2)} \right\},$$

which illustrates the theorem.

If $z_1, z_2, \ldots z_m$ are the *m* distinct values of $z_0^{1/m}$, we have a simple expression for $h_{n,k}$. For example if p = 1, m = 3, we obtain

$$\hat{h}_{n,k} = 1$$
 for $k < n - 2$
= $(1 - z_0)^{-1}$ for $k = n - 2, n - 1, n$
= 0 for $k > n$.

This transforms the series Σz^k into

$$\sigma_n(z) = \frac{1}{1-z} \left\{ 1 - \frac{z^{n-3}(z^3 - z_0)}{1-z_0} \right\}$$

which is divergent for |z| > 1 except for $z^3 = z_0$.

I have pleasure in expressing my thanks to Professor P. Dienes and Dr R. G. Cooke for kindly reading the manuscript and making some useful comments.

BIRKBECK COLLEGE,

UNIVERSITY OF LONDON.