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PRESSURE TRANSIENTS IN AN IDEALISED
HORIZONTAL TWO FLUID RESERVOIR*

G.J, WEIR AND R.A, WOODING

Communicated by James M. Hill

Two compressible immissible fluids, possibly water and gas, are

confined within a horizontal permeable reservoir whose vertical

height is small relative to both the horizontal reservoir

dimensions and reservoir depth below sea level, say. Mass

conservation, a simplified Darcy's Law, Bousinesq averaging over

height and the Dupuit approximation on fluid velocities result in

two couplied non-linear parabolic equations for interface

pressure and interface height. Linearisation yields two

diffusivlties; one associated with the initial pressure response

to reservoir exploitation, while the other is much smaller in

magnitude and of Buckley-Leverett type, being associated with the

initial interface response. Some numerical results are presented

of upconing and pressure drawdown in a bounded one-dimensional

reservoir.

1. Introduction

The aim of this paper is to describe pressure drawdown and water rise

in an idealised horizontal porous reservoir, in which compressed gas over-

lies compressed water.

Received 22 December 198l.

* This paper is based on a talk given at the Australian Mathematical
Society Applied Mathematics Conference held in Bundanoon, February 7-11,
1982. Other papers delivered at this Conference appear in Volume 26.
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450 G.J. Weir and R.A. Wooding

In Section 2 we shall present the relevant equations and simplifying

assumptions; in Section 3 we linearise the equations and derive two

diffusivities which describe the initial pressure and interface response to

reservoir exploitation, while Section k contains some numerical solutions

of the non-linear equations. We summarise our results in Section 5. SI

units are used throughout.

2. The simplified two fluid equations

In a Cartesian coordinate system, (x, y, z) , with z aligned

vertically upwards, the equations of mass conservation away from fluid

sources or sinks are

9p.
(1) e - ^ + V • [P.Ui) + ^ [Piw.) = 0 , i = 1, 2 ,

where p., U., w., e, V • and t are the respective fluid density,

horizontal volumetric fluid flux per unit area, vertical fluid flux per

unit area, porosity, horizontal divergence operator and time. Fluids 1 and

2 occupy the respective regions z < z < 5 and £ < z < z where z = Z

is the fluid-fluid interface (see Figure l). The two boundaries z = z.

(•£ = 1, 2) are assumed impermeable, and have as normals

where V is the horizontal gradient operator. Consequently, requiring

that fluid velocities are tangential at the impermeable boundaries yield

(3) U. • Vz. =i). at 3 = 2. ,

while at the fluid-fluid interface

Then, integrating equation (l) with respect to z between s. and C, ,
Is

a n d u s i n g e q u a t i o n s ( 3 ) a n d ( h ) , y i e l d s
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n.l impermeable medium

fluid 2

n T fluid 1

= z^x, y)

z = C,(x, y)

impermeable medium

FIGURE 1. Definition sketch
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where

(6)

and

(7)
3 .
^

We shall end this section "by deriving the flow equations when the

reservoir boundaries are almost horizontal, since this requires little

extra effort, although we shall discuss only horizontal boundaries for the

remainder of the paper.

Let (x', y \ z') be a Cartesian coordinate system with z' along a

reservoir boundary normal, and write (x , x , x ) = (x, y, z) ,

a, 6 € {i5 2, 3} , a € {l, 2} ; and similarly for primed indices. Then,

if permeability is isotropic in surfaces locally tangential to the

impermeable boundaries but may vary normal to them, Darcy's Law is

(»> • < ? ' • - M
where A.., A. are the respective fluid mobilities, P pressure, a

Is Is

gravitational constant, and we have replaced p. by p. in equations (8)

and (9).

In the vertical coordinate system

a da; a'

dX

A.
dX Z'
dz' ^

where we have used standard transformation laws, the orthogonality of
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transformations between Cartesian coordinate systems, and equations (8) and

(9). Here 6 _ is the Kronecker delta function.

The Dupuit approximation that fluid velocities are everywhere

tangential to impermeable boundaries [u. = OJ implies from equation (10)

that

(11) U. = -X.VP ,
If If

and from equation (2) that

(12) U. • Vs. = v?. .
%• 1 , 1

The solution of these equations is (to order terms quadratic in

horizontal derivatives of 2. J

(13) P{z) = Pr + (p-g - V2. • (VPr+p .gVC,)) U-s) ,

provided we take

where P = P(x, y, E,) . From equation (13),

(15) P =

As our Equations of State we take

9p. dP.
(16) ^ - Vi If •

(17) Vp. = Y ^ P ^ V ^ ,

where Y- are the respective fluid compressibilities. Equations (5), (lit)

to (17), together with the assumption

(18) v. = ui ,
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give the required differential equations for P_ and C .

However, as we are primarily interested in horizontal boundaries

(VB . = o) in this paper, we shall summarise the equations above for this

case:

(19) (t*ihi[*i ' y? + e f ) + E H + v ' fa-*i)*J = ° '
(20) Ui = -Xi(VPc+P^Vc) ,

(21) ?=?.,+ ip^C-zJ .

Finally, since equations (8) and (9) contain p. rather than p. , we
is Z"

have assumed that density variations in the vertical are small relative to

the mean density. However, from equations (l6), (17) and (21), as

Sp./p. ~ y.6P ~ y.p.gSz , equations (8) and (9) will be adequate
1s % If "h If

approximations whenever

(22) P^Yj^2"2l^ < < X ' l = 1' 2 ' 3 = 1, 2 ,

where 6p.;, &P and 6s are respectively increments to p., P and z .

Equation (22) allows P in equation (19) to be replaced by P , and we

have done this in the remainder of this paper.

We assume that equation (22) holds for the rest of this paper. If

fluids 1 and 2 are respectively water and a perfect gas, then equation (22)

reduces to P-. 3Y2 (
2
2~
3-i ) = P-i 9 (3?~ST ̂  ̂  << ~^~ ' w h e r e ^ -̂s reservoir

pressure. But it is reasonable to expect that before exploitation

P > p g(z -z ) , where [s -z ) is reservoir depth below sea, or ground

level. Then equation (22) holds provided [z^-z )/[z^-z ) « 1 , or the

ratio of reservoir height to reservoir depth below sea level, say, is small

relative to unity.

3. Linearisation

In this section we shall linearise the equations in order to discuss

some relevant properties of the system, before we treat the non-linear

equations numerically in the next section.
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To begin we state that in many practical situations

\u. • VP | « e(DP /3i) , and in this section we shall assume this to be

so. Further, linearising P and t, about some constant initial values,

p. = P. (P J , and so on,

and then dropping primes yields the linearised equations

% 0 ^ 3t

Without loss of generality we take P and C, as zero, so that the

Laplace transform of equation (23) yields

(2*0 ey^Q-s

where

j e~st[Pv c,)dt .

Writing out equation (2k) for each fluid, and eliminating either LP or

Lt, yields

(25) {aVk-bsV2+cs2){LP^ U ) = 0 ,

where

(26) *= VatV^V*!^!-^ '

(27) b = ̂ {{z^X^-zJxJ ,

(28) e = e2((v?o)V(V3l)yl) '

and equation (22) has been used.

The characteristic equation associated with equation (25) is

aD~2 - bD'1 + c = 0 ,

(29) ZT1 = (b/2a){l±{l-{kac/b2))3*) ,
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2 -1
where D has dimensions L T , and so behaves as a diffusivity.

Clearly, \hac/b I < 21 (p -p )|gfy (2 -c)+Y,(C-3,)1 , which is less than
1 d d L 1 1

2
unity when equation (22) holds. When kao/b « 1 , the two roots of

equation (29) are

(30) P ~= — = —r~—1—— , , — , , = G ,

"

with G reducing to the well-known single compressible fluid diffusivity

(A/ey) when C, = z. , and W is analogous to a result of Buckley and

Leverett [J, p. 535, eqn. 9-5.6U]. From equations (30), (31) and (22),

W/G « 1 , since 2W/G = 2aa/b2 < [p^-P^g (YX U2-
Sl^+Y2 ̂ 2'^ ^ ' A s S

varies from 3 to s , G varies monotonically from

X /ty , whereas W has a maximum at CQ = (
v^731

 + ^K^^il i^\ +

and is zero when t. = 3. . An example of G and W are given in Figure 2
Is

where we have chosen parameter values from the D sands of the Maui gas

field. For this case the gas dominates G until the water level has risen

to approximately 80% of the maximum height, z - z ; whereas the maximum

of W occurs at 19% of [z -z ) .

We shall end this section by discussing a simple solution to equation

(25) in order to illustrate the roles of the diffusivities G and W .

Consider the one-dimensional problem in the halfspace x > 0 , with a

constant velocity withdrawal from x = 0 . From equation (20),

Qi dPc - dc
T — = -~-2- + p.a — at x = 0 ,

for some constants Q. , and so

3C K e?l(32) _ £ = _ _ _ / (-Pi_p2)? , at x = 0 ,
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FIGURE 2. Apparent diffusivities versus
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( 3 3 )
~P1Q2

» a t x =

A tedious calculation using equations (2U), (22), (30) to (33), and

the assumption p > pp gives

IP ^

u <*

~VG

whose inverse Laplace transform is well documented. For exploitation of

fluid 2 alone [Q = 0 , Q^ > 0J and for the numerical values in Figure

2, the initial pressure drop and interface rise at the origin are

determined largely from uncoupled linear diffusion equations with

respective diffusivities G and W and satisfying the boundary conditions

in equations (31) and (32). Other linearised solutions can be obtained

from superposition of solutions from the diffusion equation with the

respective diffusivities in equations (29).

4. Numerical solutions

The dependence of mobilities, densities and compressibilities

[X., p., Y-J on the interfacial pressure, Pr , is required in order to

solve the full non-linear equations (19) to (21). In this section we shall

assume that fluid 1 and 2 behave respectively as a perfect liguid and gas.

Then

(3U) ' Yl
c o n s t a n t > and

If equations (20) and (21) are substituted into equation (19), two

equations result, the appropriate weighted sums of which yield
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dP
(35) e^te-s^+YgO*,,-*)) i f

= V

(36)

= v

Introducing the definitions

P^x, t) = P^x, O)P'(x, t) , V = £-V ,

(37) 3^ = {z^-z^zl , p2(x, t) = p2(ar, O)P'(x, t) ,

where L and 2" are respectively length and time scales, allows equations

(35) and (36) to be written in non-dimensional form. The resulting

equations (which we omit) were solved numerically using the NAG package

D03PGF, for one-dimensional Cartesian coordinates.

Our boundary conditions were that fluid 1 had zero velocity at

x = 0 , while both fluids had zero velocity at x = L . Fluid 2 is with-

drawn at x = 0 at a constant rate (by mass) exhausting the reservoir in
Q

time 1 . We chose L = l»000 , T = 2 x 10 , C'(^, 0) = 0.7 ,

P (x, 0) = 3 x 10 , and the numerical values used in Figure 2.

At least three different processes can be inferred from the numerical

results. Firstly, Figure 3 (page ^70) shows that initially substantial

upconing is confined about the sink, where large spatial gradients at X,

are required to satisfy equation (31). Initially the diffusivity W

should be relevant near x = 0 and the numerical values in Figure 3 tend
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TABLE 1

Pressure drawdown without upconing (£' = 0.7)

0.00323

0.0112

0.0236

0.0350

0.01(77

0.059**

0.0707

0 . 0

0.891*

0.798

0.692

0.600

O.U96

0.391*

0.282

0 . 1

0.857

0.759

0.675

0.583

0.1*96

0.1)10

0.33

0.981

0.915

0.827

O.7l»9

0.665

O.588

0.511*

0.5

0.993

0.9^3

0.862

0.787

0.706

0.633

0.561*

0.73

0.998

O.966

0.891

0.819

0.71*!

0.670

o.6oi*

0.9

1.00

O.971*

0.902

0.831

0.753

0.683

0.618

1 .0

1.00

0.975

0.901*

0.833

0.755

0.686

0.620

TABLE 2

Pressure drawdown with upconing

0.00588

0.0222

0.01*13

0.0636

0.0850

0.111

0.139

0 . 0

0.897

0.795

0.699

0.591

0.1*91

0.381

0.279

0 . 1

0.937

0.81*1*

0.752

0.61*9

0.555

0.1*51

0.351*

0.33

0.970

0.887

0.799

0.700

0.610

0.511

0.1*17

0.5

O.98I*

0.910

O.82I*

0.727

0.639

0.51*2

0.UU9

0.73

0.930

0.81*5

0.750

0.661*

0.568

0.1*75

0.9

0.997

0.937

0.583

0.759

0.673

0.577

0.1*85

1 . 0

0.997

0.938

O.85I*

O.76O

O.67U

0.579

O.U87

to support this. Secondly, beyond the sink region the interface drops

slightly below its original height and the diffusivity, G (equation

(30)), should be relevant here. Thirdly, for long times, the depletion

time, T , will be important.

Finally, Tables 1 and 2 show that in the presence of a mobile surface

it takes longer for a fixed pressure drop to occur at a sink and that a
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smaller pressure drop exists across the reservoir.

5. Concluding remarks

The pressure and interface response in an idealised, horizontal, two-

fluid reservoir under exploitation has been discussed. Although equations

were derived for almost horizontal boundaries, we quickly restricted

discussion to exactly horizontal boundaries. The two main geometric

assumptions were that the ratios of reservoir height to both reservoir

length and reservoir depth below sealevel, say, were small- relative to

unity. The former assumption led to Boussinesq averaging over the

reservoir height, and the latter to a characteristic reservoir pressure P

as well as implying that the interface diffusivity W was much smaller

than the pressure diffusivity, G .
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