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Resonant Tunneling of Fast Solitons
through Large Potential Barriers

Walid K. Abou Salem and Catherine Sulem

Abstract. We rigorously study the resonant tunneling of fast solitons through large potential barriers

for the nonlinear Schrödinger equation in one dimension. Our approach covers the case of general

nonlinearities, both local and Hartree (nonlocal).

1 Introduction

1.1 Earlier Results and Heuristic Discussion

In the last few years, there has been substantial progress in rigorously understand-

ing the effective dynamics of solitons for the nonlinear Schrödinger equation (NLS)

in the presence of external potentials and perturbations, both in the classical and

quantum regimes. If the soliton moves in a slowly varying external potential, or in

the presence of a small (even nonlinear) perturbation, the long-time dynamics of

the soliton center of mass are approximately that of a classical particle in an external

potential corresponding to the restriction of the perturbation to the soliton mani-

fold, plus error terms due to radiation damping ([1–4,6,8–10,14–16]). On the other

hand, for solitons with high velocity, we expect that the dynamics will be dominated

by quantum effects, such as soliton splitting due to scattering from a delta-potential

for the cubic NLS equation in one dimension ([16]), or the blind collision of two

fast solitons for the generalized nonlinear Schrödinger equation in the presence of an

external potential ([4]).

In this paper, we study the phenomenon of resonant tunneling of fast solitons

through large potential barriers for NLS equations in one dimension. Since the soli-

ton is exponentially localized in space and the potential barrier is compactly sup-

ported, the effective time of interaction between the fast traveling soliton and the

potential is short. One expects linear effects to dominate in the interaction regime.

Resonant tunneling is well known in linear scattering theory and refers to a situation

where the reflection coefficient vanishes at certain energies of incoming waves. One

expects to have an analogous phenomenon for nonlinear systems in special limiting

regimes. We make this intuition mathematically precise and prove that this effect

indeed occurs. A numerical illustration is presented in our recent work [5].
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For the sake of concreteness, we consider resonant tunneling for solitons of NLS

equations with Hartree (nonlocal) nonlinearity and in the presence of a repulsive

double delta-potential. We also discuss general assumptions for nonlinearities and

potentials for which our results hold.

The main ingredients of our analysis are the symplectic structure of the soliton

manifold for the study of the effective dynamics of solitons in the pre- and post-

collision regimes, as developed in [4]; see also [1, 9, 14], and the linear scattering

theory together with Strichartz estimates in one dimension to study the interacting

regime ([23]).

The organization of this paper is as follows. In Section 1.2, we discuss a concrete

example where our analysis is applicable, namely the Hartree NLS equation with a

double-delta potential. For the sake of completeness, we recall basic results on scat-

tering theory and NLS equations in Section 2. In Section 3, we present the effective

soliton dynamics in different regimes, both close and far away from the potential,

which sets the stage to prove the main result, Theorem 1.1. We finally discuss general

conditions on the nonlinearity and on the external potential for which our analysis

holds in Section 4.

1.2 The Model and Statement of the Main Result

In this section, we discuss the main result for the case of Hartree nonlinearity and

double delta-potential. Our result holds for more general nonlinearities and other

potentials, such as a box potential.

Consider the nonlinear Schrödinger equation given by

(1.1) i∂tψ = Hψ + f (ψ),

where H = H0 + V is the interacting linear Hamiltonian, H0 = − 1
2
∂2

x ,V is a (time-

independent) external potential, and f is a focusing Hartree nonlinearity of the form

(1.2) f (ψ) = (W ⋆ |ψ|2)ψ.

We assume that W is negative, spherically symmetric, and decaying at spatial infinity

with W ∈ Lp, 2 ≤ p <∞. Under this assumption, the NLS equation admits solitary

wave solutions when V = 0. In particular, there exists an interval I ⊂ R such that,

for all µ ∈ I, the traveling wave

uσ(t) = eiµt+iγ+iv(x−a−vt)ηµ(x − a− vt),

where

σ = (a, v, γ, µ) ∈ R × R × [0, 2π)× I.

Here, ηµ is a positive spherically symmetric function solving the nonlinear eigenvalue

problem (
−1

2
∂2

x + µ
)
ηµ + f (ηµ) = 0.
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Furthermore, ηµ ∈ L2(R) ∩ C2(R) and ηµ ∝ e−
√
µ|x| as |x| → ∞; see for example

[7, 22]. For the sake of concreteness, we consider first the case of scattering from a

repulsive double delta-potential V, which is given by

(1.3) V = q
(
δ(x + l) + δ(x − l)

)
.

Here, q > 0 is the height of the potential barrier, and 2l is its width. For such a

potential, we know that the resolvent RV (λ) := (H−λ2)−1 is meromorphic in λ ∈ C

with no poles for Imλ > 0; see, for example, [19]. Moreover, for λ ∈ R\{0},

(H − λ2)u = 0

has unique solutions e±(x, λ) satisfying

(1.4) e±(x, λ) =

{
e±iλx + R(λ)e∓iλx, ±x < −l,

T(λ)e±iλx, ±x > l.

Here,

R(λ) = q
−ie−2ilλ(λ(1 + e4ilλ + iq(1− e4ilλ))

λ2 + 2iλq− q2 + e4ilλq2
,

T(λ) =
λ2

λ2 + 2iλq− q2 + e4ilλq2
.

Note that

(1.5) |T(λ)|2 + |R(λ)|2 = 1, λ ∈ R,

which follows from the unitary character of the linear evolution. Furthermore, if λ0

is such that

(1.6) tan(2lλ0) = −λ0/q,

R(λ0) = 0, and resonant tunneling occurs. In the NLS equation, the role of the wave

number λ is played by the velocity, which is assumed to be large.

We are interested in the scattering of a fast soliton from the potential barrier. We

make the following assumption on the initial condition, which corresponds to a state

that is close to a traveling soliton,

(1.7) ψ(0) = uσ0
+ w0,

where σ0 = (a0, v0, γ0, µ0) ∈ R×R× [0, 2π)× I and w0 is a fluctuation that we will

take to be small in L2 norm. Without loss of generality, we consider the scattering

setting where a0 < 0 and v0 > 0.
The following result holds for the above potential and nonlinearity. The same

result holds for more general potentials and nonlinearities; see Section 4.
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Theorem 1.1 Consider the nonlinear Schrödinger equation (1.1), with nonlinearity

(1.2), potential (1.3), and initial condition (1.7). Suppose that ‖w0‖L2 = O(v−1
0 ) and

that the resonant condition (1.6), where λ is replaced by v0, is satisfied with l = O(v−1
0 ),

q−1 = O(v−1
0 ). Then for v0 sufficiently large, there exist positive constants C, α, β, and

δ that are independent of v0 such that

‖ψ(t)− uσ0
(t)‖L2 ≤ C

(
v
−β
0 + e−δ(|a0+v0t−l|+|a0+v0t+l|)) ,

uniformly in the time interval t ∈ [0, |a0|
v0

+ α log v0].

In other words, for special values of v0, q, and l, the fast soliton tunnels through

the potential barrier. For different values with v0 ≫ 1, q ≫ 1, the soliton typically

splits into two wave packets; see Lemma 3.5, and also [16] for an elegant discussion of

soliton splitting from a delta potential for the cubic NLS equation in one dimension.

The use of the L2 norm (as opposed to norms in the energy space H1) is crucial in

order to have estimates that are uniform in v0 ([4]).

2 Mathematical Setting

2.1 Linear Dynamics

2.1.1 Scattering

In this subsection, we recall some basic results of linear scattering theory; see [19].

For λ ∈ R\{0}, the generalized eigenfunctions e± appearing in (1.4) are given by

e±(x, λ) = e±iλx − RV (λ)(Ve±iλx).

The resolvent can be expressed in terms of the generalized eigenfunctions

RV (λ)(x, y) =
1

2iλT(λ)

[
e+(x, λ)e−(y, λ)Θ(x − y) + e+(y, λ)e−(x, λ)Θ(y − x)

]
,

where Θ is the Heaviside step function. Furthermore, we have the spectral decompo-

sition

δ(x − y) =
1

2π

∫ ∞

0

dλ
(

e+(x, λ)e+(y, λ) + e−(x, λ)e−(y, λ)
)

and

H(x, y) =
1

2π

∫ ∞

0

dλ λ2
(

e+(x, λ)e+(y, λ) + e−(x, λ)e−(y, λ)
)
.(2.1)

Here, · stands for complex conjugation.
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2.1.2 Decay and Strichartz Estimates

We now discuss decay estimates involving U (t, s) := e−i(t−s)H , the propagator corre-

sponding to the linear dynamics generated by the interacting Hamiltonian H. For V

given by (1.3), ∫
dx |V |(1 + |x|)γ <∞, γ >

5

2
.

It follows from [23] that

‖U (t, s)‖
B(Lp ,Lp ′ ) ≤

C

(t − s)
1
p
− 1

2

for 1 ≤ p ≤ 2.Here p ′ is the conjugate of p, i.e., 1
p

+ 1
p ′

= 1. Earlier results in higher

dimensions appeared in [17].

The above decay estimate implies that Strichartz estimates hold; see [11, 21] and

also [12, 18, 20]. We say that a pair (q, r) is admissible if 2
q
=

1
2
− 1

r
with r ∈ [2,∞].

For every φ ∈ L2(R) and every admissible pair (q, r), the function t → U (t, 0)φ
belongs to Lq(R, Lr(R)) ∩C(R, L2(R)), and the estimate

‖U ( · , 0)φ‖Lq(R,Lr) ≤ C‖φ‖L2 , ∀φ ∈ L2(R),

where C is a constant depending on q holds. Consider I ⊂ R containing the origin.

Let J ⊂ I such that 0 ∈ J,where · denotes the closure, and let (γ, ρ) be an admissible

pair, with f ∈ Lγ
′

(I, Lρ
′

(R)). Then for all admissible pairs (q, r), the function

t → Φ f (t) =

∫ t

0

dsU (t, s) f (s) ∈ Lq
(

I, Lr(R)
)
∩C

(
J, L2(R)

)
,

such that

(2.2) ‖Φ f ‖Lq(I,Lr) ≤ C‖ f ‖Lγ
′
(I,Lρ ′ ),

where C is a constant independent of I and depends on q and γ only.

2.2 NLS Equation and the Soliton Manifold

We recall some basic properties of the NLS equation (1.1); see for example [9, 22].

The phase space for the NLS equation (1.1) is chosen to be H1(R,C). The space

H1 has a real inner product (Riemannian metric) 〈u, v〉 := Re
∫

dx uv for u, v ∈
H1(R,C).1 On H1, one can define a symplectic 2-form

ω(u, v) := Im

∫
dx uv = 〈u, iv〉.

1The tangent space at an element ψ ∈ H1 is TψH1 = H1.
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The Hamiltonian functional corresponding to the nonlinear Schrödinger equation

(1.1) is

HV (ψ) :=
1

4

∫
|∂xψ|2dx +

1

2

∫
V |ψ|2 + F(ψ),

where F(ψ) =
∫

W ∗ |ψ|2|ψ|2. Using the correspondence

H1 ←→ H1(R; R)⊕H1(R; R)

ψ ←→ (Reψ Imψ)

i−1 ←→ J,

where J :=
(

0 1
−1 0

)
is the complex structure on H1(R; R

2), the nonlinear Schrö-

dinger equation can be written as ∂tψ = JH ′
V (ψ). Furthermore,

〈u, v〉 =
∫

dx (Reu Imu)

(
Rev

Imv

)
,

ω(u, v) =

∫
dx (Reu Imu)

(
0 −1

1 0

)(
Rev

Imv

)
.

The Hamiltonian HV is conserved, and it is invariant under global gauge trans-

formations, HV (eiγψ) = HV (ψ). The associated conserved quantity is the mass

m(ψ) := 1
2

∫
dx |ψ|2. The assumptions on the nonlinearity imply that ∂µm(µ) > 0.

It follows that ηµ is a local minimizer of HV=0(ψ) restricted to the balls Bm := {ψ ∈
H1 : N(ψ) = m}, for m > 0 ([13]). They are critical points of the functional

(2.3) Eµ(ψ) :=
1

4

∫
dx

(
|∂xψ|2 + 2µ|ψ|2

)
+ F(ψ),

where µ = µ(m) is a Lagrange multiplier.

2.2.1 Nonlinearity

The Hartree nonlinearity given in (1.2) is in C2(H1,H−1). From a direct application

of Hölder and Young’s inequality, we have that for W ∈ Lp(R), p ≥ 2, r =
2p

p−2
∈

[0,∞],

‖ f (uσ)− f (uσ + v)‖Lr ′ ≤ C‖v‖L2 ,

and

‖ f (uσ + v)− f (uσ)− f ′(uσ)v‖
L

2p
p+2
≤ C‖v‖2

L2 ,

where C depends on ‖W‖Lp and ‖uσ‖L2 .
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2.2.2 Soliton Manifold

We define the transformation Tavγ by

ψavγ := Tavγψ = ei(v(x−a)+γ)ψ(x − a),

where v, a ∈ R and γ ∈ [0, 2π). The soliton manifold is

Ms := {ησ := Tavγηµ, σ = (a, v, γ, µ) ∈ R × R × [0, 2π)× I}.
The tangent space to the soliton manifold Ms at ηµ ∈Ms is given by

TηµMs = span{Et , Eg , Eb, Es},
where

Et := ∂aTa00ηµ|a=0 = −∂xηµ, Eg := ∂γT00γηµ|γ=0 = iηµ,

Eb := ∂vT0v0ηµ|v=0 = ixηµ, Es := ∂µηµ.

In the following, we let

(2.4) e1 := −∂x, e2 := ix, e3 := i; e4 := ∂µ,

which, when acting on ησ ∈ Ms, generate the basis vectors {eαησ}α=1,...,4 of TησMs.
The soliton manifold Ms inherits the symplectic structure from (H1, ω). For σ =

(a, v, γ, µ) ∈ R × R × [0, 2π)× I, the matrices

Ωσ := Pσ J−1Pσ ∈ T
∗
ησMs × T

∗
ησMs,

where T∗
ησMs is the cotangent space at ησ, and Pσ is the L2-orthogonal projection

onto TησMs, define the induced symplectic structure on Ms. Explicitly,

Ωσ|TησMs
: = {ω(eαησ, eβησ)}1≤α,β≤4

=




0 −m(µ) 0 −vm ′(µ)

m(µ) 0 0 am ′(µ)

0 0 0 m ′(µ)

vm ′(µ) −am ′(µ) −m ′(µ) 0


 ,

which is invertible if m ′(µ) > 0.

2.2.3 Group Structure

The anti-selfadjoint operators {eα}α=1,··· ,4 defined in (2.4) form the generators of

the Lie algebra g corresponding to the Heisenberg group H3, where the latter is given

by

(a, v, γ) · (a ′, v ′, γ ′) = (a ′ ′, v ′ ′, γ ′ ′),

with a ′ ′ = a + a ′, v ′ ′ = v + v ′, and γ ′ ′ = γ ′ + γ + 1
2
va ′. Elements of g satisfy the

commutation relations

(2.5) [e1, e2] = −e3,

and the rest of the commutators are zero. This group structure has been noted in [14].
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2.2.4 Zero Modes

The solitary wave solutions transform covariantly under translations and gauge

transformations, i.e., E ′
µ(Ta00T00γηµ) = 0 for all a ∈ R and γ ∈ [0, 2π). Here,

the prime stands for the Fréchet derivative. There are associated zero modes of the

Hessian

Lµ := −1

2
∂2

x + µ + f ′(ηµ)

associated with these symmetries. In particular,

(2.6) iLµ : TηµMs → TηµMs

with (iLµ)2X = 0, for any vector X ∈ TηµMs.

2.2.5 Skew-Orthogonal Decomposition

We define

Σ := {σ = (a, v, γ, µ) ∈ R × R × [0, 2π)× I},
and let

Σ
0 := {σ = (a, v, γ, µ) ∈ R × R × [0, 2π)× I0, with I0 ⊂ I\∂I bounded}.

We consider the neighbourhood Uδ ⊂ H1 defined by

U δ̃ :=
{
ψ ∈ H1, inf

σ∈Σ0
‖ψ − ησ‖L2 < δ̃

}
.

We have the following proposition, whose proof follows from an application of the

Implicit Function Theorem in [4].

Proposition 2.1 For δ̃ ≪ 1, there exists a unique mapping σ(·) : U δ̃ → Σ such that

ψ = ησ(ψ) + w, and ω(w,X) = 0, for all X ∈ Tησ(ψ)Ms.

The group element Tavγ ∈ H3 is given by Tavγ = e−a∂x eivxeiγ . It follows from (2.5)

that T−1
avγY Tavγ ∈ g if Y ∈ g. Furthermore, from the translational invariance, we have

that ω(Tavγu,Tavγv) = ω(u, v), for u, v ∈ L2. Therefore, Proposition 2.1 implies that

ω(w,Yησ) = ω(w ′,Y ′ησ ′) = 0,

for all Y ∈ g, where Y ′ = T−1
avγY Tavγ ∈ g, w ′ = T−1

avγw, and ησ ′ = T−1
avγησ.

3 Effective Dynamics

We decompose the dynamics into three regimes. For β, δ ∈ (0, 1), we let

t0 = 0, t1 =
|a0| − vδ0

v0

,

t2 =
|a0| + vδ0

v0

, t3 = t2 + β log v0.
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The pre-collision regime corresponds to t ∈ [t0, t1], the collision regime to t ∈ [t1, t2],
and the post-collision regime to t ∈ [t2, t3]. Below, we will show that nonlinear ef-

fects dominate in the pre- and post-collision regimes such that one can neglect the

external potential, since the potential is compactly supported and the traveling wave

is exponentially localized in space, while the dynamics are almost linear in the col-

lision regime due to the high velocity of the soliton, or equivalently, short time of

interaction. The same decomposition was used in [16], except that in the latter refer-

ence, Strichartz estimates are used to control the dynamics in all three regimes, and

the inverse scattering method is applied for the post-collision regime. Here, we only

use Strichartz estimates in the collision regime, and we apply the skew-orthogonal

projection onto the soliton manifold in the pre- and post-collision regimes.

3.1 Nonlinear Regime

The analysis in this subsection applies to the pre- and post-collision regimes. We

discuss first the post-collision regime. A similar result holds for the pre-collision

regime, which is simpler.

3.1.1 Reparametrized Equations of Motion in the Post-Collision Regime

Suppose that the solution at time t = t2 has the form

(3.1) ψ(t2) = ησ2
+ w2,

where σ2 = (a0 + v0t2, v0, γ0, µ0), and that ‖w2‖L2 = O(|v0|−α) for some α > 0.

Lemma 3.1 Consider the NLS equation (1.1) with initial condition (3.1), and assume

that, for t ∈ [t2, t3], ψ(t) ∈ U δ̃, δ̃ ≪ 1. Then for v0 ≫ 1, the parameters σ =

(a, v, γ, µ) satisfy the equations

∂t a = v0 + O
(
‖w‖2

L2 + qe−ξ|a|
)
,

∂t v = O
(
‖w‖2

L2 + qe−ξ|a|
)
,(3.2)

∂tγ = µ0 +
v2

0

2
+ O

(
‖w‖2

L2 + qe−ξ|a|
)
,

∂tµ = O
(
‖w‖2

L2 + qe−ξ|a|
)
,(3.3)

for some constant ξ > 0 independent of v0.

Proof We first find the equation of motion in the center of mass reference frame,

i.e., for

u = T−1
avγψ = e−ivx−iγψ(x + a).

Using the skew-orthogonal property (Proposition 2.1), we have

(3.4) u = ηµ + w ′, w ′
= T−1

avγw,
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where ω(w ′,X) = 0, for all X ∈ TηµMs, and

|v(t2)− v0|, |a(t2)− a0 − v0t2|, |µ(t2)− µ0|, |γ(t2)− γ0| = O(v−α0 ).

We define the coefficients

c1 := ∂t a− v, c2 := −1

2
∂t v,(3.5)

c3 := µ− 1

2
v2 + ∂t av − ∂tγ, c4 := −∂tµ.

Note that

e−i(vx+γ)∂2
xψ(x + a) = ∂2

x u + 2iv∂xu− v2(3.6)

e−i(vx+γ) f
(
ψ(x + a)

)
= f (u).(3.7)

Differentiating u with respect to t and using (1.1) and (3.5)–(3.7), we get

∂t u = −i
((
−1

2
∂2

x + µ
)

u− f (u)
)

+

3∑

α=1

cαeαu− iVau,

where Va(x) = V (x + a). In other words,

(3.8) ∂t u = −iE ′
µ(u) +

3∑

α=1

cαeαu− iVau,

where Eµ is defined in (2.3). Recall that E ′
µ(ηµ) = 0, which implies

(3.9) E
′
µ(u) = Lµ(w ′) + Nµ(w ′),

where

Lµ =

(
−1

2
∂2

x + µ + f ′(ηµ)
)
≡ E

′ ′
µ (ηµ)

and

Nµ(w ′) = f (ηµ + w ′)− f (ηµ) + f ′(ηµ)(w ′).

Substituting (3.4) and (3.9) into (3.8), we obtain

∂t w
′
=

(
−iLµ +

3∑

α=1

cαeα − iVa

)
w ′ + Nµ(w ′) +

4∑

α=1

cαeαηµ − iVaηµ.(3.10)

To obtain the equations of motion for a, v, γ and µ, we project equation (3.10) onto

TηµMs using the skew-orthogonal property.
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We have

(3.11) ∂t〈iw ′,X〉 = ∂tµ〈iw ′, ∂µX〉 + 〈i∂t w
′,X〉 = 0.

Substituting the expression for ∂t w
′ given by (3.10) in (3.11), and the fact that

(3.12) e∗α = −eα, α = 1, . . . , 4,

we have

(3.13) 〈Lµw ′,X〉 +

〈
i

4∑

α=1

cαeαw ′,X

〉
+ 〈Vaw ′,X〉 + 〈iNµ(w ′),X〉

+

〈
i

4∑

α=1

cαeαηµ,X

〉
+ 〈Vaηµ,X〉 = 0.

Some of the terms in the above equation cancel due to the zero modes of the Hessian.

It follows from (2.6) that X ′ = iLµX ∈ TηµMs
if X ∈ TηµMs

, and hence

〈Lµw ′,X〉 = 〈w ′,LµX〉 = −ω(w,X ′) = 0.

Together with (3.12) and (3.13), this yields

(3.14)

4∑

α=1

cα ω(eαηµ,X) =

〈Vaηµ,X〉 +

4∑

α=1

cα 〈ieαw ′,X〉 + 〈Vaw ′,X〉 + 〈iNµ(w ′),X〉.

We now estimate each term appearing in the right-hand-side of (3.14) with X =

eβηµ, β = 1, . . . , 4. Due to the exponential localization in space of the soliton profile

and the fact that the potential is compactly supported, we have that

‖Vaeβηµ‖L2 = O(qe−ξ|a|), β = 1, . . . , 4,

‖X‖L2 = ‖eβηµ‖L2 = O(1), β = 1, . . . , 4

‖eαX‖L2 = ‖eαeβηµ‖L2 = O(1), α, β = 1, . . . , 4.

Hence, Hölder’s inequality and the fact that V is real yield the estimates

|〈Vaηµ,X〉| = |〈ηµ1
,VaX〉| = O(qe−ξ|a|),

|〈Vaw ′,X〉| = |〈w ′,VaX〉| ≤ ‖Vaeβηµ1
‖L2‖w ′‖L2 = O

(
qe−ξ|a|‖w ′‖L2

)
.
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We also have from Hölder’s inequality that

∣∣∣∣
4∑

α=1

cα 〈ieαw ′,X〉
∣∣∣∣ =

∣∣∣∣
4∑

α=1

cα〈iw ′, eαX〉
∣∣∣∣ ≤ C|c|‖w ′‖L2 ,

where |c| := maxα=1,...,4 |cα|. Now, it follows from Section 2.2.1 and Hölder’s in-

equality that

|〈iNµ(w ′),X〉| = O
(
‖w ′‖2

L2

)
.

We hence obtain the estimate |c| ≤ C(‖w ′‖2
L2 + qe−ξ|a|) for some C and ξ > 0. Note

that ‖w ′‖L2 = ‖w‖L2 , and hence the claim of the lemma.

3.1.2 Control of the Fluctuation

We now control the L2-norm of the fluctuation w using conservation of charge, the

skew-orthogonal property, and the reparametrized equations of motion.

Lemma 3.2 Consider (1.1) with initial condition (3.1). Suppose the hypotheses of

Lemma 3.1 hold. Then for v0 ≫ 1,

sup
t∈[t2,t2+β log v0]

‖w ′(t)‖2
L2 ≤ C|v0|−α/2

for some constants C > 0, β ∈ (0, 1).

Proof From the conservation of the L2-norm of the solution, ‖ψ(t)‖L2 = ‖φ‖L2 , and

the skew-orthogonal decomposition (Proposition 2.1), we have

(3.15) ‖ψ‖2
L2 = ‖w‖2

L2 + ‖ηµ1
‖2

L2 = ‖φ‖2
L2 ,

where we have used

〈w, ησ〉 = −ω(w, iησ) = 0 and ‖ησ‖L2 = ‖ηµ‖L2 .

Differentiating (3.15) with respect to t and recalling that m(µ) = 1
2
‖ηµ‖2

L2 , we get

(3.16) ∂t‖w‖2
L2 = −2∂tµ∂µm(µ).

Now, (3.3) implies that

|∂tµ∂µm(µ)| ≤ C
(

qe−ξ|a| + ‖w‖2
L2

)
.

Together with (3.16) and the Duhamel formula, this yields

(3.17) ‖w‖2
L2 ≤ C

(
ect‖w2‖2

L2 + q

∫ t

0

ds ec(t−s)e−ξ|a|
)
.
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For times t < Cvǫ0, ǫ ∈ (0, 1),we know from (3.2) that v(s) ≥ c0v0, for some constant

c0 > 0, and hence

a(s) ≥ a0 + v0t2 + c0v0s≫ 1.

This yields ∫ t

0

ds ec(t−s)e−ξa(s) ≤ Cect−ξvδ0 , δ ∈ (0, 1).

Together with (3.17), we get the estimate

(3.18) ‖w‖2
L2 ≤ C

(
qect−ξvδ0 +

1

vα0
ect
)

for some positive constants C and c that are independent of v0. Choose τ < α log v0

2c
.

For t2 ≤ t ≤ t2 + τ , (3.18) implies

sup
t∈[0,τ ]

‖w‖2
L2 < Cv

−α/2
0 .

We have the following proposition, which follows from Lemmas 3.1 and 3.2.

Proposition 3.3 Consider (1.1) with initial condition (3.1). Then for v0 ≫ 1,

sup
t∈[t2,t3]

‖ψ(t)− uσ0
(t)‖L2 ≤ Cv−α̃0

for some C and α̃ > 0.

The same result holds for t ∈ [t0, t1] (pre-collision regime).

3.2 Almost Linear Regime

This regime corresponds to t ∈ [t1, t2].

Proposition 3.4 At resonance and for v0 ≫ 1, there exist constants C > 0 and

β̃, δ̃ ∈ (0, 1) such that

‖ψ(t1 + s)− uσ0
(t1 + s)‖L2 ≤ C

(
l1/4 + l + q−1 + v

−β̃
0 + e−δ̃(|a0+v0t−l|+|a0+v0t+l|))

uniformly in t ∈ [t1, t2].

Proof We divide the proof into several steps.

Step 1. We start by estimating the L2 norm of the difference between the linear in-

teracting evolution and the true solution. The Duhamel formula and the unitarity of

the linear evolution imply that

‖e−isHψ(t1)− ψ(t1 + s)‖L2 =

∥∥∥∥
∫ t1+s

t1

ds ′eis ′HW ⋆ |ψ(t1 + s ′)|2ψ(t1 + s ′)

∥∥∥∥
L2

.
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Using the Strichartz estimate (2.2) and the fact that W ∈ Lp, p ≥ 2, we have

∥∥∥∥
∫ t1+s

t1

ds ′eis ′HW ⋆ |ψ(t1 + s ′)|2ψ(t1 + s ′)

∥∥∥∥
L2

≤ C‖W ⋆ |ψ(t1 + s ′)|2ψ(t1 + s ′)‖
L

1
2p ([0,s];L

2p
p+2 )

≤ Cs
1

2p ‖W ⋆ |ψ(t1 + s ′)|2ψ(t1 + s ′)‖
L∞([0,s];L

2p
p+2 )

for some constant C > 0. Applying Hölder’s inequality yields

∥∥W ⋆ |ψ(t1 + s ′)|2ψ(t1 + s ′)
∥∥

L∞

(
[0,s];L

2p
p+2

) ≤ ‖W‖Lp‖ψ(t1 + s ′)‖2
L∞([0,s];L2)

≤ C‖ψ0‖2
L2 ,

where we have used the fact that charge is conserved in the last inequality, i.e.,

‖ψ(t)‖L2 = ‖ψ0‖L2 for all t ∈ R. Therefore,

(3.19) ‖e−i·Hψ(t1)− ψ(t1 + ·)‖L∞([0,s];L2) ≤ Cs
1

2p ‖ψ0‖2
L2

uniformly in v0 > 0.

Step 2. Recall that as the soliton quits the pre-collision regime,ψ(t1) = uσ0
(t1)+w(t1).

Using the Minkowski inequality,

(3.20) ‖e−isHψ(t1)‖L2 ≤ ‖e−isHuσ0
(t1)‖L2 + ‖w(t1)‖L2 ,

where we have used the fact that ‖e−isHw(t1)‖L2 = ‖w(t1)‖L2 .

Step 3. We now investigate the linear evolution of the traveling solitary wave. We have

the following lemma.

Lemma 3.5 Under the resonance condition, we have

(3.21) e−isHuσ0
(t1) = T(v0)e−isH0 uσ0

(t1) + R(v0)e−isH0 uσ0
(t1) + E1(s) + E2(s) + E3(s),

with

‖E1‖L2 ≤ C(l + q−1), supp(E1) ∈ [l,∞),

‖E2‖L2 ≤ Cl1/4, supp(E2) ∈ [−l, l],

‖E3(s, x)‖L2 ≤ Ce−vδ0 ,

for some constant C that is independent of v0.
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Proof We use the spectral decomposition of the linear evolution in terms of the

generalized eigenfunctions e±. Let φ be an arbitrary function in L1∩L2 with support

in (−∞,−l). It follows from (1.4), (1.5), and (2.1) that

e−isHφ|x<−l = e−isH0F
−1(Rφ̂)(−x) + e−isH0φ(x).

and

e−isHφ|x>l = e−isH0F
−1(Tφ̂)(x) + Ẽ1(s, x),

where

Ẽ1(s, x) =
1

π

∫ ∞

0

dλ e−iλ2

eiλxφ̂(−λ)Re
(

T(λ)R(λ)
)
Θ(x − l)

and F−1 stands for the inverse Fourier transform.

The linear evolution of φ in the whole space can be expressed as

(3.22) e−isHφ(x) = e−isH0F
−1(Tφ̂)(x)Θ(x − l) + e−isH0F

−1(Rφ̂)(−x)Θ(−x − l)

+ e−isH0φ(x)Θ(−x − l) + Ẽ1(s, x) + Ẽ2(s, x),

where

Ẽ2(s, x) := e−isHφ(x)
(
Θ(x + l)−Θ(x − l)

)

represents the contribution between the two delta potentials.

We now apply this decomposition to the solitary wave uσ0
(t1), centered at distance

of order−vδ0 away from the origin and exponentially localized. From (3.22), we have

that

(3.23)

e−isHuσ0
(t1)(x) = e−isH0F

−1(Tûσ0
)(x)Θ(x − l) + e−isH0F

−1(Rûσ0
)(−x)Θ(−x − l)

+ e−isH0 uσ0
(x)Θ(−x − l) + E1(s, x) + E2(s, x) + E3(s, x),

where

E1(s, x) =
1

π

∫ ∞

0

dλ e−iλ2

eiλxûσ0
(t1)(−λ)Re

(
T(λ)R(λ)

)
Θ(x − l),(3.24)

E2(s, x) := e−isHuσ0
(t1, x)

(
Θ(x + l)−Θ(x − l)

)
,(3.25)

and

‖E3(s, x)‖L2 ≤ Ce−vδ0(3.26)

for some constant C that is independent of v0. The correction term E3 comes from

the exponential decay of uσ in the considered region.

We now use the fact that uσ0
is localized and ∂λT(λ) is of order O(max(l, q−1)).

Applying the mean value theorem, we have

(3.27) ‖(T(v0)− T(λ))ûσ0
(t1)‖L2 ≤ C (l + q−1)
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for some positive constant C > 0 that is independent of v0. Similarly,

(3.28) ‖(R(v0)− R(λ))ûσ0
(t1)‖L2 ≤ C (l + q−1).

At resonance, R(v0) = 0 and |T(v0)| = 1, which yields

(3.29) ‖E1‖L2 ≤ C (l + q−1).

To estimate E2, note that

‖E2‖2
L2 =

〈
uσ0

(t1), eisH(Θ(x + l)−Θ(x − l))e−isHuσ0
(t1)

〉

=
〈
ηµ0
,T−1

σ0(t1)e
isadH

(
Θ(x + l)−Θ(x − l)

)
Tσ0(t1)ηµ0

〉

=
〈
ηµ0
, ead−(a0+v0t1)∂x eadiv0x eisadH

(
Θ(x + l)−Θ(x − l)

)
ηµ0

〉

≤ ‖ηµ0
‖L2‖ead−(a0+v0t1)∂x eadiv0x eisadH

(
Θ(x + l)−Θ(x − l)

)
ηµ0
‖L2 ,

where adA f = [A, f ]. It follows that

‖E2‖L2 ≤ C‖ead−(a0+v0t1)∂x eadiv0x eisadH
(
Θ(x + l)−Θ(x − l)

)
ηµ0
‖1/2

L2

≤ C‖
(
Θ(x + l)−Θ(x − l)

)
‖1/2

L2 ≤ Cl1/4,

(3.30)

where we have used the unitarity of ead−(a0+v0t1)∂x eadiv0x eisadH in the second line. The

lemma follows from (3.23)–(3.30).

Step 4. We now use the fact that the free linear evolution generated by H0 is close

to the nonlinear evolution in the absence of the external potential over a short time

interval of interaction. The analysis is almost identical to Step 1 above. We have

(3.31)
∥∥ e−i·H0 uσ0

(t1)− uσ0
(t1 + · )

∥∥
L∞([0,s];L2)

≤ Cs
1

2p ‖ψ0‖2
L2

uniformly in v0 > 0.

Step 5. Using the fact that the traveling wave is exponentially localized in space, we

have

(3.32) ‖uσ0
(t1 + s)Θ(−x − l)‖L2 ≤ Ce−δ̃|a0+v0t+l|.

Similarly,

(3.33)
∥∥uσ0

(t1 + s)(Θ(x + l)−Θ(x − l))
∥∥

L2 ≤ Ce−δ̃(|a0+v0s+l|+|a0+v0s−l|).

The proposition follows, noting that |s| ≤ vδ−1
0 and using (3.19), (3.20), (3.21),

(3.31), (3.32), and (3.33).
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3.3 Proof of the Main Theorem

Proof Since l, q−1 = O(v−1
0 ), the main theorem follows from Propositions 3.3

and 3.4.

4 General Nonlinearities and Potential

The resonant tunneling phenomenon described in the above example of an exter-

nal potential in the form of double delta potential can be extended to more general

potentials and nonlinearities. In this section, we list sufficient assumptions for our

analysis to hold. We then remark how it is applied to another simple form of external

potential, namely the box potential.

We assume that the potential V ∈ L∞
comp ∪ L1

comp such that the resolvent RV (λ) =

(H−λ2)−1 has no poles for Imλ > 0.Also, for λ ∈ R\{0}, the equation (H−λ2)u =

0 has unique solutions e±(x, λ) satisfying

e±(x, λ) =

{
e±iλx + R(λ)e∓iλx, ±x < −l,

T(λ)e±iλx, ±x > l,

for some l > 0. The transmission and reflection coefficients T(λ) and R(λ) respec-

tively, satisfy the unitary condition |T(λ)|2 + |R(λ)|2 = 1.We assume in addition that

T and R are differentiable in λ ∈ R\{0}, and

|∂λT|, |∂λR| = O(l + q−1),

where l is a length scale that depends on the potential V, and q is a measure of the

potential’s size.

The important hypothesis concerns resonant tunneling. We assume that there ex-

ists λ0 that depends on V such that R(λ0) = 0.
The hypotheses on the nonlinearity are those essentially sufficient for the exis-

tence of a global smooth solution to the NLS equation as well as the existence, in

the absence of external potential, of an orbitally stable family of exponentially lo-

calized solitary waves with the usual symmetries (translation, gauge transformation,

and Galilean boost). For the application of Strichartz estimates, we require that for

r ∈ [2,∞],

‖ f (uσ + v)− f (uσ)‖Lr ′ ≤ C‖v‖L2 ,

‖ f (uσ)− f (uσ)− f ′(uσ)v‖Lr ′ ≤ C‖v‖2
L2 .

Remark 4.1 The above assumptions are satisfied by a box potential

V (x) = q
(
Θ(x + l)−Θ(x − l)

)
,

where Θ is the Heaviside step function. The corresponding transmission and reflec-

tion coefficients are

T(λ) = − 4λ
√
λ2 − 2qe2il(

√
λ2−2q−λ)

e4il
√
λ2−2q(λ−

√
λ2 − 2q)2 − (λ +

√
λ2 − 2q)2
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and

R(λ) =
2qe−2iλl(e4il

√
λ2−2q − 1)

e4il
√
λ2−2q(λ−

√
λ2 − 2q)2 − (λ +

√
λ2 − 2q)2

respectively. In this case, resonant tunneling occurs when 2l = nπ/
√

v2
0 − 2q for

some n ∈ N.

Remark 4.2 We note that the case of power nonlinearity f (ψ) = −|ψ|p−1ψ(p < 5)

clearly satisfies all the assumptions.
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[17] J.-L. Journé, A. Soffer, and C. D. Sogge, Decay estimates for Schrödinger operators. Comm. Pure Appl.
Math. 44(1991), no. 5, 573–604. doi:10.1002/cpa.3160440504

[18] M. Keel and T. Tao, Endpoint Strichartz inequalities. Amer. J. Math. 120(1998), no. 5, 955–980.
doi:10.1353/ajm.1998.0039

[19] M. Reed and B. Simon, Methods of modern mathematical physics. III. Scattering theory. Academic
Press, New York-London, 1979.

[20] I. Rodnianski and W. Schlag, Time decay for solutions of the Schrödinger equations with rough and
time-dependent potentials. Invent. Math. 155(2004), no. 3, 451–513.
doi:10.1007/s00222-003-0325-4

[21] R. S. Strichartz, Restrictions of Fourier transforms to quadratic surfaces and decay of solutions of wave
equations. Duke Math. J. 44(1977), no. 3, 705–714. doi:10.1215/S0012-7094-77-04430-1

https://doi.org/10.4153/CJM-2011-029-6 Published online by Cambridge University Press

http://dx.doi.org/10.1088/0951-7715/22/4/004
http://dx.doi.org/10.1063/1.2837429
http://dx.doi.org/10.1137/080732419
http://dx.doi.org/10.1007/s00220-009-0871-8
http://dx.doi.org/10.1007/s002200100579
http://dx.doi.org/10.1007/s00023-006-0263-y
http://dx.doi.org/10.1016/0022-1236(79)90077-6
http://dx.doi.org/10.1007/s00220-004-1140-5
http://dx.doi.org/10.1016/0022-1236(87)90044-9
http://dx.doi.org/10.1007/s00220-007-0261-z
http://dx.doi.org/10.1002/cpa.3160440504
http://dx.doi.org/10.1353/ajm.1998.0039
http://dx.doi.org/10.1007/s00222-003-0325-4
http://dx.doi.org/10.1215/S0012-7094-77-04430-1
https://doi.org/10.4153/CJM-2011-029-6


Resonant Tunneling of Fast Solitons 1219

[22] C. Sulem and P.-L. Sulem, The nonlinear Schrödinger equation. Self-focusing and wave collapse.
Applied Mathematical Sciences, 139, Springer-Verlag, New York, 1999.

[23] R. Weder, Lp − Lp ′

estimates for the Schrödinger equation on the line and inverse scattering for the
nonlinear Schrödinger equation with a potential. J. Funct. Anal. 170(2000), no. 1, 37–68.
doi:10.1006/jfan.1999.3507

(Abou Salem) Department of Mathematics, University of British Columbia, Vancouver, BC, V6T 1Z2

Current address:

Department of Mathematics and Statistics, University of Saskatchewan, Saskatoon, SK S7N 5E6
e-mail: abousalem@math.usask.ca

(Sulem) Department of Mathematics, University of Toronto, Toronto, ON, M5S 2E4
e-mail: sulem@math.utoronto.ca

https://doi.org/10.4153/CJM-2011-029-6 Published online by Cambridge University Press

http://dx.doi.org/10.1006/jfan.1999.3507
https://doi.org/10.4153/CJM-2011-029-6

