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Abstract

Background. Although aberrant brain regional responses are reported in social anxiety
disorder (SAD), little is known about resting-state functional connectivity at the macroscale
network level. This study aims to identify functional network abnormalities using a multivari-
ate data-driven method in a relatively large and homogenous sample of SAD patients, and
assess their potential diagnostic value.
Methods. Forty-six SAD patients and 52 demographically-matched healthy controls (HC)
were recruited to undergo clinical evaluation and resting-state functional MRI scanning.
We used group independent component analysis to characterize the functional architecture
of brain resting-state networks (RSNs) and investigate between-group differences in intra-/
inter-network functional network connectivity (FNC). Furtherly, we explored the associations
of FNC abnormalities with clinical characteristics, and assessed their ability to discriminate
SAD from HC using support vector machine analyses.
Results. SAD patients showed widespread intra-network FNC abnormalities in the default mode
network, the subcortical network and the perceptual system (i.e. sensorimotor, auditory and visual
networks), and large-scale inter-network FNC abnormalities among those high-order and pri-
mary RSNs. Some aberrant FNC signatures were correlated to disease severity and duration, sug-
gesting pathophysiological relevance. Furthermore, intrinsic FNC anomalies allowed individual
classification of SAD v. HC with significant accuracy, indicating potential diagnostic efficacy.
Conclusions. SAD patients show distinct patterns of functional synchronization abnormal-
ities both within and across large-scale RSNs, reflecting or causing a network imbalance of
bottom-up response and top-down regulation in cognitive, emotional and sensory domains.
Therefore, this could offer insights into the neurofunctional substrates of SAD.

Introduction

Social anxiety disorder (SAD) is characterized by disproportionate fear, anxiety and avoidance
behaviour in social/performance situations (Stein & Stein, 2008), resulting in various
emotional, cognitive and behavioural disabilities (Ruscio et al., 2008). Lifetime prevalence is
7–12% (Stein & Stein, 2008), often with comorbid psychopathology such as other anxiety
disorders, major depressive disorder and substance abuse (Meier et al., 2015). SAD is typically
chronic, and therapeutic options are limited (Penninx, Pine, Holmes, & Reif, 2021). This has
prompted research into its neurobiological underpinnings, where the non-invasive methods of
magnetic resonance imaging (MRI), especially functional MRI (fMRI), are particularly useful
(Bas-Hoogendam et al., 2022; Zugman et al., 2022). This approach has demonstrated hyper-
activation of the fronto-limbic circuitry (‘fear circuitry’) of prefrontal cortex (PFC), anterior
cingulate cortex (ACC), insula and amygdala (Etkin & Wager, 2007), and more recently hyper-
activation also of medial parietal and occipital regions (posterior cingulate, precuneus and
cuneus) and hypoconnectivity of parietal, limbic and executive network regions (Bruhl,
Delsignore, Komossa, & Weidt, 2014). This work supports a model in which dysfunctional
bottom-up response and top-down regulation underlie the emotional hyper-arousal and
impaired cognitive processing characteristic of SAD (Bas-Hoogendam & Westenberg, 2020;
Bruhl et al., 2014; Etkin, 2012; Gentili et al., 2016).

Nevertheless, most of this evidence has come from task-fMRI, while it remains to be eluci-
dated whether a similar pattern of functional alterations occurs in resting-state brain physiology
as probed by resting-state fMRI (rs-fMRI), which offers a distinct perspective on the intrinsic
neurobiology of SAD free from potential confounding effects of task performance (Smitha
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et al., 2017; Zhang et al., 2022a). In a recent systematic review of
rs-fMRI studies of SAD (Mizzi, Pedersen, Lorenzetti, Heinrichs,
& Labuschagne, 2022), the most consistent findings were aberrant
activity in frontal regions and abnormal connectivity between
frontal lobe and amygdala/parietal regions, suggesting that the clas-
sic model (Bruhl et al., 2014; Etkin & Wager, 2007) based on
task-fMRI does not completely explain the resting-state neurobiol-
ogy of SAD, and highlighting the need for more rs-fMRI studies
with larger, homogenous samples and consistent analytic
approaches (Mizzi et al., 2022).

Besides, it is increasingly recognized that the brain works as a
system of interacting information-sharing networks (Damoiseaux
et al., 2006; Lai et al., 2022). Functional connectivity (FC), index-
ing the temporal coherence of the haemodynamic activity of spa-
tially remote brain areas (Biswal, Yetkin, Haughton, & Hyde,
1995), is widely used to characterize functional interactions
among brain networks (Suo et al., 2022; Van Dijk et al., 2010),
with two main technical approaches: seed/region of interest
(ROI)-based calculation and independent component analysis
(ICA). The first approach is vulnerable to the variability of ROI
location, size and shape, as well as inter-subject anatomical vari-
ation (He et al., 2016), to which the multivariate data-driven
method of ICA, which can identify a battery of maximally
spatially-independent but temporally-coherent components (i.e.
intrinsic functional networks), is largely immune (Calhoun,
Adali, Pearlson, & Pekar, 2001). Hence, characterizing intra-
and inter-network functional network connectivity (FNC) using
ICA is a powerful tool to probe macroscale functional integra-
tion/dissociation in the normal and abnormal brain (Cai et al.,
2021; Fox & Raichle, 2007; Houck et al., 2017; Huang et al.,
2018). However, to the best of our knowledge, only three studies
have used ICA and rs-fMRI in SAD; one investigated the intrinsic
FNC as candidate endophenotype in families genetically enriched
for SAD, in which most (22/39) subjects were diagnosed with sub-
clinical SAD, and had psychiatric comorbidity (Bas-Hoogendam,
van Steenbergen, Cohen Kadosh, Westenberg, & van der Wee,
2021); the other two studies had relatively small sample size
(18 and 20 SAD patients) (Geiger et al., 2016; Liao et al., 2010).

In this study, we acquired rs-fMRI data and used ICA to
characterize intrinsic intra-/inter-network FNC abnormalities in a
relatively large and homogenous sample of adult subjects with
SAD (n = 46). We also explored the associations of FNC abnormal-
ities with clinical characteristics. Lastly, we used machine learning to
investigate the potential diagnostic efficacy of those FNC signatures.
We hypothesized that: (i) SAD patients, compared with healthy
controls (HC), would show FNC impairments mainly in default
mode network (DMN), frontal parietal network (FPN), salience net-
work (SN) and subcortical network (SCN), previously shown to be
abnormal in SAD (Bas-Hoogendam et al., 2021; Geiger et al., 2016;
Liao et al., 2010; Mizzi et al., 2022; Xu et al., 2019; Yang et al., 2019);
(ii) altered FNC would be related to clinical features (e.g. symptom
severity); and (iii) intrinsic FNC markers would have good sensitiv-
ity and specificity for SAD diagnosis.

This study is a follow-up analysis of data from a
previously-reported cohort (Zhang et al., 2022b), with different
aims and methods. The present study used data-driven methods
(ICA) to characterize whole-brain resting-state networks (RSNs)
and explore intra-/inter-network FNC abnormalities at the level of
large-scale networks; by contrast the previous study aimed to deter-
mine whole-brain voxel-wise FC abnormalities based on predefined
ROIs which were brain regions with grey matter volume deficits, dri-
ven by the hypothesis that brain structural abnormalities may give

rise to clinical syndromes via disruption of FC (Gong, 2020; Lui,
Zhou, Sweeney, & Gong, 2016).

Methods

Participants

We recruited 49 right-handed adult SAD patients without any
comorbid psychiatric disorders from the Mental Health Center
of the West China Hospital at Sichuan University. In accordance
with the criteria of Diagnostic and Statistical Manual of Mental
Disorders, Fourth Edition (DSM-IV), the diagnosis of SAD was
established by two experienced clinical psychiatrists through the
Structured Clinical Interview for DSM Disorders (SCID).
According to the power analysis using G Power software (Faul,
Erdfelder, Lang, & Buchner, 2007), a medium-sized effect with
adequate statistical power (Cohen’s d = 0.5, α = 0.05, 1–β = 0.8)
using an independent-sample t test required at least 102 subjects.
Considering this, we recruited 53 demographically-matched (i.e.
sex, age and handedness) HC from the local community for com-
parison analysis, using the SCID-Non-Patient Version to confirm
the lifetime absence of psychiatric and neurological diseases. The
exclusion criteria for all participants were: (1) comorbidity with
other axis I psychiatric disorders, axis II antisocial or borderline
personality disorders (verified by SCID); (2) currently receiving
psychopharmacological/psychological therapy; (3) history of
substance dependence or abuse; (4) learning or developmental
disorders; (5) history of head injury; (6) current major neuro-
logical or physical diseases; (7) family history of mental disorders;
and (8) current pregnancy, claustrophobia or other contraindica-
tions to MRI examination. Individuals were also excluded if they
were aged under 18 or over 60 years, to minimize age-related
effects. Notably, several other analyses of MRI data from these
participants have been reported: resting-state functional network-
based statistic and graph-theory analyses (Yang et al., 2019), ana-
lyses of cortical thickness and surface area (Zhang et al., 2020)
and grey matter volume and seed-based FC analyses (Zhang
et al., 2022b), with the results reported in the cited papers.

Illness duration was defined as the period between the first
reported/observed alterations in psychological/behaviour state to
the development of disease when the patients participated in the
study (Singh et al., 2005), information being provided by patients,
family members and medical records. Social anxiety was evaluated
with the self-reported Liebowitz Social Anxiety Scale (LSAS)
(Mennin et al., 2002), the most commonly-used clinical scale in
SAD studies; the 24-item LSAS provides scores for fear factor
(LSASF) and social avoidance factor (LSASA), their sum being
the total score (LSAST). LSAS has shown good validity and reliabil-
ity in Chinese populations (He & Zhang, 2004).

All procedures complied with the ethical standards of the rele-
vant national and institutional committees on human experimen-
tation and with the Helsinki Declaration of 1975, as revised in
2008. This study was approved by the Medical Research Ethics
Committee of West China Hospital at Sichuan University. After
a full explanation of all procedures, all subjects provided written
informed consent to participate.

Image acquisition and pre-processing

Image acquisition
This study used an SAD dataset in which we acquired high-
resolution three-dimensional T1-weighted images, rs-fMRI data
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and diffusion tensor imaging sequentially on a 3.0 T MR scanner
(Siemens Trio, Erlangen, Germany) with a 12-channel head coil.
Before the scans, the subjects were instructed to lie still, keep their
eyes closed and to stay relaxed but awake. Earplugs were used to
reduce scanner noise, and foam pads to minimize head motion.
High-resolution three-dimensional T1-weighted images were
acquired with a spoiled gradient-recalled sequence with the
following parameters: repetition time (TR)/echo time (TE)
1900ms/2.26ms, flip angle 9°, 176 sagittal slices, slice thickness
1mm, field of view (FOV) 240 × 240mm2, data matrix 256 × 256,
voxel size 1 × 1 × 1mm3, in-plane resolution 0.94 × 0.94mm2. The
rs-fMRI data were obtained with a gradient echo-planar imaging
sequence: TR/TE 2000ms/30ms; flip angle 90°; acquisition matrix
64 × 64; FOV 240 × 240mm2; thickness 5.0 mm, without gap;
voxel size 3.75 × 3.75 × 5mm3; 205 volumes. Each scan was
inspected by an experienced neuroradiologist to rule out visible
artefacts and lesions.

Image pre-processing
First, the rs-fMRI data were pre-processed using the Data
Processing Assistant for Resting-State fMRI (DPARSF 4.3,
http://rfmri.org/DPARSF), which is based on Statistical
Parametric Mapping software (SPM12; Welcome Department of
Cognitive Neurology, London, UK; http://www.fil.ion.ucl.ac.uk/
spm/) (Ashburner & Friston, 2005) and the toolbox for Data
Processing and Analysis of Brain Imaging (DPABI, http://rfmri.
org/DPABI) (Yan, Wang, Zuo, & Zang, 2016). Briefly, this
includes (1) removal of the first 10 volumes and slice timing cor-
rection; (2) realignment and correction for head motion (three
SAD patients and one HC with head motion above 2.5 mm or
2.5° in any direction were excluded), in which we also calculated
the frame-wise displacement (FD) to summarize the head motion;
(3) spatial normalization to Montreal Neurological Institute space
including the new segmentation and Diffeomorphic Anatomical
Registration Through Exponentiated Lie algebra (DARTEL)
(Ashburner, 2007); (4) resampling into 3 × 3 × 3mm3 and spatial
smoothing with a 8 mm full-width at half-maximum Gaussian
kernel.

Independent component analysis
Spatial group ICA (GICA) was performed to parcellate the
rs-fMRI data using GIFT software (http://mialab.mrn.org/soft-
ware/gift/), and the number of independent components (ICs)
was estimated automatically by the software, in which spatial
GICA decompose the individual data into spatial ICs with a
unique time course profile (Kiviniemi et al., 2009). Briefly: (1)
Individual rs-fMRI data were decomposed through principal
component analysis for dimension reduction into principal com-
ponents. (2) The infomax algorithm was applied to the reduced
data of all participants to concatenate across time and decompose
data, the concatenated subject-reduced data being decomposed
into 24 ICs: this algorithm was repeated 20 times using
ICASSO (http://research.ics.tkk.fi/ica/icasso/) to improve estima-
tion reliability, selecting the most central run for further analyses
(Himberg, Hyvärinen, & Esposito, 2004). (3) A GICA back-
reconstruction approach was used to produce subject-specific
time courses and spatial ICs maps (Allen, Erhardt, Wei,
Eichele, & Calhoun, 2012). The ICs were identified as meaningful
if they had peak activations in grey matter with low spatial overlap
with known vascular, ventricular, motion, susceptibility artefacts
and edges, in addition to the domination of low-frequency
power (Allen et al., 2014). To sort the meaningful ICs into

different RSNs, RSNs templates were used as the reference for
multiple regression with the ICs using the ‘sort components’
tool of the GIFT toolbox, in which greater regression coefficient
indicates more similarity to the RSNs (Liao et al., 2010; Wang
et al., 2020a). Eventually, 15 out of 24 ICs were characterized as
15 RSNs (Fig. 1), including anterior and posterior default mode
network (aDMN and pDMN); left and right frontoparietal net-
work (lFPN and rFPN); dorsal and ventral attention network
(DAN and VAN); anterior and posterior salience network (aSN
and pSN); SCN; auditory network (AUN); dorsal and ventral sen-
sorimotor network (dSMN and vSMN); medial, lateral and pos-
terior visual network (mVN, lVN and pVN). (4) Finally, before
network-wise FC analyses, time courses of identified RSNs under-
went additional post-processing procedures including de-trending
linear, quadratic and cubic trends; de-spiking detected outliers;
and low-pass filtering with a cut-off of 0.15 Hz (Wang et al.,
2020a).

Network-wise functional connectivity analyses

Intra-network FNC analyses
Intra-network connectivity, representing the contribution of the
time course to each voxel comprising a corresponding component
(Wang et al., 2021), was calculated using the spatial maps.
Specifically, all subjects’ spatial maps for each RSN were entered
into a random-effect one-sample t test. Brain regions were identi-
fied within each corresponding RSN when they met a threshold of
family-wise error (FWE)-corrected p < 0.001 in combination with
a proper extent threshold for multiple comparisons. Then, voxel-
wise comparisons of intra-network FNC between SAD patients
and HC were performed using independent-sample t test with
age, sex and mean FD as covariates of no interest in SPM12.
The FWE approach was used to control for multiple comparisons
with a significance threshold of voxel-wise p < 0.001 and
FWE-corrected p < 0.05 at cluster level (Hayasaka & Nichols,
2003; Woo, Krishnan, & Wager, 2014).

Inter-network FNC analyses
Inter-network FNC was computed as the correlation coefficient
between the time courses of the RSNs, thus constructing a sym-
metric 15 × 15 inter-network FNC matrix for each individual.
The FNC matrices were z-normalized using Fisher’s r-to-z trans-
formation to improve the normality of the partial correlation
coefficients. Finally, between-group differences of inter-network
FNC were compared using independent-sample t test after con-
trolling for age, sex and mean FD. The false discovery rate
(FDR) approach was used to correct for multiple comparisons
with a significance threshold of p < 0.05 (Benjamini & Yekutieli,
2001).

Clinical relevance analyses
To identify the relationships between the intrinsic FNC impair-
ments and clinical features, the intra-/inter-network FNC values
with significant between-group differences were extracted respect-
ively, then partial correlation analyses were conducted between
the aforementioned FNC values and clinical characteristics (i.e.
LSAST, LSASA, LSASF and disease duration) with sex, age and
mean FD as covariates in the SAD group, using IBM SPSS
Statistics 22.0.
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Machine learning analyses
To explore the potential diagnostic value of intrinsic FNC with
significant between-group differences, support vector machine
(SVM) analyses (Cortes & Vapnik, 1995) were conducted to
investigate how well FNC could differentiate SAD v. HC at the
individual level. In brief: (1) Each subject’s average intra-network
FNC of each cluster and inter-network FNC values that showed
significant between-group differences were regarded as features
for model training. (2) Leave-one-out cross-validation was used
to separate training and testing sets. (3) Data normalization was
performed on the feature matrix to guarantee that the features
were at the same magnitude for subsequent analyses. (4) The

SVM optimal hyperparameter (i.e. soft margin parameter C)
was selected on the training sets. (5) The SVM classification algo-
rithm with a linear kernel was used to determine the hyperplane
maximizing the margin between binary classes in the feature
space, and the classification strategy learned from the training
sample was used to predict individual classification in testing
sets. (6) The classification performance of the model was assessed
using sensitivity, specificity and total accuracy based on testing
sets. The receiver operating characteristic (ROC) curve was also
constructed, in which the area under the ROC curve (AUC)
was calculated for quantification. (7) Non-parametric permuta-
tion test (5000 times) was applied to estimate statistical signifi-
cance for the machine learning model. All these procedures
were conducted in LIBSVM for support vector classification
(Chang & Lin, 2011). More details are available in online
Supplementary Materials.

Results

Demographic and clinical characteristics

There were no significant group differences (SAD patients v. HC)
in sex composition and age; as expected, SAD patients scored sig-
nificantly higher on LSAS (Table 1). There were no significant
group differences in mean FD [t = 0.519, p = 0.605].

Group differences in intra-network FNC

SAD patients, compared to HC, had significantly increased intra-
network FNC in aDMN (right superior frontal gyrus, mainly in

Fig. 1. Spatial maps of 15 selected independent components. In parentheses are the peak coordinates (X, Y, Z) of corresponding components. Abbreviations: aDMN,
anterior default mode network; aSN, anterior salience network; AUN, auditory network; DAN, dorsal attention network; dSMN, dorsal sensorimotor network; lFPN,
left frontoparietal network; lVN, lateral visual network; mVN, medial visual network; pDMN, posterior default mode network; pSN, posterior salience network; pVN,
posterior visual network; rFPN, right frontoparietal network; SCN, subcortical network; VAN, ventral attention network; vSMN, ventral sensorimotor network.

Table 1. Demographics and clinical characteristics of participants

Characteristics SAD (N = 46) HC (N = 52) p value

Sex (Male/Female) 28/18 30/22 0.749a

Age (years) 24.8 ± 5.3 23.3 ± 3.1 0.07b

Illness duration (years) 7.1 ± 4.2 – –

LSAST 65.6 ± 23.4 18.6 ± 8.5 <0.001b

LSASF 32.6 ± 11.6 10.3 ± 5.3 <0.001b

LSASA 32.6 ± 12.8 8.3 ± 6.1 <0.001b

HC, healthy controls; LSAST, LSASF and LSASA, total score and fear and avoidance factor
scores on the Liebowitz Social Anxiety Scale (LSAS); SAD, social anxiety disorder.
Continuous variables are presented as the means ± standard deviations.
ap value obtained using a χ2 test.
bp value obtained using an independent-sample t test.
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mPFC) and AUN [right superior temporal gyrus (STG)]. SAD
patients had significantly decreased intra-network FNC in
pDMN (left precuneus), AUN [left inferior parietal lobe (IPL)],
dSMN (bilateral paracentral/right precentral gyrus and left post-
central gyrus), lVN [right inferior occipital gyrus (IOG)/fusiform
gyrus (FFG)], mVN and pVN (mainly including bilateral calcar-
ine cortex) and SCN (right caudate) (Fig. 2 and online
Supplementary Table S1).

Group differences in inter-network FNC

SAD patients, compared to HC, had significantly increased
inter-network FNC between SCN and lFPN, DAN, VAN, mVN.
SAD patients had significantly decreased inter-network FNC
between aDMN and pDMN, DAN, dSMN; between pDMN and
pVN; between lFPN and dSMN; between DAN and vSMN;
between dSMN and vSMN, AUN, mVN, lVN; between vSMN
and AUN, mVN, lVN; and between AUN and mVN, lVN,
pVN (Fig. 3).

Clinical correlates of intrinsic FNC

Among the 12 significant intra-network FNCs and 20 significant
inter-network FNCs, after controlling for the confounders of sex,
age and mean FD, the intra-network FNC of mVN (i.e. left
calcarine cortex) was significantly positively correlated with illness
duration (r = 0.313, p = 0.041); the inter-network FNC of
vSMN-mVN was positively correlated with illness duration (r =
0.325, p = 0.034); significant positive correlations were also
observed between inter-network FNC of mVN-SCN and LSAST
(r = 0.317, p = 0.038) and also LSASA (r = 0.411, p = 0.006)
(online Supplementary Fig. S1). None of these results survived
correction for multiple tests at FDR-corrected p < 0.05.

Single-subject classification of SAD patients v. HC

The accuracy of SVM classification for SAD v. HC based on the
significant intrinsic FNC was highly significantly above chance
( p < 0.001); the intra-network FNC demonstrated the best per-
formance with total accuracy 86.7%, sensitivity 91.3%, specificity

Fig. 2. Brain regions with significant differences of intrinsic intra-network functional connectivity between SAD patients and HC. All clusters survived correction for
multiple comparisons with a significance threshold of a voxel-wise value of p < 0.001 and a family-wise error-corrected p < 0.05 at cluster level. Warm colours (posi-
tive values) represent increased intrinsic functional connectivity, cooler colours (negative values) decreased intrinsic functional connectivity, in SAD patients com-
pared to HC. Abbreviations: aDMN, anterior default mode network; AUN, auditory network; dSMN, dorsal sensorimotor network; FFG, fusiform gyrus; HC, healthy
controls; IOG, inferior occipital gyrus; IPL, inferior parietal lobe; lVN, lateral visual network; mVN, medial visual network; pDMN, posterior default mode network;
pVN, posterior visual network; SAD, social anxiety disorder; SCN, subcortical network; SFG, superior frontal gyrus; STG, superior temporal gyrus.
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88.5% and AUC 94.4% (Fig. 4 and online Supplementary
Table S2).

Discussion

To the best of our knowledge, this is the first study to investigate
intrinsic FNC at resting-state in a relatively large and homoge-
neous sample of patients with SAD. SAD patients had intra-
network FNC abnormalities mainly in aDMN, pDMN, SCN
and the perceptual system (SMN, AUN and VN) and large-scale
inter-network FNC abnormalities among DMN, FPN, AN, SCN,
SMN, VN and AUN. Abnormal FNC were correlated to SAD
severity and duration, suggesting pathophysiological relevance.

Furthermore, intrinsic FNC anomalies allowed individual classifi-
cation of SAD v. HC with significant accuracy, suggesting poten-
tial diagnostic efficacy. These findings offer some insights into the
neurobiology of SAD, as we discuss briefly below.

Intra-network FNC abnormalities in SAD

At the intra-network level, we found increased intrinsic FNC in
aDMN (mPFC), in combination with decreased FNC in pDMN
(precuneus), which is broadly consistent with previous reports
in SAD (Bas-Hoogendam, van Steenbergen, Tissier, van der
Wee, & Westenberg, 2020; Heitmann et al., 2016; Liu et al.,
2015b; Mizzi et al., 2022). The DMN plays a critical role in

Fig. 3. Results of inter-network functional connectivity analyses. (a) Inter-network functional connectivity matrix. Pairwise correlations between resting-state func-
tional networks were averaged across participants. (b) Between-group differences of inter-network functional connectivity between SAD patients and HC. Warmer
colours represent increased inter-network FNC, cooler colours decreased inter-network FNC in social anxiety disorder compared to healthy controls. Abbreviations:
aDMN, anterior default mode network; aSN, anterior salience network; AUN, auditory network; DAN, dorsal attention network; dSMN, dorsal sensorimotor network;
lFPN, left frontoparietal network; lVN, lateral visual network; mVN, medial visual network; pDMN, posterior default mode network; pSN, posterior salience network;
pVN, posterior visual network; rFPN, right frontoparietal network; SCN, subcortical network; VAN, ventral attention network; vSMN, ventral sensorimotor network.

Fig. 4. Single-subject classification of SAD patients v. HC. Abbreviations: AUC, area under the receiver operating characteristic curve; FNC, functional network con-
nectivity; HC, healthy controls; SAD, social anxiety disorder.
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self/other-referential judgements, emotional processing, recol-
lection of experiences and analysis of others’ mental states
(Raichle, 2015), and is involved in other social, affective and
introspective processes (Amft et al., 2015): aDMN is mainly
involved in self/other-referential judgements, while pDMN is
implicated in autobiographical/episodic memory retrieval and
scene construction (Xu, Yuan, & Lei, 2016). It is tempting to
relate abnormal FNC in DMN to functional cognitive models
of disturbed self-evaluative and referential processes, such as
maladaptive self-focused attention, emotional hyperarousal in
combination with defective top-down regulation, post-event
rumination, excessive focus and unreasonable speculation on
others’ intentions and facial expressions (Cremers & Roelofs,
2016).

Besides, consistent with extant literature (Finlayson-Short,
Harrison, & Davey, 2021; Hjorth et al., 2021; Xu et al., 2019), dys-
functional intrinsic connectivity in the caudate nucleus (ventral
striatum) was observed in SAD patients. The striatum is linked
to many important functions including motor and cognitive con-
trol, emotional regulation, social learning and reward-related
motivation processing (Lago, Davis, Grillon, & Ernst, 2017; Pan
et al., 2021; Pennartz et al., 2009); recruitment of reward system
(including ventral striatum) is also involved in self-referential pro-
cessing, particularly when external stimuli are considered to be
self-related (Northoff & Hayes, 2011). In this sense, intrinsic
FNC abnormality in caudate nucleus may underlie imbalance of
the neural approach-avoidance motivation system and self-
referential mental activity in SAD (Xu et al., 2019).

Further, we found abnormal intrinsic FNC in the perceptual/
sensory system, mainly dSMN (bilateral paracentral/right precen-
tral gyrus and left postcentral gyrus), AUN (right STG and left
IPL) and VN [lVN (right IOG/FFG), mVN and pVN (bilateral
calcarine cortex)]. Abnormal activity and connectivity involving
SMN, AUN and VN is reported in SAD, both in response to
socially threatening stimuli and at rest (Dixon et al., 2020;
Goldin, Manber, Hakimi, Canli, & Gross, 2009; Liao et al.,
2010; Liu et al., 2015a; Phan, Fitzgerald, Nathan, & Tancer,
2006; Zhang et al., 2022b), and in one report the response to
pharmacotherapy was associated with altered neural activation
of this perceptual/sensory system in a social anxiety imagery
task (Kilts et al., 2006). The SMN is important in the analysis
of others’ communicative intentions from perceptual cues
including gaze direction, body gesture and facial expression
(Conty, Dezecache, Hugueville, & Grezes, 2012). Consequently,
dysconnectivity in SMN may be related to gaze avoidance towards
emotional stimuli in SAD (Weeks, Howell, & Goldin, 2013).
Additionally, AUN is considered to be involved not only in
auditory information perception and processing but also social
cognition (mnemonic and attentional) of fearful experiences
(Quirk, Armony, & LeDoux, 1997): for instance, STG (the core
component of AUN) demonstrated aberrant activation and dys-
connectivity in anxiety patients actively listening to threat-related
words (Zhao, Xi, Wang, Li, & He, 2014). In this sense, our results
of impaired intra-network connectivity in AUN may indicate
abnormal auditory information perception and social cognitive
processing in SAD. Furthermore, VN is crucial in social informa-
tion processing: for example, the FFG, part of the lVN responsible
for the perception of emotions in facial stimuli (Gomez et al.,
2017) and facial emotion processing, is usually abnormal in
SAD (Machado-de-Sousa et al., 2010). Our results therefore
offer further evidence for perceptual impairments and compro-
mised social information processing in SAD.

Inter-network FNC abnormalities in SAD

An optimal balance between functional specialization (intra-
network synchronization) and integration (inter-network coupling)
during the dynamic interactions of multiple networks is essential to
high-level affective and cognitive processes (Berman et al., 2016).
Even for networks (e.g. FPN, AN) whose intrinsic intra-network
connectivity did not alter in SAD, we found striking large-scale
inter-network connectivity abnormalities.

The DMN consists of two subsystems (aDMN and pDMN)
that interact with a common core system, of which the mPFC
and PCC are the respective hubs (Andrews-Hanna, Reidler,
Sepulcre, Poulin, & Buckner, 2010). The former is mainly
involved in self/other-referential judgements, while the latter is
implicated in autobiographical/episodic memory retrieval and
scene construction (Xu et al., 2016). Proper coupling of aDMN
and pDMN is vital for normal brain functioning (D’Argembeau
et al., 2010), and this is aberrant in several neuropsychiatric dis-
orders (Hare et al., 2019; Wang et al., 2020b; Zhang et al.,
2015). Our finding of decreased FNC between aDMN and
pDMN may reflect a disrupted functional coupling, underpinning
dysfunctional DMN-related clinical manifestations in SAD (e.g.
maladaptive self-evaluative events and referential processes).

The task-negative DMN is deactivated during goal-directed
behaviour with focused attention (Raichle, 2015), whereas the
anti-correlated task-positive DAN has a top-down role in managing
rules and goals during externally directed tasks (Turner & Spreng,
2012). These systems work competitively, switching between
internally and externally oriented cognitive processing (Fox et al.,
2005), contributing to cognitive control, emotional regulation and
episodic memory performance (Anticevic et al., 2012; Kragel &
Polyn, 2015). Our finding of decreased FNC between aDMN and
DAN may reflect disrupted switching between internally and exter-
nally oriented cognitive control and emotional regulation in SAD.

SAD patients demonstrated increased inter-network FNC
between SCN and lFPN, DAN, VAN and mVN. In the latest neu-
rocircuitry model, core characteristics of SAD are bottom-up
hyper-response and top-down reduced regulation efficiency, lead-
ing to emotional hyper-arousal and diminished cognitive control
(Bruhl et al., 2014). In support of this, hypo-activation in the
high-order cortical areas and hyper-activation in the subcortical
regions, as well as decreased FC of cortical–subcortical circuitry
have been widely reported in SAD (Mizzi et al., 2022; Zhang
et al., 2022b). Nevertheless, we found increased connectivity in
the cortical–subcortical circuit (i.e. SCN-lFPN/DAN/VAN). As
increased connectivity is usually taken to indicate increased coup-
ling and integrated communication (i.e. enhanced potential for
top-down control and modulation), an appealing explanation is
that top-down control modulation is increased but still fails to
compensate for heightened social anxiety, perhaps due to dis-
turbed structural connectivity or insufficient strong enough con-
trol (Bruhl et al., 2014; Yang et al., 2019).

We also found dysconnectivity among higher-order cognitive
control systems (e.g. DMN, lFPN, DAN) and the primary percep-
tual/sensorimotor system (e.g. mVN, lVN, pVN, dSMN, vSMN,
AUN). SAD patients suffer from persistent cognitive biases
regarding socially threatening cues, notably faces and voices
(Morrison & Heimberg, 2013). There is substantial evidence for
involvement of perceptual/sensorimotor system in emotion per-
ception and experience (Hardee et al., 2017), perception of fear
expression in faces (i.e. for processing social face signals)
(Pourtois et al., 2004) and emotional regulation in responses to
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threat-related information (Kropf, Syan, Minuzzi, & Frey, 2019).
Impaired processing for sensory/perceptual integration of audio-
visual signals in corresponding sensorimotor cortices and dis-
rupted cognitive modulation in the higher integrative networks
is responsible for clinical signs of hypervigilance towards social
stimuli, exaggerated fear responses and consequent avoidance
behaviour (Kreifelts et al., 2019; Kreifelts et al., 2020). In short,
abnormalities within and across sensorimotor/perceptual-
cognitive interactions result in inappropriate processing of exter-
nal social signal, abnormal emotional arousal and cognitive bias.
It may be, therefore, that the decreased FNC between the
cognitive-control and sensorimotor/perceptual systems underlies
hypervigilance towards threateningly social stimuli, persistent
heightened attentiveness to sensory input, disrupted perceptual
analysis of sensory events and dysfunctional cognitive control in
SAD (Miskovic & Schmidt, 2012).

These results make an interesting comparison with our previ-
ous seed-based rs-fMRI analysis in these patients (Zhang et al.,
2022b). That demonstrated decreased FC between SCN with the
components of DMN (PFC/ACC and cerebellum), with part of
the SMN (supplementary motor area), and increased FC between
SCN and temporal lobe (Zhang et al., 2022b); the present
ICA-based study shows widespread inter-network FNC abnor-
malities among higher-order cognitive control systems (e.g.
DMN, lFPN, DAN, VAN and SCN) and the primary percep-
tual/sensorimotor system (e.g. mVN, lVN, pVN, dSMN, vSMN,
AUN). The likeliest reason for these seeming discrepancies is
that the two analyses were conducted by different methods and
at different levels of brain patterns: the seed-based approach
investigates the single interaction between the predefined ROI
and each whole-brain voxel, while the ICA investigates multiple
simultaneous voxel-to-voxel interactions among large-scale net-
works (Smith et al., 2013; Smitha et al., 2017).

FNC as a potential diagnostic biomarker for SAD

We present the first evidence, to our knowledge, that intrinsic
abnormal FNC (especially the intra-network FNC) allows individ-
ual classification of SAD v. HC with significant accuracy. Machine
learning is a promising tool to help clinicians develop
neuroimaging-based biomarkers for early diagnosis in clinical
practice (Chen et al., 2020; Frick et al., 2014; Liu et al., 2015a;
Zhan et al., 2021), and could potentially guide early diagnosis
and interventions to improve the quality of life of SAD patients
(Bas-Hoogendam & Westenberg, 2020; Etkin, 2019).
Considering the prevalent comorbidity of other neuropsychiatric
disorders in SAD, future research should investigate whether
our findings are selective for SAD, rather than trans-diagnostic
characteristics of psychiatric disorders.

Limitations and future directions

This study has several limitations. First, the cross-sectional
design precludes it from explicit causal inference. This will
need longitudinal studies recruiting both SAD patients and indi-
viduals with high susceptibility to developing SAD (e.g. based on
the genotypes and endophenotypes (Bas-Hoogendam et al.,
2016)). Second, it would have been desirable to measure (and
use to match with HC) general cognitive ability (e.g. general
intelligence). Nevertheless, as there is no definite evidence that
SAD patients suffer from intellectual impairment (Stein &
Stein, 2008), we do not expect the general intelligence is a

significant confounder. Third, although medium-sized effects
were expected based on power analysis (as far as we know, the
present study is the relatively large single-centre study investigat-
ing intrinsic FNC deficits using ICA in non-comorbid SAD
patients), our sample size is smaller than some recent studies
in other psychiatric disorders. A major reason for this is the
strictness of our inclusion criteria: we studied only adult SAD
patients without any comorbid disorders, in the hope of probing
the specific neurofunctional underpinnings of SAD, which may
also restrict the generalizability of our findings. This will require
specific investigation on the potential effects of those demo-
graphic confounded factors on intrinsic functional anomaly in
SAD in the future, and our results need further replication via
a larger sample. Fourth, considering that SAD typically evolves
during late childhood and early adolescence, it remains
unknown how applicable these findings on adults are to adoles-
cents; establishing this will require similar studies of child and
adolescent SAD patients. Fifth, our rs-fMRI findings showed
considerable overlap with those of previous task-fMRI studies,
indicating that some aberrant intrinsic network connectivity as
disturbed function for SAD can also be observed at rest, yet it
remains elusive how the two aspects relate, and this merits future
study to investigate the exact relationship between intrinsic net-
work connectivity from task-fMRI and rs-fMRI. Sixth, our
machine learning results are more of a preliminary exploration
on the potential diagnostic value of intrinsic FNC, and will
need extending with external validation samples in future classi-
fication studies. Finally, it needs to be clarified whether current
results could have been confounded by examination-related anx-
iety during the MRI scans; future studies could usefully evaluate
the psychophysiological reactions of participants before, during
and after the MRI examination.

Conclusions

Using data-driven ICA and SVM analyses, this study identified in
SAD patients intrinsic FNC abnormalities within and across
large-scale brain functional networks involving not only the high-
order cognitive networks (e.g. DMN, FPN, DAN, VAN and SCN)
but also the primary perceptual networks (e.g. VN, SMN and
AUN), some of which were correlated to symptom severity and
disease duration. Aberrant intrinsic FNC might be useful to dis-
criminate SAD from HC at individual level. This study offers
some insights into the neurobiology of SAD, which may help to
identify neurofunctional biomarkers for its clinical diagnosis.
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