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Abstract

The Bogomolov conjecture claims that a closed subvariety containing a dense subset of
small points is a special kind of subvariety. In the arithmetic setting over number fields,
the Bogomolov conjecture for abelian varieties has already been established as a theorem
of Ullmo and Zhang, but in the geometric setting over function fields, it has not yet
been solved completely. There are only some partial results known such as the totally
degenerate case due to Gubler and our recent work generalizing Gubler’s result. The key
in establishing the previous results on the Bogomolov conjecture is the equidistribution
method due to Szpiro, Ullmo and Zhang with respect to the canonical measures. In this
paper we exhibit the limits of this method, making an important contribution to the
geometric version of the conjecture. In fact, by the crucial investigation of the support
of the canonical measure on a subvariety, we show that the conjecture in full generality
holds if the conjecture holds for abelian varieties which have anywhere good reduction.
As a consequence, we establish a partial answer that generalizes our previous result.

Introduction

0.1 Background and our main results
The target of this paper is the geometric Bogomolov conjecture, which is the geometric version of
the theorem of Ullmo and Zhang. In this subsection we review the conjecture with its background,
and then we state our main results.

Let K be a number field, or the function field of a normal projective variety over an
algebraically closed base field k. We fix an algebraic closure K of K. Let A be an abelian
variety over K and let L be an ample line bundle on A. Assume that L is even, i.e. [−1]∗L = L
for the endomorphism [−1] : A→ A given by [−1](a) = −a. Then the canonical height function
ĥL, also called the Néron–Tate height, associated with L is a semipositive definite quadratic form
on A(K). It is well known that ĥL(x) = 0 if x is a torsion point. Let X be a closed subvariety of
A. We put

X(ε;L) := {x ∈ X(K) | ĥL(x) 6 ε}

for a real number ε > 0. Then the Bogomolov conjecture for abelian varieties claims that X(ε;L)
is not Zariski dense in X for sufficiently small ε > 0 unless X is ‘special’, for example a torsion
subvariety. Note that if X is a torsion subvariety, then X(ε;L) is dense in X.

In the arithmetic case, the Bogomolov conjecture has been established by Ullmo for curves
inside their Jacobians and by Zhang in general.
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Theorem A ([Zha98, Ull98], arithmetic version of the Bogomolov conjecture). Let K be a
number field. Then X(ε;L) is Zariski dense in X for any ε > 0 if and only if X is a torsion
subvariety.1

The ‘Bogomolov conjecture’ over a function field was wide open, while the Bogomolov
conjecture over number fields was established. In fact, Moriwaki established in [Mor00] an
arithmetic version of the Bogomolov conjecture over a field K finitely generated over Q, but
it is a different problem because the height in his setting is different from the classical height
over a function field, as mentioned in the introduction of [Yam13].

Nine years after Theorem A, Gubler made a breakthrough. In [Gub07b], he established the
following theorem, the same statement as Theorem A for abelian varieties totally degenerate at
some place over a function field; see § 6.1 for the meaning of ‘place’.

Theorem B [Gub07b, Theorem 1.1]. Let K be a function field. Let A be an abelian variety
over K. Assume that A is totally degenerate at some place. Let X ⊂ A be a closed subvariety.
If X(ε;L) is dense in X for any ε > 0, then X is a torsion subvariety.

Then the next important problem was to generalize Theorem B for any abelian variety, but
it was not a trivial task. In fact, Theorem B does not hold for any abelian variety, because in
general an abelian variety has subvarieties which are ‘constant over k’, and subvarieties of this
kind have a dense subset of points of height 0.

Therefore we needed to define some notion of subvarieties which should be a counterpart to
the torsion subvarieties. In [Yam13] we introduced the notion of special subvarieties: a closed
subvarietyX of A is said to be special if there exist an abelian variety B over k, a closed subvariety
X ′ ⊂ B, a homomorphism φ : BK → A, an abelian subvariety A′ ⊂ A, and a torsion point

τ ∈ A(K) such that X = A′+φ(X ′
K

)+τ , where BK = B×Spec k SpecK, X ′
K

= X ′×Spec k SpecK

(cf. Lemma 7.1(1)). Note that if X is a special subvariety, then X(ε;L) is dense in X for any
ε > 0 (cf. [Yam13, Corollary 2.8]).

Using the notion of special subvarieties as a counterpart, we formulated in [Yam13] the
following conjecture, called the geometric Bogomolov conjecture.

Conjecture C (cf. [Yam13, Conjecture 2.9] and Conjecture 7.3 below). Let K be a function
field. Let X be a closed subvariety of A. Then if X(ε;L) is Zariski dense in X for any ε > 0, then
X is a special subvariety.

Conjecture C is still an open problem. The best partial solution known so far is the following,
where Av is the Berkovich analytic space associated to A over v, and b(Av) is the abelian rank
of Av (cf. § 3.1).

Theorem D [Yam13, Corollary 5.6]. Let A be an abelian variety over K. Suppose that there
exists a place v such that b(Av) 6 1. Then the geometric Bogomolov conjecture holds for A.

Theorem D generalizes Theorem B. Indeed, if Av is totally degenerate, then b(Av) = 0 6 1
and any special subvariety of A is a torsion subvariety.

In this paper we make a major contribution to the geometric Bogomolov conjecture,
exhibiting the limits of the methods of Ullmo, Zhang, Gubler and us on the Bogomolov
conjecture. All the results explained so far have been proved by a common method, the
equidistribution method due to Szpiro, Ullmo and Zhang (cf. [SUZ97]). We will give a more
detailed description of this method in the next subsection.

1 The essential part is the ‘only if’ part.
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We are now ready to state our main results. Let K be a function field. For an abelian
variety A over K, it can be seen that there exists a unique maximal nowhere degenerate2 abelian
subvariety m of A (cf. § 7.3).

Theorem E (Corollary 7.22). Let A be an abelian variety over K and let m be the maximal
nowhere degenerate abelian subvariety of A. Then, the geometric Bogomolov conjecture holds
for A if and only if it holds for m.

As a consequence of Theorem E, the geometric Bogomolov conjecture for abelian varieties
is reduced to the conjecture for those without places of degeneration (cf. Conjecture 7.24). This
theorem also shows that the conjecture holds for simple abelian varieties which are degenerate
at some place (cf. Remark 7.20).

Theorem E generalizes all the important previous results concerning the geometric
Bogomolov conjecture. To see that, we define the nowhere-degeneracy rank of A to be
nd-rk(A) := dimm (cf. Definition 7.10). Since the geometric Bogomolov conjecture holds for
all elliptic curves, the following theorem follows from Theorem E.3

Theorem F (cf. Corollary 7.19). Let A be an abelian variety overK. Assume that nd-rk(A)6 1.
Then the geometric Bogomolov conjecture holds for A.

We remark that b(Av) > nd-rk(A) for any v ∈MK . Thus Theorem F generalizes Theorem D
(cf. Remark 7.20) and hence Theorem B.

This paper also discusses another version of the Bogomolov conjecture, called the Bogomolov
conjecture for curves over function fields. This conjecture claims that the embedded curve in its
Jacobian should have only a finite number of small points unless it is isotrivial (cf. Conjecture 8.1
for the precise statement). It is still an open problem with partial solutions, while the arithmetic
version is established by Ullmo in [Ull98]. Under the assumption that K is the function field of
a curve over a field of characteristic zero, Cinkir established in [Cin11] an affirmative answer to
Conjecture 8.2, an effective version of this conjecture. There is not a satisfactory answer to the
conjecture in positive characteristic except for some partial answers. We refer to § 8 for more
details. In this paper, applying our arguments on Conjecture C to this problem, we make a
non-trivial contribution including the case of positive characteristic.

0.2 Idea of the proof
Our basic strategy for the geometric Bogomolov conjecture is based on the non-archimedean
analogue of the proof of Theorem A, as is done in [Gub07b, Yam13]. Zhang’s proof of Theorem A
relies on the equidistribution theorem of Szpiro, Ullmo and Zhang with respect to the canonical
measure over an archimedean place. Although we do not have an archimedean place over function
fields, we can define the canonical measure on the analytic space over a non-archimedean place,
and it plays a crucial role as a counterpart to the canonical measure over an archimedean place.

Let K be a function field. Let K = Kv be the completion of K with respect to a place v of K
(cf. § 6.1). Let A be an abelian variety over K, X ⊂ A a closed subvariety of dimension d, and L
an even ample line bundle on A. By the theorem of the cube, we have [n]∗L = Ln

2
for any n ∈ Z.

Suppose that all of them can be defined over K. Then it is known that there exists a canonical
metric on L defined by the condition [n]∗‖ · ‖ = ‖ · ‖n2

via the above identification. Let L be

2 An abelian variety B over K is said to be nowhere degenerate if B has good reduction at any place.
3 In this paper we give a direct proof of Theorem F, rather than via Theorem E.
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the line bundle L with a canonical metric. Then we have a measure c1(L|X)∧d on the associated
Berkovich analytic space Xan, which was originally introduced by Chambert-Loir in [Cha06].
It is a semipositive Borel measure, and thus the probability measure

µXan,L :=
1

degLX
c1(L|X)∧d

on Xan is defined. This is also called a canonical measure.
With respect to the canonical measures over non-archimedean analytic spaces, an argument

analogous to Zhang’s proof works to some extent. We refer to the introduction to [Yam13] for
details of the argument. However, if we wish to establish some results concerning the geometric
Bogomolov conjecture in the same way, we need certain information on canonical measures. In
the setting of Theorem D, actually, we focused on the minimal dimension of the components
of the support of the tropicalized canonical measure (see [Yam13] for details). In the setting of
Theorems F and E, we will introduce strict supports of a canonical measure. Their study will be
crucial in this paper and leads to the required information.

Our main results Theorems F and E are consequences of Theorem 6.2. We say that a
closed subvariety of an abelian variety is tropically trivial if the canonical tropicalization map
of the abelian variety contracts the subvariety to a point for every place of the function field.
Theorem 6.2 says that, if the closed subvariety X of A has dense small points,4 then X/GX is
tropically trivial, where GX is the stabilizer of X, i.e. GX = {a ∈ A | a+X ⊂ X}.

The proof of Theorem 6.2 follows the same strategy as Zhang’s proof. In fact, the strategy
works well by virtue of Proposition 5.12, which gives us the crucial information about the
canonical measure. In the rest of this subsection, we describe what Proposition 5.12 says and
how it is used to prove Theorem 6.2. Let A be an abelian variety over K and let X ⊂ A be a
closed subvariety. Let X ′ be a strictly semistable proper formal scheme with Raynaud generic
fiber X ′ viewed as a Berkovich analytic space (cf. § 1), and let f : X ′ → Aan be a generically
finite morphism such that f(X ′) = Xan with some technical assumptions. Let L be an even
ample line bundle on A with a canonical metric. Then we have the probability measure µX′,f∗L
on X ′, which has the property that f∗µX′,f∗L = µXan,L.

Let S(X ′) be the skeleton of X ′ (cf. § 2.1). It is a simplicial set and a subspace of X ′; we
have a canonical simplex ∆S for each stratum S of the special fiber of X ′ and S(X ′) =

⋃
S ∆S .

In [Gub10], Gubler defined the notion of non-degenerate canonical simplices with respect to f ,
and showed that µX′,f∗L is a finite sum of the Lebesgue measures on the non-degenerate canonical
simplices. It follows that the support SXan of µXan,L coincides with the image of the union of the
non-degenerate canonical simplices by f . Further, he showed that SXan has a unique piecewise
linear structure such that the restriction of f to each non-degenerate canonical simplex is a
piecewise linear map.

We fix a sufficiently refined polytopal decomposition of SXan .5 A polytope σ in SXan is called
a strict support of µXan if µXan − εδσ is semipositive for small ε > 0 (cf. Definition 5.9), where
δσ is the push-out to SXan of the Lebesgue measure on σ. Suppose that σ is a strict support of
µXan,L. Then we see that there is a non-degenerate canonical simplex ∆S with σ ⊂ f(∆S) and
dimσ = dim f(∆S) (cf. Lemma 5.10). Furthermore, Proposition 5.12, together with Lemma 5.13,

4 We can show that the property ‘X(ε;L) is dense in X for any ε > 0’ does not depend on an even ample line bundle
L. We say X has dense small points if, for some (and hence any) L, X(ε;L) is dense for any ε > 0 (cf. [Yam13,
Definition 2.2]).
5 It should be a subdivisional one with the terminology in § 5.4.
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shows that, for any stratum ∆S of S(X ′) with σ ⊂ f(∆S) and dimσ = dim f(∆S), we have

dim f(∆S) = dim ∆S .6

Let us now give an outline of the proof of Theorem 6.2. To argue by contradiction, we

suppose that X/GX is not tropically trivial but X ⊂ A has dense small points. Replacing X

with X/GX , we may further assume that X has trivial stabilizer. Then it follows from the tropical

non-triviality of X that SXv has positive dimension for some place v, where Xv is the associated

Berkovich space at v. Thus µXv has a strict support of positive dimension.

Consider the homomorphism AN → AN−1 defined by (x1, . . . , xN ) 7→ (x2 − x1, . . . , xN −
xN−1). We set Z := XN and let Y be the image of Z by this homomorphism. Let α : Z → Y be

the restriction of this homomorphism. By the triviality of GX , there exists N ∈ N such that α

is generically finite. Note that α contracts the diagonal of Z = XN to a point. Since µXv has a

strict support of positive dimension and since µZv is the product of N copies of µXv , it follows

that there is a strict support σ of µZv with dimα(σ) < dimσ.

Since Z has dense small points, we obtain α∗(µZv) = µYv by the equidistribution theorem.

Since σ is a strict support of µZv , it follows that α(σ) is a strict support of µYv .

By de Jong’s alteration theorem, we have a proper strictly semistable formal scheme Z ′

with a generically finite surjective morphism g : (Z ′)an
→ Zv. Since α is a generically finite

surjective morphism, the morphism h := α ◦ g is also a generically finite surjective morphism.

Since σ is a strict support, there exists a non-degenerate canonical simplex ∆S of S(Z ′) with

respect to g such that σ ⊂ g(∆S) and dimσ = dim g(∆S). Then we have α(σ) ⊂ h(∆S) and

dimα(σ) = dimh(∆S). Since α(σ) is a strict support of µYv , it follows form Proposition 5.12

that dimh(∆S) = dim ∆S . On the other hand, the inequality dimα(σ) < dimσ tells us that

dimh(∆S) = dimα(g(∆S)) < dim ∆S . This is a contradiction. Thus Theorem 6.2 follows.

Finally in this subsection, we notice a limit of this strategy. As mentioned in § 0.2,

Conjecture C can be reduced to Conjecture 7.24, namely, the geometric Bogomolov conjecture

for nowhere degenerate abelian varieties. However, the strategy used here is of no use for such

abelian varieties because the support of the canonical measure of a closed subvariety is the Dirac

measure of a finite set. This fact suggests that our Theorems F and E are as far as we can go

with the strategy based on equidistribution theorems.

0.3 Organization

This rest of this paper consists of eight sections. In § 1 we recall some basic facts on non-

archimedean geometry. In § 2, we introduce an affinoid torus action on a formal fiber of the

Berkovich analytic space associated to a strictly semistable formal scheme, and we show that

this action is compatible with the reduction (cf. Lemma 2.7). In § 3 we recall the Raynaud

extension of an abelian variety and its tropicalization. We also recall Mumford models of the

Raynaud extension. In § 4 we establish that a morphism from a strictly semistable formal scheme

to a Mumford model of an abelian variety induces a torus-equivariant morphism between their

strata (cf. Proposition 4.4) with the use of Lemma 2.7. Furthermore, we show a key lemma,

Lemma 4.5, which will be crucially used to show that a stratum over a strict support does not

collapse. We introduce the notion of strict support in § 5, and prove Proposition 5.12 which

was explained in § 0.2. In § 6, using Proposition 5.12, we show that if the closed subvariety X

of A has dense small points, then X/GX is tropically trivial (cf. Theorem 6.2). In § 7, using

Theorem 6.2, we establish results concerning the geometric Bogomolov conjecture, including the

6 To be precise, we should write faff(∆S) instead of f(∆S), etc., but we use this notation in this subsection despite
its imprecision; we are just sketching the idea of the proof.
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main theorems mentioned in § 0.1. Some non-trivial remarks on the conjecture for curves are
made in § 8.

1. Preliminary

1.1 Convention and terminology
When we write K, it is an algebraically closed field which is complete with respect to a non-trivial
non-archimedean absolute value |·| : K→ R>0. We put K◦ := {a ∈K | |a|6 1}, the ring of integers
of K, K◦◦ := {a ∈ K | |a| < 1}, the maximal ideal of the valuation ring K◦, and K̃ := K◦/K◦◦,
the residue field. We put Γ := {−log |a| | a ∈ K×}, the value group of K.

We also fix the notation used in convex geometry; see [Gub07a, 6.1 and Appendix A] for
more details. A polytope ∆ of Rn is said to be Γ-rational if it can be given as an intersection of
subsets of the form {u |m ·u > c} (closed half-space) for some m ∈ Zn and c ∈ Γ. When Γ = Q,
a Γ-rational polytope is called a rational polytope. A closed face of ∆ is a polytope which is ∆
itself or is of the form H ∩∆ where H is the boundary of a closed half-space of Rn containing ∆.
An open face of ∆ means the relative interior of any closed face of ∆.

Let Ω be a subset of Rn. A Γ-rational polytopal decomposition C of Ω is a locally finite family
of Γ-rational polytopes of Rn such that:
•
⋃

∆∈C ∆ = Ω;
• for any ∆,∆′ ∈ C , ∆ ∩∆′ is an empty set or a face of ∆ and ∆′; and
• for any ∆ ∈ C , any closed face of ∆ is in C .

Let C be a Γ-rational polytopal decomposition of Rn. Let Λ be a lattice of Rn. The polytopal
decomposition C is said to be Λ-periodic if, for any ∆ ∈ C , we have λ + ∆ ∈ C for any λ ∈ Λ,
and the restriction of the quotient map Rn→ Rn/Λ to ∆ is a homeomorphism to its image. For
a Λ-periodic Γ-rational polytopal decomposition C of Rn, we set C := {∆ | ∆ ∈ C }, where ∆
is the image of ∆ by the quotient map Rn → Rn/Λ. Such a C is called a Γ-rational polytopal
decomposition of Rn/Λ.

By an algebraic variety over a field we mean an irreducible, reduced and separated scheme
of finite type over the field unless otherwise specified.

1.2 Berkovich analytic spaces
We recall some notions and properties on analytic spaces associated to admissible formal schemes
and those associated to algebraic varieties, for later use. For details, we refer to Berkovich’s
original papers [Ber90, Ber93, Ber94, Ber99] or Gubler’s expositions in [Gub07a, Gub10].

Let K〈x1, . . . , xn〉 be the Tate algebra over K, i.e. the completion of the polynomial ring
K[x1, . . . , xn] with respect to the Gauss norm. A K-algebra A isomorphic to K〈x1, . . . , xn〉/I for
some ideal I of K〈x1, . . . , xn〉 is called a K-affinoid algebra. Let Max(A) be the maximal spectrum
of A. Let | · |sup : A→ R denote the supremum seminorm over Max(A). The Berkovich spectrum
of A is the set of multiplicative seminorms A bounded with | · |sup. A (Berkovich) analytic space
over K is given by an atlas of Berkovich spectrums of K◦-affinoid algebras.

A K◦-algebra is called an admissible K◦-algebra if it does not have any K◦-torsions and it
is isomorphic to K◦〈x1, . . . , xn〉/I for some n ∈ N and for some ideal I of K◦〈x1, . . . , xn〉. Note
that an admissible K◦-algebra is flat over K◦. The formal spectrum of an admissible K◦-algebra
is called an affine admissible formal scheme. A formal scheme over K◦ is called an admissible
formal scheme 7 if it has a locally finite open atlas of affine admissible formal schemes. Note
that an admissible formal scheme is flat over K◦. For an admissible formal scheme X , we write

7 In this paper, when we say a formal scheme, we always mean an admissible formal scheme.
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X̃ := X ×Spf K◦ Spec K̃ for the special fiber. For a morphism ϕ : X → Y of admissible formal

schemes, we write ϕ̃ : X̃ → Ỹ for the induced morphism between their special fibers.
Let X be an admissible formal scheme over K◦. Then we can associate a Berkovich analytic

space X an, called the (Raynaud) generic fiber of X . Further, we have a map redX : X an
→ X̃ ,

called the reduction map. It is known that the reduction map is surjective. Let Z be a dense
open subset of an irreducible component of X̃ with the generic point ηZ ∈ Z. Then there is a
point ξZ ∈X an with redX (ξZ) = ηZ . If the special fiber X̃ is reduced, then such a point ξZ is
unique, and we refer to it as the point corresponding to (the generic point of) Z.

We can associate an analytic space to an algebraic variety X over K as well, and we write Xan

for the analytic space associated to X. There is a natural inclusion X(K) ⊂ Xan. We recall the
relationship between the analytic space associated to an algebraic variety and that associated to
an admissible formal scheme. Let X be a scheme flat and of finite type over K◦ with the generic
fiber X. Let X̂ be the formal completion with respect to a principal open ideal of K◦ contained
in K◦◦. Then X̂ is an admissible formal scheme and X̂an is an analytic subdomain of Xan. If X
is proper over K◦, we have X̂an = Xan.

For a given analytic space X, an admissible formal scheme having X as the generic fiber is
called a formal model of X. Note that a formal model is flat over K◦ by definition. Let Y be a
closed analytic subvariety of X and let X be a formal model of X. Then there exists a unique
admissible formal subscheme Y ⊂X with Y an = Y . We call Y the closure of Y in X .

1.3 Tori
Let Gn

m denote the split torus of rank n over K. Let x1, . . . , xn denote the standard coordinates
of Gn

m unless otherwise noted, so that Gn
m = SpecK[x±1 , . . . , x

±
n ]. Let (Gn

m)an be the analytic
space associated to Gn

m. We set

(Gn
m)f-sch

1 := Spf K◦[x±1 , . . . , x
±
n ],

the formal torus over K◦, writing (Gn
m)an

1 for the generic fiber of (Gn
m)f-sch

1 . We call (Gn
m)f-sch

1

the canonical model of (Gn
m)an

1 . The analytic space (Gn
m)an

1 is an analytic subgroup of (Gn
m)an

as well as an affinoid subdomain of (Gn
m)an. The special fiber of (Gn

m)f-sch
1 is an algebraic torus

(Gn
m)K̃ = Spec K̃[x±1 , . . . , x

±
n ], which we call the canonical reduction of (Gn

m)an
1 .

Each element p ∈ (Gn
m)an is regarded as a seminorm on K[x±1 , . . . , x

±
n ]. We define a map

val : (Gn
m)an

→ Rn, called the valuation map, by

p 7→ (−log p(x1), . . . ,−log p(xn)).

Let ∆ be a Γ-rational polytope of Rn. Then U∆ := val−1(∆) is an analytic subdomain of
(Gn

m)an. In fact, it is the Berkovich spectrum of the affinoid algebra

K〈U∆〉 :=

{ ∑
m∈Zn

amx
m1
1 · · ·x

mn
n

∣∣∣∣∣ lim
|m|→∞

v(am) + m · u =∞ for any u ∈ ∆

}
.

Note that val−1(0) = (Gn
m)an

1 . We refer to [Gub07b, 4.3] for more details.

2. Torus action on the formal fiber

An admissible formal scheme X ′ is called a strictly semistable formal scheme if any point of X ′

has an open neighborhood U ′ and an étale morphism

ψ : U ′
→ S := Spf K◦〈x′0, . . . , x′d〉/(x′0 · · ·x′r − π), (2.1)

where π ∈ K◦◦\{0}.
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Throughout this section, let X ′ be a strictly semistable formal scheme over K◦ with generic
fiber X ′ = (X ′)an. Let redX ′ : X ′ → X̃ ′ be the reduction map. For a closed point p̃ ∈ X̃ ′, we
put X ′+(p̃) := (redX ′)

−1(p̃) and call it the formal fiber over p̃. It is an open subdomain of X ′.
See [Gub07a, 2.8] for more details.

The purpose of this section is to define a torus action on X ′+(p̃) and show that it is compatible
with the reduction as Lemma 2.7 claims. This lemma will be used in the proof of Proposition 4.4.

2.1 Strictly semistable formal schemes, their skeletons, and subdivision
We begin by recalling the notion of stratification of a reduced separated scheme Y of finite type
over a field. We start with Y (0) := Y . For each r ∈ N, let Y (r) ⊂ Y (r−1) be the complement of
the set of normal points in Y (r−1). Since the set of normal points is open and dense, we obtain
a chain of closed subsets:

Y = Y (0) ) Y (1) ) · · · ) Y (s) ) Y (s+1) = ∅.

The irreducible components of Y (r)\Y (r+1) (0 6 r 6 s) are called the strata of Y , and the set
of strata is denoted by str(Y ).

We take an étale morphism as in (2.1). Putting S1 := Spf K◦〈x′0, . . . , x′r〉/(x′0 · · ·x′r − π) and

S2 := Spf K◦〈x′r+1, . . . , x
′
d〉, we have S = S1 ×S2. Let õ denote the point of S̃1 = Spec K̃[x′0,

. . . , x′r]/(x
′
0 · · ·x′r) defined by x′0 = · · · = x′r = 0.

The following proposition is due to Gubler.

Proposition 2.1 [Gub10, Proposition 5.2]. Any formal open covering of X ′ admits a
refinement {U ′} by formal open subsets U ′ with étale morphisms as in (2.1) which have
the following properties.

(a) Any U ′ is a formal affine open subscheme of X ′.

(b) There exists a distinguished stratum S of X̃ ′ associated to U ′ such that for any stratum
T of X̃ ′, we have S ⊂ T if and only if Ũ ′ ∩ T 6= ∅, where T is the closure of T in X̃ ′.

(c) The subset ψ̃−1({õ}×S̃2) is the stratum of Ũ ′ which is equal to Ũ ′∩S for the distinguished
stratum S from (b).

(d) Any stratum of X̃ ′ is the distinguished stratum of a suitable U ′.

We can define a subspace S(X ′) of X ′ = (X ′)an called the skeleton. It has a canonical
structure of an abstract simplicial set which reflects the incidence relations between the strata
of X̃ ′. We briefly recall some properties of skeletons here, and refer to [Ber99] or [Gub10, 5.3]
for more details.

First, we recall the skeletons S(S1) and S(S ). We set Gr
m := SpecK[(x′1)±, . . . , (x′r)

±], the
algebraic torus with the standard coordinates x′1, . . . , x

′
r, and consider the associated analytic

group (Gr
m)an. Let val′ : (Gr

m)an
→ Rr denote the valuation map with respect to the coordinates

x′1, . . . , x
′
r (cf. § 1.3).8 We regard S an

1 as a rational subdomain of (Gr
m)an by omitting x′0. We

put ∆′ := {(u′1, . . . , u′r) ∈ Rr>0 | u′1 + · · · + u′r 6 v(π)}. Then val′ induces a map S an
1 → ∆′ by

restriction. It is known that this map restricts to an isomorphism S(S1) ∼= ∆′, and that the first
projection S → S1 restricts to an isomorphism S(S ) ∼= S(S1). Thus we have identifications
S(S ) = S(S1) = ∆′.

8 We write here val′ instead of val to emphasize that it is the valuation map with respect to the coordinates
x′1, . . . , x

′
r.
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Recall that the vertices of ∆′ correspond to the irreducible components of S̃ . In fact, let v0

denote the origin in ∆′ and let vi denote the vertex of ∆′ whose ith coordinate is v(π) (i = 0, . . . ,
r). The points v0, v1, . . . , vr are the vertices of ∆′. Let ξi ∈ S(S ) be the point corresponding to
the irreducible component of Spec K̃[x′0, . . . , x

′
d]/(x

′
0 · · ·x′r) defined by xi = 0 for each i = 0, . . . , r

(cf. § 1.2). Then we have ξi = vi via the identification S(S ) = ∆′.
Let S be a stratum of X̃ ′ of codimension r. We take a formal affine open subset U ′ of X ′

such that S is the distinguished stratum of U ′ in Proposition 2.1, and an étale morphism as
in (2.1). The skeleton S(U ′) of (U ′)an is a subset of S(X ′), and it is known that ψ in (2.1)
induces an isomorphism S(U ) ∼= S(S ) between skeletons. Thus

S(U ′) ∼= S(S ) = S(S1) = ∆′ (2.2)

and, in particular, the subset S(U ′) of S(X ′) is a simplex. It is also known that S(U ′) depends
only on S and not on the choice of U ′, so that we write ∆S = S(U ′) and call it the canonical
simplex corresponding to S. The canonical simplices {∆S}S∈str(X̃ ′) cover S(X ′), which gives a

canonical structure of an abstract simplicial set to the skeleton S(X ′).
We have a continuous map Val : X ′ → S(X ′) which restricts to the identity on S(X ′). If

S is a distinguished stratum of X̃ ′ associated to U ′ in the sense of Proposition 2.1, then the
restriction (U ′)an

→ ∆S of Val to (U ′)an is described as follows: regarding S an
1 as a rational

subdomain of (Gr
m)an and using the identification

∆S = ∆′ (2.3)

given by (2.2), we can describe Val as Val(p) = val′(ψan(p)) for p ∈ (U ′)an.
Let D be a Γ-rational subdivision of the skeleton S(X ′). This means that D is a family of

polytopes, each contained in a canonical simplex, such that {∆ ∈ D | ∆ ⊂ ∆S} is a Γ-rational
polytopal decomposition of ∆S for any stratum S of X̃ ′ (cf. [Gub10, 5.4]).

Remark 2.2. By [Gub10, Proposition 5.5], we have a unique formal model X ′′ of (X ′)an

associated to D . Note that there is a morphism ι′ : X ′′
→ X ′ extending the identity on the

generic fiber (X ′)an.

Although we omit the precise construction of X ′′, we recall two important propositions
concerning X ′′.

Proposition 2.3 [Gub10, Proposition 5.7]. Let X ′′ be the formal scheme associated to D as
in Remark 2.2. Let redX ′′ : (X ′′)an

→ X̃ ′′ be the reduction map. Then there exists a bijective
correspondence between open faces τ of D and strata R of X̃ ′′ given by

R = redX ′′(Val−1(τ)), τ = Val(red−1
X ′′(Y )),

where Y is any non-empty subset of R.

For a canonical simplex ∆S , let relin ∆S denote the relative interior of ∆S .9

Proposition 2.4 (cf. [Gub10, Corollary 5.9]). Let X ′′ be the formal scheme associated to D
and let ι′ : X ′′

→ X ′ be the morphism extending the identity on (X ′)an (cf. Remark 2.2).
Let u ∈ D be a vertex and let R be the stratum of X̃ ′′ corresponding to u in Proposition 2.3.
Then S := ι̃′(R) is a unique stratum of X̃ ′ with u ∈ relin ∆S . Furthermore, if we put r :=
dimR− dimS = dim ∆S , then ι̃′|R : R→ S has a (Gr

m)K̃-torsor structure.

9 For a polytope P , let relin (P ) denote the relative interior of P in this paper.
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Finally in this subsection, we show a lemma.

Lemma 2.5. Let D and X ′′ be as above. Let u be a vertex of D of S(X ′) and let R be the

stratum of X̃ ′′ corresponding to u. Let ξR ∈ (X ′′)an be the point corresponding to the generic

point of R (cf. § 1.2). Then u = ξR.

Proof. It follows from [Gub10, Proposition 5.7 and Corollary 5.9(a)] that u = Val(ξR). Since Val

restricts to the identity on S(X ′), it only remains to show ξR ∈ S(X ′′), but that is done in the

proof of [Gub10, Corollary 5.9(g)]. 2

2.2 Construction of the action and the compatibility lemma

Let S be a stratum of X̃ ′ of codimension r. We take a formal affine open subset U ′ of X ′

such that S is the distinguished stratum of U ′ in Proposition 2.1, and an étale morphism as

in (2.1). Let p̃ ∈ S ∩ Ũ ′ be a closed point. In this subsection, we define an affinoid torus action

of the formal fiber X ′+(p̃) over p̃. Since our interest is local at p̃, we may and do assume that

X ′ = U ′.10

Recall from § 2.1 that S = S1 × S2. Since (S1)an ⊂ (Gr
m)an and (S1)an is stable under

the (Gr
m)an

1 -action, we have a (Gr
m)an

1 -action on (S1)an. We put the trivial (Gr
m)an

1 -action on

(S2)an. Then, via the isomorphism S an = (S1)an × (S2)an, we have a (Gr
m)an

1 -action on S an.

Let (S an)+(ψ̃(p̃)) := red−1
S (ψ̃(p̃)) be the formal fiber of S an over ψ̃(p̃). Since ψ̃(p̃) = (õ, c̃) for

some c̃ ∈ S̃2 via the identification S̃ = S̃1 × S̃2, we see that (S an)+(ψ̃(p̃)) is stable under the

(Gr
m)an

1 -action on S an, and thus (Gr
m)an

1 acts on (S an)+(ψ̃(p̃)).
We define the (Gr

m)an
1 -action on X ′+(p̃). By [Ber99, Lemma 4.4] or [Gub10, Proposition 2.9],

the restricted morphism

ψ′an|X′+(p̃) : X ′+(p̃)→ (S an)+(ψ̃(p̃)) (2.4)

is an isomorphism, and then we define the (Gr
m)an

1 -action on X ′+(p̃) by pulling back the (Gr
m)an

1 -

action on (S an)+(ψ̃(p̃)) via this isomorphism.

Let ∆S be the canonical simplex corresponding to S. Let D be a Γ-rational polytopal

subdivision of the skeleton S(X ′), X ′′ the formal model of (X ′)an associated to D , ι′ : X ′′
→

X ′ the morphism extending the identity on X ′ (cf. Remark 2.2), and redX ′′ : X ′ → X̃ ′′ the

reduction map. Suppose that u ∈ D is a vertex with u ∈ relin ∆S and let R be the stratum

of X̃ ′′ corresponding to u in Proposition 2.3. Recall that we have a (Gr
m)K̃-torsor ι̃′ : R → S

(cf. Proposition 2.4). If p̃ ∈ S is a closed point, then (Gr
m)K̃ acts on the fiber {p̃} ×S R.

Remark 2.6. We have redX ′ = ι̃′ ◦ redX ′′ and ι̃′({p̃}×SR) = {p̃}. It follows that (redX ′)
−1(p̃) ⊃

(redX ′′)
−1({p̃} ×S R), and thus

redX ′′(X
′
+(p̃)) = redX ′′((redX ′)

−1(p̃)) ⊃ {p̃} ×S R.

Next we show that the (Gr
m)an

1 -action on X ′+(p̃) defined above is compatible with the action

of (Gr
m)K̃ on {p̃} ×S R with respect to the reduction map redX ′′ . To be precise, we show the

following lemma.

10 We have X ′+(p̃) = (U ′)an
+ (p̃) in fact.
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Lemma 2.7. With the notation above, we have a commutative diagram

(Gr
m)an

1 × (redX ′′)
−1({p̃} ×S R) //

red
(Gr

m)f-sch1 ×X ′′

��

(redX ′′)
−1({p̃} ×S R)

redX ′′

��
(Gr

m)K̃ × ({p̃} ×S R) // {p̃} ×S R

where the first row is the restriction of the (Gr
m)an

1 -action on X ′+(p̃), and the second row is the

(Gr
m)K̃-action on {p̃} ×S R (cf. Remark 2.6).

Proof. Recall that we have an isomorphism pan
1 ◦ ψan : S(X ′) ∼= S(S1) (cf. (2.2)), where p1 :

S → S1 is the canonical projection. Let D1 be the subdivision of S(S1) induced from D via

the isomorphism pan
1 ◦ψan between the skeletons, and let S ′

1 be the formal scheme corresponding

to the subdivision D1 of S(S1). As in [Gub10, Remark 5.6], we have a cartesian diagram,

X ′′

ι′

��

ψ′ // S ′

ι

��
X ′ ψ // S

where ι is the morphism S ′
1×S2→S1×S2 given by the base-change of the morphism S ′

1→S1

arising from the subdivision D1.

We set u1 := pan
1 (ψan(u)), which is a vertex of D1 and is in the interior of ∆′ = S(S1). Let

T ′1 be the stratum of S̃ ′
1 corresponding to u1. Recall that ψ̃(p̃) = (õ, c̃). From Remark 2.6 and

the proof of [Gub10, Proposition 5.7], we obtain a commutative diagram,

X ′+(p̃)

ψan|X′+(p̃)

��

(redX ′′)
−1({p̃} ×S R)

⊃oo

��

redX ′′// {p̃} ×S R

ψ̃′|{p̃}×SR

��
S ′

+(ψ̃(p̃)) (redS ′)
−1(T ′1 × {c̃})

⊃oo redS ′ // T ′1 × {c̃}

(2.5)

where the first column is the isomorphism (2.4), and the left rows are inclusions.

By (17) in the proof of [Gub10, Proposition 5.7], we have ψ̃′
−1

(T ′1× S̃2) = R. It follows that

the last column {p̃} ×S R→ T ′1 × {c̃} in (2.5) is an isomorphism. Furthermore, it follows that

the middle column is also an isomorphism.

Noting (14) in the proof of [Gub10, Proposition 5.7], we find that (redS ′)
−1(T ′1 × {c̃}) is

(Gr
m)an

1 -invariant. It follows that (redX ′′)
−1({p̃}×SR) is (Gr

m)an
1 -invariant. Since the isomorphism

in the middle (respectively, right) column is (Gr
m)an

1 -equivariant (respectively, (Gr
m)K̃-equivariant)

and since redS ′ is equivariant with respect to the reduction map (Gr
m)an

1 → (Gr
m)K̃, the right

upper row is also equivariant with respect to the reduction map (Gr
m)an

1 → (Gr
m)K̃. We conclude

that Lemma 2.7 holds. 2

Remark 2.8. The (Gr
m)an

1 -action on X ′+(p̃) preserves (redX ′′ |X′+(p̃))
−1({p̃} ×S R), as is shown

above.
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3. Raynaud extension and Mumford models

In this section, we put together some properties of the Raynaud extensions of abelian varieties
and their Mumford models, which will be used later. We recall, in § 3.1 and § 3.3, basic facts
discussed in [Gub10, § 4]. We show some properties of the torus rank and the abelian rank of an
abelian variety in § 3.2.

3.1 Raynaud extension and the valuation map
We recall some notions on Raynaud extensions; see [BL91, § 1] and [Gub10, § 4] for details.

Let A be an abelian variety over K. By [BL91, Theorem 1.1], there exists a unique analytic
subgroup A◦ ⊂ Aan with a formal model A ◦ having the following properties.
• A ◦ is a formal group scheme and (A ◦)an ∼= A◦ as analytic groups.
• There is a short exact sequence

1 // T ◦ // A ◦ // B // 0 (3.1)

where T ◦ ∼= (Gn
m)f-sch

1 for some n > 0, and B is a formal abelian variety over K◦.
By [Bos76, Satz 1.1], such an A ◦ is unique, and T ◦ and B are also uniquely determined. Taking
the generic fiber of (3.1), we obtain an exact sequence

1 // T ◦ // A◦
(q◦)an

// B // 0 (3.2)

of analytic groups. We call T ◦, A ◦ and B the canonical formal models of T ◦, A◦ and B,
respectively.

Since T ◦ ∼= (Gn
m)an

1 , we regard T ◦ as an analytic subgroup of the analytic torus T = (Gn
m)an.

Pushing (3.2) out by T ◦ ↪→ T , we obtain an exact sequence

1 // T // E
qan
// B // 0 (3.3)

which we call the Raynaud extension of A. The natural morphism A◦ → E is an immersion of
analytic groups. The assertion [BL91, Theorem 1.2] says that the homomorphism T ◦ ↪→ Aan

extends uniquely to a homomorphism T → Aan and hence to a homomorphism pan : E → Aan.
It is known that pan is a surjective homomorphism and M := Ker pan is a lattice in E(K). Thus
Aan can be described as a quotient of E by a lattice. This pan is called the uniformization of A.

The dimension of T is called the torus rank of A, and the dimension of B is called the abelian
rank of A. We denote the abelian rank of A by b(A). Note that the torus rank of A equals
dimA− b(A). The abelian variety A is said to be degenerate if b(A) < dimA, or equivalently if
the torus rank of A is positive. Note that ‘being non-degenerate’ means ‘having good reduction’.

We can take transition functions of the T -torsor (3.3) valued in T ◦, and thus we can define
a continuous map

val : E → Rn (3.4)

as in [BL91], where n is the torus rank of A. We recall here how it is constructed. Fix an
isomorphism T ◦ ∼= (Gn

m)an
1 , with the standard coordinates x1, . . . , xn. We can take a covering

{V } of B consisting of rational subdomains with trivializations

((q◦)an)−1(V ) ∼= V × (Gn
m)an

1 (3.5)

as (Gn
m)an

1 -torsors for all V . Since the Raynaud extension is the push-out of (3.2) by the canonical
inclusion (Gn

m)an
1 ↪→ (Gn

m)an, the isomorphisms (3.5) extend to isomorphisms

(qan)−1(V ) ∼= V × (Gn
m)an (3.6)
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of (Gn
m)an-torsors. Thus we obtain morphisms

rV : (qan)−1(V ) ∼= V × (Gn
m)an

→ (Gn
m)an (3.7)

for all V by composing with the second projection. A different choice of (3.5) gives a different
isomorphism in (3.6) and hence a different morphism in (3.7) for each V , but the difference is
only the multiplication of an element of (Gn

m)an
1 . Therefore, the morphisms (qan)−1(V ) → Rn

given by
e 7→ (−log rV (e)(x1), . . . ,−log rV (e)(xn))

patch together to form a morphism from E to Rn. This is our valuation map val : E → Rn.
We set Λ := val(M) ⊂ Rn, where we recall that M = Ker pan is a lattice of E. Then Λ is a

complete lattice in Rn and is contained in Γn. There is a diagram

E
val //

��

Rn

��
Aan val // Rn/Λ

that commutes. The homomorphism val is also called the valuation map. It follows from the

constructions of val and val that A◦ = val
−1

(0) ∼= val−1(0).

3.2 Homomorphism, products and abelian ranks
Let A1 and A2 be abelian varieties over K and let

1 // Ti // Ei
qan
i // Bi // 0

be the Raynaud extension of Ai for i = 1, 2. We consider a homomorphism φ : A1 → A2.
Then [BL86, Proposition 2.2] tells us that φ induces a homomorphism A◦1 → A◦2 and hence a
homomorphism T ◦1 → T ◦2 . Thus we have an induced homomorphism φab : B1 → B2 between
the abelian parts. Furthermore, it follows from [BL91, Theorem 1.2] that φ gives rise to a
homomorphism Φ : E1→ E2.

It follows from the construction of the valuation map that Φ descends to a linear map
φaff : Rn1 → Rn2 via the valuation maps, where n1 and n2 are the torus ranks of A1 and A2,
respectively. Further, φaff(Λ1) ⊂ Λ2 holds. Thus we obtain a homomorphism φaff : Rn1/Λ1 →

Rn2/Λ2 which makes the diagram

Aan
1

φ //

��

Aan
2

��
Rn1/Λ1

φaff // Rn2/Λ2

(3.8)

commutative.
Next we consider the direct product. We set A := A1 × A2. The Raynaud extensions of A1

and A2 gives rise to an exact sequence

1→ T ◦1 × T ◦2 → A◦1 ×A◦2→ B1 ×B2→ 0.

It follows from their definitions that A◦ = A◦1 ×A◦2 and T ◦ = T ◦1 × T ◦2 hold, and that

1→ T1 × T2→ E1 × E2→ B1 ×B2→ 0 (3.9)
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is the Raynaud extension of A. Further,

val : (A1 ×A2)an
→ Rn1+n2/(Λ1 ⊕ Λ2)

coincides with the map
Aan

1 ×Aan
2 → Rn1/Λ1 × Rn2/Λ2

given by the product of val1 : Aan
1 → Rn1/Λ1 and val2 : Aan

2 → Rn2/Λ2.
We show some properties of abelian ranks which will be used later.

Lemma 3.1. Let A1 and A2 be abelian varieties over K.

(1) We have b(A1 ×A2) = b(A1) + b(A2).

(2) Suppose that φ : A1→ A2 is an isogeny. Then b(A1) = b(A2).

Proof. The equality in (1) follows from the fact that (3.9) is the Raynaud extension of A1 ×A2.
To show (2), note that there is an isogeny A2 → A1 as well as an isogeny A1 → A2

(cf. [Mum08, p. 157, Remark]). Thus it is enough to show that b(A1) > b(A2), so that it suffices
to show that the homomorphism φab : B1→ B2 induced from φ is surjective.

Let y ∈ B2 be a point. Since qan
2 |A◦2 : A◦2 → B2, φan : Aan

1 → Aan
2 and p1 : E1 → Aan

1 are
surjective, there exists a point x ∈ E1 with qan

2 (φan(p1(x))) = y. Then we have φab(q
an
1 (x)) = y,

which implies that φab is surjective. 2

Remark 3.2. If φ : A1→ A2 is an isogeny, then φaff is an isomorphism of vector spaces, and thus
φaff is a finite surjective homomorphism.

Proposition 3.3. Let
0→ A1→ A2→ A3→ 0

be an exact sequence of abelian varieties over K. Then we have b(A2) = b(A1) + b(A3) and
n2 = n1 + n3, where ni denote the torus rank of Ai.

Proof. Recall that Poincaré’s complete reducibility theorem (cf. [Mil86, Proposition 12.1]
or [Mum08, § 19, Theorem 1]) gives us an abelian subvariety A′ of A2 such that the natural
homomorphism A1×A′→ A2 given by (a1, a

′) 7→ a1+ a′ is an isogeny. Then b(A2) = b(A1×A′) =
b(A1) + b(A′) by Lemma 3.1. Since the composite A′ ↪→ A2 → A3 is an isogeny, we have
b(A′) = b(A3) by Lemma 3.1(2). It follows that b(A2) = b(A1) + b(A3), which shows one equality
of this proposition. The equality for torus ranks follows from that for abelian ranks. 2

3.3 Mumford models, Torus torsors, and initial degenerations
In this subsection we recall some properties of Mumford models associated to a Λ-periodic
Γ-rational polytopal decomposition. The basic reference is [Gub10, § 4]. We also define the initial
degeneration of a closed subvariety of an abelian variety.

Let A be an abelian variety over K, and let

1 // T // E
qan
// B // 0

be the Raynaud extension of A. We use the notation in § 3.1: the affinoid torus T ◦ is the maximal
affinoid subtorus of T ; the morphism pan : E→ Aan is the uniformization; the map val : E→ Rn
is the valuation map, where n is the torus rank of A; further, Λ := val(Ker pan) is the lattice in
Rn, and val : A→ Rn/Λ is the valuation map induced from val by quotient.
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Let C be a Λ-periodic Γ-rational polytopal decomposition of Rn (cf. § 1.1). For a polytope
∆ ∈ C , the subset val−1(∆) ⊂ E is an analytic subdomain, and there exists a natural surjective
morphism

qan
∆ := qan|val−1(∆) : val−1(∆)→ B.

Since val is invariant under the action of T ◦, we have a natural T ◦-action on val−1(∆), which is
an action over B with respect to qan

∆ .
Let C denote the polytopal decomposition of Rn/Λ induced from C by the quotient and let

∆ ∈ C be a polytope. Then val
−1

(∆) is an analytic subdomain of Aan with a T ◦-action. Fix a
representative ∆ ∈ C of ∆. The uniformization map pan : E → Aan restricts to an isomorphism

pan|val−1(∆) : val−1(∆)→ val
−1

(∆), via which we define

qan
∆ := qan

∆ ◦ (pan|val−1(∆))
−1 : val

−1
(∆)→ B.

The T ◦-action on val
−1

(∆) is a T ◦-action over B.

There are open subsets val−1(relin(∆)) ⊂ val−1(∆) and val
−1

(relin(∆)) ⊂ val
−1

(∆) with

T ◦-actions, where relin(∆) and relin(∆) are the relative interior of ∆ and ∆, respectively. We
have morphisms

qan
∆ |val−1(relin(∆)) : val−1(relin(∆))→ B, qan

∆ |val
−1

(relin(∆))
: val

−1
(relin(∆))→ B (3.10)

with T ◦-actions over B.
The Mumford model p : E → A associated to C is constructed in [Gub10]. It is a formal

model of pan : E→ Aan, and there exists a unique morphism q : E →B extending the morphism
qan : E → B in the Raynaud extension. Although we do not repeat the precise definition of it
here, we recall some properties which will be used later. See [Gub10, § 4 (especially 4.7)] for more
details.

For a formal affine open subset V of B, its generic fiber V = V an is an analytic subdomain
of B. Such an analytic subdomain is called a formal affinoid subdomain of B. Using this notion,
we can write val−1(∆) =

⋃
V (val−1(∆) ∩ (qan)−1(V )), where V runs through the formal affinoid

subdomains of B. Further, we have

val−1(∆) ∩ (qan)−1(V ) ∼= U∆ × V,

where U∆ is the rational subdomain of (Gn
m)an as in § 1.3. We set U∆,V := U∆ × V . Then E has

a suitable formal affine open covering by the sets UV,∆, where UV,∆ satisfies (UV,∆)an = UV,∆.
We set E∆ :=

⋃
V UV,∆, where V runs through the formal affinoid subdomains of B. We have

a natural morphism q|E∆
: E∆ → B by restriction. The restriction of p : E → A to E∆ is an

isomorphism onto its image A∆ := p(E∆). Using the isomorphism p|E∆
, we define

q∆ := q|E∆
◦ (p|E∆

)−1 : A∆→ B.

We notice that q∆ depends not only on ∆ but also on the choice of a representative ∆ of ∆
over B.

The T ◦-action on E over B extends to the T ◦-action on E over B, where T ◦ is the canonical
model of T ◦ (cf. § 3.1). The T ◦-action on E restricts to a T ◦-action on E∆ over B. Via the

isomorphism p|E∆
: E∆→A∆, we have a T ◦-action on A∆ over B. Note that val

−1
(∆) = (A∆)an

as an analytic subspace of Aan and that this T ◦-action on A∆ induces the canonical T ◦-action

on val
−1

(∆) on the Raynaud generic fiber.
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We recall that [Gub10, Proposition 4.8] gives us a bijective correspondence between the
strata of Ẽ and the set of relative interiors of the polytopes in C , and a bijective correspondence
between the strata of Ã and the set of relative interiors of the polytopes in C . In fact, if we

set Zrelin(∆) := redE (val−1(relin(∆))) and Zrelin(∆) := redA (val
−1

(relin(∆))), then Zrelin(∆) and

Zrelin(∆) are the strata of Ẽ and Ã corresponding to relin(∆) and relin(∆) respectively via these
bijective correspondences.

Taking the reductions of the morphisms in (3.10), we obtain surjective morphisms

q̃∆|Zrelin(∆)
: Zrelin(∆)→ B̃, q̃∆|Zrelin(∆)

: Zrelin(∆)→ B̃. (3.11)

The torus T̃ ◦ over K̃ acts on Zrelin(∆) and Zrelin(∆), and these actions are over B̃ with respect

to q̃∆ and q̃∆|Zrelin(∆)
, respectively. If ∆ consists of a single point w, then we write Zw and Zw,

etc. instead of Z{w} and Z{w}, etc. for simplicity.

Remark 3.4. It follows from [Gub10, Remark 4.9] that q̃w : Zw → B̃ and q̃w : Zw → B̃ are
T̃ ◦-torsors.

We have seen that the affinoid torus T ◦ acts on val
−1

(relin(∆)) and that the algebraic torus
T̃ ◦ acts on the reduction Zrelin(∆). These actions are compatible with respect to the reduction
map. To be precise, we have the following lemma.

Lemma 3.5. With the notation above, the diagram,

T ◦ × val
−1

(relin(∆)) //

redT ◦×A

��

val
−1

(relin(∆))

redA

��
T̃ ◦ × Zrelin(∆)

// Zrelin(∆)

where the first row is the T ◦-action and the second row is the T̃ ◦-action, is commutative.

Proof. Let µ : T ◦ × A∆ → A∆ denote the T ◦-action recalled above. Then the T ◦-action on

val
−1

(relin(∆)) is induced from µ by taking the Raynaud generic fiber, and the T̃ ◦-action on
Zrelin(∆) is induced from µ by taking the special fiber. It follows from the definition of reduction
maps that the diagram is commutative. 2

Let A1 and A2 be abelian varieties over K and let φ : A1 → A2 be a homomorphism. Let
ni be the torus rank of Ai, let vali : Aan

i → Rni/Λi be the valuation map for i = 1, 2, and
let φaff : Rn1/Λ1 → Rn2/Λ2 be the homomorphism as in (3.8). Let Ci be a Γ-rational polytopal
decomposition of Rni/Λi and let Ai be the Mumford model associated to Ci. Then φ extends to a
morphism A1→A2 if, for any ∆1 ∈ C1, there exists a polytope ∆2 ∈ C2 such that φaff(∆1) ⊂∆2.
In fact, for any ∆1 ∈ C1 and ∆2 ∈ C2 with φaff(∆1) ⊂ ∆2, we can construct a unique morphism

(A1)∆1
→ (A2)∆2

which extends the morphism φ|
val1

−1
(∆1)

: val1
−1

(∆1) → val2
−1

(∆2), and

these morphisms patch together to form a morphism A1→ A2 extending φ.
Finally in this subsection, we define the notion of initial degenerations of a closed subvariety

X of A. For any Γ-rational polytope ∆ of Rn/Λ, let X∆ be the closure of Xan ∩ val
−1

(∆) in

A∆. We define the initial degeneration in∆(X) of X over ∆ by

in∆(X) := X̃∆, (3.12)
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the special fiber of X∆. It is determined from X and ∆ and is independent of the polytopal
decomposition C that was used before. If ∆ = {w}, we write inw(X) for in∆(X). Note that

inw(X) is a closed subscheme of Zw. Moreover, since X∆ = X ∩A∆, we have in∆(X) = X̃ ∩Ã∆

and inw(X) = X̃ ∩ Zw.

Remark 3.6. Set d := dimX. Let W be an irreducible component of in∆(X). Since a formal
model of X is flat over K◦, it follows from the definition of in∆(X) that dimW = d.

Remark 3.7. Let W be an irreducible component of in∆(X). By the definition of in∆(X), we

have the reduction map Xan ∩ val
−1

(∆) → in∆(X), which is surjective. Thus there is a point

ξW ∈ Xan ∩val
−1

(∆) which maps to the generic point of W by this reduction map. Then we say
that ξW reduces to the generic point of W .

4. Torus equivalence between strata and canonical simplices

We begin by fixing the notation throughout this section. Let A be an abelian variety over K with
Raynaud extension

1 // (Gn
m)an // E

qan
// B // 0.

Let pan : E→ Aan be the uniformization. Let val : E→ Rn and val :Aan
→ Rn/Λ be the valuation

maps with respect to the standard coordinates x1, . . . , xn (cf. (3.4)), where Λ = val(Ker pan). Fix
a Λ-periodic Γ-rational polytopal decomposition C0 of Rn, and let C0 denote the polytopal
decomposition of Rn/Λ induced from C0 by the quotient. Let p0 : E0 → A0 be the Mumford
model associated to C0 (cf. § 3.3). Let X ′ be a connected strictly semistable formal scheme over
K◦ (cf. § 2.1) and let ϕ0 : X ′

→ A0 be a generically finite morphism. We put X ′ := (X ′)an and
d := dimX ′. Let f : X ′→ Aan be the restriction of ϕ0 to the Raynaud generic fiber.

In this section we show that f induces a torus-equivariant morphism over the formal fiber
over a point in a stratum of X̃ ′ (cf. Lemma 4.3). Using this fact together with Lemma 2.7,
we show that the morphism between some models of X ′ and Aan induces a torus-equivariant
morphism between their strata (cf. Proposition 4.4). Then we give in Lemma 4.5 a sufficient
condition for a canonical simplex ∆S of S(X ′) not to be collapsed by f . This lemma will play
a key role in the sequel.

4.1 Associated affine map
Recall that Val : X ′ → S(X ′) is the retraction map to the skeleton (cf. § 2.1). The following
assertion is due to Gubler.

Proposition 4.1 [Gub10, Proposition 5.11]. Under the setting above, there is a unique map
faff : S(X ′) → Rn/Λ with faff ◦ Val = val ◦ f on X ′. The map faff is continuous. For any
S ∈ str(X̃ ′), the restriction of faff to the canonical simplex ∆S (cf. § 2.1) is an affine map and
there exists a unique ∆ ∈ C0 with faff(relin(∆S)) ⊂ relin(∆).

We recall how faff is described over ∆S . Set r := d − dimS, the codimension of S in X̃ ′.
We take an affine open subset U ′ ⊂X ′ and an étale morphism ψ : U ′

→ S = S1×S2, where
S1 = K◦〈x′0, . . . , x′r〉/(x′0 · · ·x′r − π) with π ∈ K◦◦\{0}, such that S is a distinguished stratum
associated to U ′ as in Proposition 2.1. Since pan : E→ Aan is a local isomorphism, replacing U ′

by a non-empty open subset of it, we can take a local lift F : (U ′)an
→ q−1(V ) of f : X ′→ Aan,
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where V is a formal affinoid subdomain of B. We fix an identification q−1(V ) ∼= (Gn
m)an × V .

By [Gub07a, Proposition 2.11], we have an expression

F ∗(xi) = λiviψ
∗(x′1)mi1 · · ·ψ∗(x′r)mir (4.1)

with some λi ∈ K×, vi ∈ O(U ′)× and mi = (mi1, . . . ,mir) ∈ Zr. We define faff : S(U ′)→ Rn,
via the identification

S(U ′) = ∆S = {(u′1, . . . , u′r) ∈ Rr>0 | u′1 + · · ·+ u′r 6 v(π)}

in (2.3), by

faff(u′) = (m1 · u′ + v(λ1), . . . ,mn · u′ + v(λn)), u′ ∈ ∆S = S(U ′). (4.2)

Then faff is the composite of faff : S(U ′)→ Rn with the quotient Rn→ Rn/Λ.
Let rk faff denote the rank of the linear part of faff , i.e. the rank of the matrix (mij). Note

that rk faff does not depend on the choice of a lift F or the identification q−1(V ) ∼= (Gn
m)an×V ,

and thus is well defined from f and ∆S .

4.2 Torus equivariance between strata

Let S be a stratum of X̃ ′ of codimension r and let ∆S be the canonical simplex corresponding
to S. Let mij , for 1 6 i 6 n and 1 6 j 6 r, be integers which give the linear part of faff (cf. (4.2)).
We define a homomorphism hf,∆S

: (Gr
m)an

1 → (Gn
m)an

1 by

h∗f,∆S
(xi) = (x′1)mi1 · · · (x′r)mir , i = 1, . . . , n.

Since (Gn
m)an is the torus part of the Raynaud extension of A, the affinoid torus (Gn

m)an
1 acts on

Aan. Then we make (Gr
m)an

1 act on Aan via hf,∆S
.

Remark 4.2. Let h̃f,∆S
: (Gr

m)K̃→ (Gn
m)K̃ be the homomorphism given by the reduction of hf,∆S

.

Then the image h̃f,∆S
((Gr

m)K̃) is a subtorus of (Gn
m)K̃ of dim faff(∆S), which is the rank of (the

linear part of) faff .

Lemma 4.3. With the notation above, let p̃ ∈ S be a closed point and let X ′+(p̃) := red−1
X ′(p̃) be

the formal fiber over p̃. Then the morphism

f |X′+(p̃) : X ′+(p̃)→ Aan

is (Gr
m)an

1 -equivariant with respect to the (Gr
m)an

1 -action on X ′+(p̃) given in § 2.2 and that on Aan

induced by hf,∆S
.

Proof. We take a formal affine open subscheme U ′ ⊂ X ′ such that p̃ ∈ Ũ ′. We then note that
X ′+(p̃) ⊂ (U ′)an. Replacing U ′ by a formal open subscheme containing p̃, we have a local lift F
of f as in § 4.1, so that we have a commutative diagram,

(U ′)an F // (Gn
m)an × V

pan

��
X ′+(p̃)

f //

∪

OO

Aan

where V is a formal affinoid subdomain of B, and (Gn
m)an× V is regarded as a subdomain of E.
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Since the right column in the above diagram is (Gr
m)an

1 -equivariant, it suffices to show that

F is a (Gr
m)an

1 -equivariant morphism. Recall that we have an isomorphism ψ′an|X′+(p̃) : X ′+(p̃)→

(S an)+(ψ̃(p̃)) in (2.4). Let G be the composite

(S an)+(ψ̃(p̃))
(ψ′an|X′+(p̃))

−1

// X ′+(p̃)
F // (Gn

m)an × V pr1 // (Gn
m)an,

where pr1 is the first projection. We note that if G is (Gr
m)an

1 -equivariant, then F is also (Gr
m)an

1 -

equivariant. Indeed, suppose that G is (Gr
m)an

1 -equivariant. Since the (Gr
m)an

1 -action on X ′+(p̃)

in Lemma 2.7 is defined through ψ′an|X′+(p̃), this morphism ψ′an|X′+(p̃) is (Gr
m)an

1 -equivariant

by definition. Thus G ◦ ψ′an|X′+(p̃) is (Gr
m)an

1 -equivariant, and hence pr1 ◦ F , which equals

G ◦ψ′an|X′+(p̃), is (Gr
m)an

1 -equivariant. Since the (Gr
m)an

1 -action on (Gn
m)an× V is the pull-back of

the (Gr
m)an

1 -action on (Gn
m)an by pr1, it follows that F is (Gr

m)an
1 -equivariant.

Thus we only have to show that G is (Gr
m)an

1 -equivariant. By the description (4.1), we have

G∗(xi) = λiv
′
i(x
′
1)mi1 · · · (x′r)mir , where λi ∈ K× and v′i ∈ O(S )×. It follows from this description

and the definition of hf,∆S
that G is (Gr

m)an
1 -equivariant. Thus we obtain the lemma. 2

Let C be a Λ-periodic Γ-rational polytopal subdivision of C0, with the induced polytopal

subdivision C of C0, and let p : E → A be the Mumford model of the uniformization pan : E→

Aan associated to C . Let B be the formal abelian scheme with Ban = B. Recall that there is a

morphism q : E →B which restricts to the morphism qan : E→ Aan on the Raynaud extension.

Also recall that, for any ∆ ∈ C , we obtain a natural (Gn
m)an

1 -action on val
−1

(relin(∆)) (cf. § 3.3).

Via the homomorphism hf,∆S
, we have a (Gr

m)an
1 -action on val

−1
(relin(∆)).

Let D be the subdivision of S(X ′) given by

D := {∆S′ ∩ f
−1
aff (∆) | S′ ∈ str(X̃ ′),∆ ∈ C }.

Let X ′′ be the formal model of X ′ associated to D and let ι′ : X ′′
→ X ′ be the morphism

extending the identity on X ′ as in Remark 2.2. Then we have a morphism ϕ′ : X ′′
→ A

extending f : X ′→ Aan by [Gub10, Proposition 5.14].

Let h̃f,∆S
: (Gr

m)K̃ → (Gn
m)K̃ be the homomorphism given by the reduction of hf,∆S

. Since

Zrelin ∆ = redA (val
−1

(relin(∆))) has a (Gn
m)K̃-action (cf. § 3.3), we obtain a (Gr

m)K̃-action on

Zrelin ∆ via h̃f,∆S
.

Proposition 4.4. Let u ∈ D be a vertex, ∆S the canonical simplex of S(X ′) with u ∈ relin ∆S ,

and R the stratum of X̃ ′′ corresponding to u (cf. Proposition 2.3). Let ∆ ∈ C be the polytope

with faff(u) ∈ relin(∆). Take a representative ∆ ∈ C of ∆ and let q̃∆|Zrelin ∆
: Zrelin ∆→ B̃ be the

morphism in (3.11). Then there exists a unique morphism β∆ : S → B̃ such that the diagram

R
ϕ̃′ //

ι̃′

��

Zrelin ∆

q̃∆|Z
relin ∆��

S
β∆ // B̃

commutes. Moreover, this diagram is (Gr
m)K̃-equivariant with respect to the (Gr

m)K̃-action on R

in Proposition 2.4, that on Zrelin ∆ induced by h̃f,∆S
and the trivial actions on S and B̃.
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Proof. We first define the morphism S→ B̃. Since there is a local section of ι̃′, we define locally
on S a morphism from S to B̃ which is compatible with q̃∆|Zrelin ∆

◦ ϕ̃′. Since the fiber of ι̃′ is

an algebraic torus and B̃ is an abelian variety, the morphism q̃∆|Zrelin ∆
◦ ϕ̃′ contracts any fiber

of ι̃′ to a point. This implies that the local morphism from S to B̃ defined in this way does not
depend on the choice of local sections of ι̃′. It follows that the local morphisms patch together
to form a global morphism β∆ : S → B̃, which satisfies the commutativity of the diagram.

The uniqueness of β∆ follows from the construction. It only remains to show that ϕ̃′ : R→
Zrelin ∆ is (Gr

m)K̃-equivariant. Take an arbitrary closed point p̃ ∈ S. We have relations R =
redX ′′(Val−1(u)) and {u}= Val((redX ′′)

−1({p̃}×SR)) by Proposition 2.3. We also have val ◦ f =
faff ◦Val by Proposition 4.1. It follows that

val(f((redX ′′)
−1({p̃} ×S R))) = faff(Val((redX ′′)

−1({p̃} ×S R))) = {faff(u)} ⊂ relin ∆,

and thus f restricts to a morphism

(redX ′′)
−1({p̃} ×S R)→ val

−1
(relin(∆)). (4.3)

Recall that we have a (Gr
m)an

1 -action on (redX ′′)
−1({p̃} ×S R) ⊂ X ′+(p̃) (cf. Remark 2.8). Since

val
−1

(relin(∆)) is stable under the (Gn
m)an

1 -action (cf. § 3.3), it is stable under the (Gr
m)an

1 -action
induced by hf,∆S

. It follows from Lemma 4.3 that the morphism (4.3) is (Gr
m)an

1 -equivariant.

We deduce the (Gr
m)K̃-equivariance of ϕ̃′ : R→ Zrelin ∆ from the (Gr

m)an
1 -equivariance of (4.3).

Indeed, it follows from Lemma 3.5 that the diagram

(Gr
m)an

1 × val
−1

(relin(∆))

red
(Gr

m)f-sch1 ×A

��

// val
−1

(relin(∆))

redA

��
(Gr

m)K̃ × Zrelin(∆)
// Zrelin(∆)

where the rows are the torus actions given by hf,∆S
and h̃f,∆S

, is commutative, that is, the

(Gr
m)an

1 -action on val
−1

(relin(∆)) and the (Gr
m)K̃-action on Zrelin(∆) are compatible with respect

to reduction. On the other hand, by Lemma 2.7, the (Gr
m)an

1 -action on (redX ′′)
−1({p̃} ×S R)

and the (Gr
m)K̃-action on {p̃} ×S R are compatible with respect to the reduction map redX ′′ .

Since (4.3) is (Gr
m)an

1 -equivariant, it follows that {p̃}×SR→ Zrelin ∆ is (Gr
m)K̃-equivariant. Since

p̃ ∈ S is any closed point, this implies that R→ Zrelin ∆ is (Gr
m)K̃-equivariant. Thus the proof is

complete. 2

4.3 Key lemma
The following is the key lemma in this paper. It is crucially used in the proof of Proposition 5.12.

Lemma 4.5. Let X be a d-dimensional closed subvariety of A and let X0 be the closure of X
in A0. Assume that the morphism ϕ0 : X ′

→ A0 factors through X0 to be a generically finite
surjective morphism X ′

→X0.11 Let ∆S be a canonical simplex of S(X ′). Suppose that there
exist a Γ-rational point w ∈ val(Xan), an irreducible component W of inw(X),12 and a Γ-rational
point u ∈ relin(∆S) such that f(u) reduces to the generic point of W (cf. Remark 3.7). Then we
have dim faff(∆S) = dim ∆S .

11 Moreover, if this morphism X ′
→ X0 is proper, it is called a semistable alteration (cf. § 5.2).

12 Recall that inw(X) denotes the initial degeneration of X at w (cf. (3.12)).
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Proof. Let C be a Γ-rational subdivision of C0 such that w itself is a vertex of C . Let X ′′ be
the formal model of X ′ associated to the polytopal subdivision

D := {∆S′ ∩ f
−1
aff (∆) | S′ ∈ str(X̃ ′),∆ ∈ C }

of S(X ′), and let ι′ : X ′′
→ X ′ denote the natural morphism extending the identity on the

generic fiber. Then u is a vertex of D . Let R ∈ str(X̃ ′′) be the stratum corresponding to u.
Then (Gr

m)K̃ acts on R, which makes ι̃′ : R→ S a torus bundle of relative dimension r = dim ∆S

(cf. Proposition 2.4).
Let E and A be the Mumford models of E and A associated with C . Let q : E → B

be the surjective morphism obtained from the Raynaud extension (cf. § 3.3). By [Gub10,
Proposition 5.14], there is a unique morphism ϕ′ : X ′′

→ A extending f . Since f(u) reduces to
the generic point of W , we have

faff(u) = val(f(u)) = w ∈ relin{w}.

Thus we have a morphism ϕ̃′ : R→ Zw, which is (Gr
m)K̃-equivariant by Proposition 4.4.

Since f(u) reduces to the generic point of W , Lemma 2.5 tells us that the generic point of
R maps to that of W . Since W is a closed subset of Zw, it follows that W coincides with the
closure of ϕ̃′(R) in Zw. Since the morphism ϕ̃′ : R→ Zw is (Gr

m)K̃-equivariant, we see that W

is stable under the (Gr
m)K̃-action induced by h̃f,∆S

. It follows that W is stable under the action

of T′′ := Image h̃f,∆S
, the image of h̃f,∆S

. Thus, we obtain a T′′-action on W . Since the action
of T′′ on Zw is free by Remark 3.4, we see that the T′′-action on W is free.

We set Ξ := W/T′′. Since T′′-action on W is free, we have dim Ξ = d − dim faff(∆S)
(cf. Remarks 3.6 and 4.2). Thus we have

dimS = d− dim ∆S 6 d− dim faff(∆S) = dim Ξ. (4.4)

Since Ξ is the quotient of W by the action of (Gr
m)K̃ induced by h̃∆S ,f : (Gr

m)K̃ → T′′ and

since R/(Gr
m)K̃ = S, the composite R → W → Ξ factors through R → S. Since ϕ̃′ : R → W

is dominant and since W → Ξ is surjective, the morphism S → Ξ is dominant. Thus we have
dimS > dim Ξ. This inequality, together with (4.4), shows that dimS = dim Ξ. Further, this
equality, together with (4.4), gives us dim ∆S = dim faff(∆S). This completes the proof of the
key lemma. 2

Remark 4.6. In the proof above, we have shown that Image h̃f,∆S
acts freely on W .

4.4 Non-degenerate canonical simplices
In this subsection we recall the notion of non-degeneracy with respect to f for canonical simplices
introduced by Gubler in [Gub10, 6.3]. We also show some properties of it.

We begin by recalling what the non-degenerate canonical simplices are. The morphism ϕ0 :
X ′
→ A0 gives us a morphism ϕ̃0 : S → Ã0. Then [Gub10, Lemma 5.15] gives us a morphism

Φ̃0 : S → Ẽ0 with p̃0 ◦ Φ̃0 = ϕ̃0, called a lift of ϕ̃0. Let q0 : E0 → B be the extension of qan :
E→ Aan between the models. A canonical simplex ∆S is said to be non-degenerate with respect
to f if dim faff(∆S) = dim ∆S and dim q̃0(Φ̃0(S)) = dimS. This notion does not depend on the
choice of Φ̃0.

Let C , A , D , and ι′ : X ′′
→ X ′ be as in § 4.2. Recall that ϕ0 lifts to ϕ′ : X ′′

→ A
by [Gub10, Proposition 5.14].
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Lemma 4.7. With the notation above, let u be a vertex of D and let ∆S be the canonical

simplex of S(X ′) with u ∈ relin ∆S . Let R be the stratum of X̃ ′′ corresponding to u. Assume

that w := faff(u) is a vertex of C . Let w ∈ Rn be a representative of w and let βw : S → B̃ be

the morphism in Proposition 4.4 for {w} ∈ C . Then ∆S is non-degenerate with respect to f if

and only if dim faff(∆S) = dim ∆S and dimβw(S) = dimS.

Proof. It suffices to show that βw = q̃0 ◦ Φ̃0 for some lift Φ̃0 of ϕ̃0. Since C is a Γ-rational

subdivision of C0, we have an extension ι0 : A → A0 of the identity morphism of A between

the Mumford models (cf. [Gub10, § 4]). Let ∆0 ∈ C0 be the polytope with w ∈ relin ∆0. Then ι̃0
restricts to Zw → Zrelin ∆0

, and there is a commutative diagram

R
ϕ̃′ //

ι̃′

��

Zw

ι̃0
��

Zw
p̃|Zw

∼=
oo

ι̃0

��

q̃|Zw // B̃

id

��
S

ϕ̃0 // Zrelin ∆0
Zrelin ∆0

p̃0|Zrelin ∆0

∼=
oo

q̃0|Zrelin ∆0 // B̃

We take the lift Φ̃0 of ϕ̃0 such that Φ̃0(S) ⊂ Zrelin ∆0 . Then

q̃0 ◦ Φ̃0 ◦ ι̃′ = q̃0 ◦ (p̃0|Zrelin ∆0
)−1 ◦ ϕ̃0 ◦ ι̃′ = q̃ ◦ (p̃|Zw)−1 ◦ ϕ̃′. (4.5)

Since q̃ ◦ (p̃|Zw)−1 = q̃w by definition and since q̃w ◦ ϕ̃′ = βw ◦ ι̃′ by Proposition 4.4, it follows

from (4.5) that q̃0 ◦ Φ̃0 ◦ ι̃′ = βw ◦ ι̃′. Since ι̃′ is surjective, we conclude that q̃0 ◦ Φ̃0 = βw, as

required. 2

Lemma 4.8. Let u, ∆S and R be as in Lemma 4.7. Assume that w := faff(u) is a vertex of C .

If ∆S is non-degenerate with respect to f , then dim ϕ̃′(R) = d.

Proof. Recall that (Gn
m)K̃ acts on Zw and that the (Gr

m)K̃-action on Zw is given by the

homomorphism h̃f,∆S
. We set T′′ := Image h̃f,∆S

. Then there is a natural T′′-action on Zw.

By Proposition 4.4, the morphism ϕ̃′ : R→ Zw is (Gr
m)K̃-equivariant. It follows that ϕ̃′(R) ⊂ Zw

is stable under the T′′-action. Thus we have a T′′-action on ϕ̃′(R). Since the (Gn
m)K̃-action on

Zw is free (cf. Remark 3.4), the T′′-action on ϕ̃′(R) is free.

We take a representative w ∈ C of w. The morphism q̃w : Zw → B̃ in (3.11) is the quotient

by (Gn
m)K̃, so that any T′′-orbit in ϕ̃′(R) contracts to a point by q̃w. It follows that dim ϕ̃′(R) >

dim q̃w(ϕ̃′(R))+dimT′′. Since dimT′′ = dim faff(∆S) by Remark 4.2, we thus obtain dim ϕ̃′(R) >
dim q̃w(ϕ̃′(R)) + dim faff(∆S).

Suppose that ∆S is non-degenerate with respect to f . Then dim faff(∆S) = dim ∆S and

dimS = dimβw(S) by Lemma 4.7. Since βw(S) = q̃w(ϕ̃′(R)) (cf. Proposition 4.4), we obtain

dimS = dim q̃w(ϕ̃′(R)). Thus we have

d > dim ϕ̃′(R) > dim q̃w(ϕ̃′(R)) + dim faff(∆S) = dimS + dim ∆S = d,

and we conclude that dim ϕ̃′(R) = d. 2
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5. Strict supports of canonical measures

In this section, let K be a subfield of K such that the absolute value of K restricts to a
discrete absolute value on K, and assume that K is complete. The value group ΓK of K is
a discrete subgroup of Q. Let K◦ denote the ring of integers of K, which is a discrete valuation
ring. For a variety X over K and a flat formal scheme X of finite type over K◦, we let Xan and
X an stand for (X ×SpecK SpecK)an and (X ×Spf K◦ Spf K◦)an, respectively. They are analytic
spaces over K. We deal only with analytic spaces which arise from varieties defined over K and
formal schemes defined over K◦ in this section because it is enough for our later applications.

5.1 Mumford models over a discrete valuation ring
Let A be an abelian variety over K. We recall that, replacing K by a finite extension in K if
necessary, we have the Raynaud extension over K. Indeed, by [BL91, Theorem 1.1], replacing K
by a finite extension in K if necessary, we have an exact sequence

1 // (Gn
m)f-sch

K◦
// A◦ // B // 0

of formal group schemes over K◦, where n is the torus rank of A, (Gn
m)f-sch

K◦ is a split
formal torus over K◦, A◦ is the formal completion of a semiabelian scheme over K◦, and B is
the formal completion of an abelian scheme over K◦. Further, the base-change to K◦ is nothing
but the exact sequence (3.1) for A×SpecK SpecK. We can also construct, in the same way as we
did in § 3.1, a short exact sequence of analytic groups over K whose base-change to K coincides
with (3.3).

Let pan : E → Aan be the uniformization and consider the lattice Λ = val(Ker pan) in Rn.
We see from [BL91, Theorem 1.2] and its proof that Λ = val(Ker pan) ⊂ ΓnK, and hence we
have Λ ⊂ Qn. Thus there exists a Λ-periodic rational polytopal decomposition of Rn in this
setting.

Lemma 5.1. Let A be an abelian variety over K of torus rank n. Let C be a Λ-periodic rational
polytopal decomposition of Rn and let C be the induced rational polytopal decomposition of
Rn/Λ. Then, replacing K with a finite extension in K if necessary, we have a proper flat formal
scheme A over K◦ such that A×Spf K◦ Spf K◦ is the Mumford model of A associated to C .

Proof. Replacing K by a finite extension in K, we may assume that any vertex in C is in ΓnK.
Then the construction of the Mumford models in [Gub10, 4.7] works over K◦ without any change,
so that the Mumford model A associated to C is defined over K◦, that is, there exists a formal
model A of A over K◦ such that A = A×Spf K◦ Spf K◦. 2

Remark 5.2. In the sequel, when we talk about a Mumford model of A, this means that it is the
Mumford model associated to a Λ-periodic rational polytopal decomposition of Rn, so that this
Mumford model can be defined over a finite extension of K◦ by Lemma 5.1.

5.2 Semistable alterations
Let X0 be a connected admissible formal scheme over K◦. A morphism X ′

→ X0 of formal
schemes over K◦ is called a semistable alteration for X0 if X ′ is a connected strictly semistable
formal scheme and X ′

→ X0 is a proper surjective generically finite morphism. We say that a
proper surjective generically finite morphism X ′→ X0 of flat formal schemes of finite type over
K◦ is a semistable alteration if the base-change of this morphism to K◦ is a semistable alteration
in the above sense.
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In this subsection we discuss the existence of semistable alteration for a model of a closed
subvariety of an abelian variety defined over K.

Lemma 5.3. Let A be an abelian variety over K and let X be a closed subvariety of A. Let
A0 be a proper flat formal scheme over K with Aan

0 = Aan, and let X0 be the closure of X in
A0. Then there exist a projective formal scheme X ′ flat over Spf K◦ and a semistable alteration
ϕ0 : X ′→ X0.

Proof. Note that [Gub03, Proposition 10.5] gives us a projective scheme X1 → Spec K◦ with
generic fiber X, and a dominating morphism X̂1 → X0 extending the identity on the generic
fiber, where X̂1 is the formal completion of X1 along its special fiber. Indeed, the statement
of [Gub03, Proposition 10.5] is given under the assumption that the base field K is algebraically
closed, but the proof given there also works well in our situation without any change.

Since X̂1 is algebraizable, we apply [dJ96, Theorem 6.5] to X̂1 to obtain a semistable
alteration X ′ → X̂1 over K◦ such that X ′ is a projective formal scheme flat over Spf K◦. Let
ϕ0 : X̂ ′→ X̂0 be the composite. Then it is a semistable alteration, as required. 2

Remark 5.4. Let A0 be such a Mumford model as in Remark 5.2. Let X be a closed subvariety
of A, and let X0 the closure of X. Since A0 is a formal scheme which can be defined over a
finite extension of K◦, X0 is a formal scheme which can be defined over the finite extension as
well. By Lemma 5.3, we have a semistable alteration ϕ0 : X ′

→X0 which can be defined over a
finite extension of K◦. Further, the restriction of ϕ0 to the Raynaud generic fibers is regarded as
a morphism of projective varieties over a finite extension of K. In the sequel, we consider such
semistable alterations only.

5.3 Canonical measures and the canonical subset
Let X be a proper variety over K and let L be a line bundle on X. In [Gub10], Gubler defined
the notion of admissible metrics on L (cf. [Gub10, 3.5]). If L is a line bundle on X endowed with
an admissible metric, then one can define a regular Borel measure c1(L)∧d on Xan with suitable
properties [Gub10, Proposition 3.8]. It was originally introduced by Chambert-Loir in [Cha06].
These measures satisfy the projection formula: if f : X ′ → X is a morphism of d-dimensional
geometrically integral proper varieties over K, then f∗L is an admissibly metrized line bundle
on X ′, and

f∗(c1(f∗L)∧d) = deg(f)c1(L)∧d.

Let A be an abelian variety over K and let L be a line bundle on A. We say that L is
even if [−1]L∗ ∼= L, where, for any m ∈ Z, [m] : A → A denotes the homomorphism given by
[m](a) = ma. Suppose that L is even and ample. As mentioned in [Gub10, Example 3.7], there
is an important metric, called a canonical metric, on L. This metric is described as follows. Let
m be a positive integer. Since L is even, we have an identification [m]∗L = Lm

2
. Then a metric

‖ · ‖ on L is called a canonical metric if [m]∗‖ · ‖ = ‖ · ‖m2
via that identification. Note that a

canonical metric depends on the choice of the identification [m]∗L = Lm
2
, but it is unique up to

positive rational multiples.
In the sequel, let L always denote a line bundle endowed with a canonical metric for a line

bundle L on an abelian variety. For a closed subvariety X of A of dimension d, the restriction
L|X is a line bundle on X with an admissible metric (cf. [Gub10, Proposition 3.6]). We define a
canonical measure on Xan to be

µXan,L :=
1

degLX
c1(L|X)∧d,
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which is a probability measure. Although the canonical metric is unique only up to a positive
rational multiple, the canonical measure is uniquely determined from L.

We fix the notation which is used in the rest of this section. Let pan : E → Aan be the
uniformization and let val : E → Rn be the valuation map, where n is the torus rank of A. We
set Λ := val(Ker pan) and let val : Aan

→ Rn/Λ be the valuation map. Let C0 be a Λ-periodic
rational polytopal decomposition of Rn and let C0 be the rational polytopal decomposition of
Rn/Λ induced by the quotient. We take the Mumford model A0 of A associated to C0, which
can be defined over a finite extension of K◦ (cf. Remark 5.2). Let X0 be the closure of X ⊂ A
in A0. We take a semistable alteration ϕ0 : X ′

→X0 as in Remark 5.4. Put X ′ := (X ′)an and
let f : X ′→ Aan be the composite (X ′)an

→ Xan
→ Aan. Then we have a measure

µX′,f∗L :=
1

degf∗LX
′ c1(f∗L)∧d

on X ′.
Since the morphism X ′ → Xan is the analytification of a morphism between projective

varieties over a finite extension of K, we have

f∗µX′,f∗L = µXan,L (5.1)

by the projection formula noted above.13 Recall that we have an expression

µX′,f∗L =
∑
∆S

rSδ∆S
(rS > 0) (5.2)

by [Gub10, Corollary 6.9], where ∆S runs through the set of non-degenerate canonical simplices
with respect to f , and δ∆S

is the push-out of the Lebesgue measure on ∆S . Note that all the
coefficients rS are positive. Let S(X ′)nd-f be the union of the non-degenerate canonical simplices
of S(X ′) with respect to f . Then (5.2) shows that µX′,f∗L is supported by S(X ′)nd-f . Since
the notion of non-degeneracy of ∆S is independent of L, the support of µX′,f∗L is independent
of L. Thus the support SXan of µXan,L is exactly the image of S(X ′)nd-f , and in particular, it
does not depend of L. Thus SXan depends only on X. It is called the canonical subset of Xan

in [Gub10, Remark 6.11].
By [Gub10, Theorem 6.12], SXan has a canonical rational piecewise linear structure. This is

characterized by the property that, for any model X of X in a Mumford model and for any
semistable alteration ψ : Z → X , the induced map fan|S(Z )nd-f

: S(Z )nd-f → SXan is a finite
rational piecewise linear map (cf. [Gub10, Theorem 6.12]).

If ∆S is non-degenerate with respect to f , then f |∆S
: ∆S → f(∆S) is bijective.

Indeed, suppose that ∆S is non-degenerate. Since faff |∆S
: ∆S → Rn/Λ is an affine map

by Proposition 4.1 and since dim faff(∆S) = dim ∆S , the map faff |∆S
is a finite affine map,

which means that faff |∆S
is an injective affine map. Since val ◦ f |∆S

= faff |∆S
, it follows that

f |∆S
: ∆S → f(∆S) is injective, and hence bijective.

Remark 5.5. The valuation map val restricts to a finite piecewise linear map val : SXan → Rn/Λ.
Further, for any non-degenerate stratum ∆S with respect to f , we have

dim ∆S = dim faff(∆) = dim f(∆S).

13 We often identify µXan,L with its push-forward by the canonical closed immersion Xan ↪→ Aan.
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Since SXan has a canonical rational piecewise linear structure, we can consider a rational
polytopal decomposition of SXan . In describing the canonical measure, the following notion will
be convenient.

Definition 5.6. A rational polytopal decomposition Σ of SXan is said to be ϕ0-subdivisional if,
for any non-degenerate simplex ∆S of S(X ′), the image f(∆S) is a finite union of polytopes
in Σ.

Remark 5.7. Let Σ be a ϕ0-subdivisional rational polytopal decomposition of SXan and let σ ∈ Σ
be a polytope. Then there exists a non-degenerate canonical simplex ∆S such that f(∆S) ⊃ σ.
Since faff |∆S

= val ◦ f |∆S
is injective, it follows that val|σ is injective.

The following lemma gives us a ϕ0-subdivisional rational polytopal decomposition of SXan .

Lemma 5.8. For any rational polytopal decomposition Σ0 of SXan , there exists a rational
polytopal subdivision of Σ0 which is a ϕ0-subdivisional rational polytopal decomposition of
SXan .

Proof. Let ∆S be a stratum non-degenerate with respect to f . Since f |∆S
: ∆S → f(∆S) is a

bijective piecewise linear map, there exists a rational subdivision Σ′S of ∆S such that, for each
σ′ ∈ Σ′S , the restriction f |σ′ is an affine map. Then f(Σ′S) is a rational polytopal decomposition
of f(∆S). Since f : S(X ′)nd-f → SXan is a finite rational piecewise linear map, we can take a
rational polytopal subdivision Σ of Σ0 such that, for any non-degenerate ∆S , f(∆S)∩Σ := {σ ∈
Σ | σ ⊂ f(∆S)} is a subdivision of f(Σ′S). Then we see that Σ is a ϕ0-subdivisional rational
polytopal decomposition. 2

Let Σ be a ϕ0-subdivisional rational polytopal decomposition of SXan . Then we have an
expression

µXan,L =
∑
σ∈Σ

r′σδσ, (5.3)

where r′σ > 0 and δσ is the push-out of the Lebesgue measure on σ. Indeed, since Σ is ϕ0-
subdivisional, we have δ∆S

=
∑

σ δ(f |∆S
)−1(σ), where σ runs through the polytopes in Σ such

that σ ⊂ f(∆S) and dimσ = dim ∆S . Thus we write f∗δ∆S
=
∑

σ ασδσ for some ασ > 0, where
σ runs through polytopes in Σ such that σ ⊂ f(∆S). It follows from (5.2) and (5.1) that we can
write µXan,L = f∗µX′,f∗L =

∑
σ∈Σ r

′
σδσ for some r′σ > 0.

5.4 Strict supports of canonical measures
In this subsection we define the notion of strict supports and investigate the strict supports
of a canonical measure on the canonical subset. We follow the notation in § 5.3 for A, L, X,
ϕ0 : X ′

→ A0, f : X ′→ Aan, µXan,L and so on.

Definition 5.9. Let P be a polytopal set with a finite polytopal decomposition Σ. Let µ be a
semipositive Borel measure on P. We say that σ ∈ Σ is a strict support of µ if there exists an
ε > 0 such that µ− εδσ is semipositive, where δσ is the push-out of the Lebesgue measure on σ.

For example, let Σ be a ϕ0-subdivisional rational polytopal decomposition of SXan . Then σ ∈
Σ is a strict support of the canonical measure µXan,L if and only if r′σ > 0 in the expression (5.3).
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Lemma 5.10. Let Σ be a ϕ0-subdivisional rational polytopal decomposition of SXan and take
any σ ∈ Σ. Then σ is a strict support of µXan,L if and only if there exists a canonical simplex
∆S non-degenerate with respect to f such that dim ∆S = dimσ and σ ⊂ f(∆S).

Proof. Recall that a canonical simplex ∆S of S(X ′) is a strict support of µX′,f∗L if and only if ∆S

is non-degenerate with respect to f (cf. (5.2)). Since Σ is ϕ0-subdivisional and µXan,L = f∗µX′,f∗L,
it follows that σ is a strict support of µXan,L if and only if there exists a non-degenerate ∆S such
that dim f(∆S) = dimσ and that σ ⊂ f(∆S). Since dim f(∆S) = dim ∆S for non-degenerate ∆S

(cf. Remark 5.5), that shows our lemma. 2

Recall that, for a rational point w ∈ val(Xan), inw(X) denotes the initial degeneration of X
over w.

Lemma 5.11. Let Σ be a ϕ0-subdivisional rational polytopal decomposition of SXan . Suppose
that σ ∈ Σ is a strict support of µXan,L. Then for any rational point t ∈ relinσ, there exists
an irreducible component W of inval(t)(X) such that t reduces to the generic point of W

(cf. Remark 3.7).

Proof. Since Σ is ϕ0-subdivisional and σ is a strict support of µXan,L, Lemma 5.10 gives us a
non-degenerate stratum ∆S of S(X ′) with respect to f such that dim ∆S = dimσ and that
f(∆S) ⊃ σ. Note that relinσ ⊂ f(relin ∆S), and we take a point u ∈ relin ∆S with f(u) = t. We
put w := val(t) = faff(u).

Let C be a rational subdivision of C0 such that w itself is a vertex of C . Let A be the
Mumford model of A associated to C . Let D be the subdivision of S(X ′) given by

D = {∆S′ ∩ (faff)−1(∆) | S′ ∈ str(X̃ ′),∆ ∈ C }.

Since ∆S is non-degenerate, the map faff |∆S
is injective, which shows that u is a vertex of D .

Let X ′′ be the formal model associated to the subdivision D (cf. Remark 2.2). Then we have
an extension ϕ′ : X ′′

→ A of f : X ′→ Aan by [Gub10, Proposition 5.13]. Let R be the stratum
of X̃ ′′ corresponding to u in Proposition 2.3. Since {w} is an open face of C with faff(u) = w,
we have ϕ̃′(R) ⊂ Zw by [Gub10, Proposition 5.14].

Let X be the closure of X in A . Since ϕ̃′(R) is also contained in X̃ and since inw(X) =
X̃ ∩Zw, we have ϕ̃′(R) ⊂ inw(X). Let W be the closure of ϕ̃′(R) in inw(X). It is an irreducible
closed subset of inw(X). Since ∆S is non-degenerate, it follows from Lemma 4.8 that dimW =
d := dimX. Since any irreducible component of inw(X) has dimension d (cf. Remark 3.6), W is
an irreducible component of inw(X).

It only remains to show that t reduces to the generic point of W . By Lemma 2.5, the point
u ∈ (X ′)an reduces to the generic point of R. Since ϕ̃′ maps the generic point of R to that of
W , it follows that t = f(u) reduces to the generic point of W . 2

Now we can show the following statement.

Proposition 5.12. Let Σ be a ϕ0-subdivisional rational polytopal decomposition of SXan and
let σ ∈ Σ be a polytope. Let ∆S be a canonical simplex of S(X ′). Assume that there exists a
rational point u ∈ relin(∆S) with f(u) ∈ relin(σ). Then if σ is a strict support of µXan,L, then
dim faff(∆S) = dim ∆S holds.
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Proof. Let σ ∈ Σ be a strict support of µXan,L. We set t := f(u) and w := faff(u) = val(f(u)).
Note that they are rational points in relinσ and val(Xan), respectively. Since σ is a strict support
of µXan,L, Lemma 5.11 gives us an irreducible component W of inw(X) such that t reduces to
the generic point of W . Then Lemma 4.5 concludes that dim faff(∆S) = dim ∆S . 2

The following lemma gives us a sufficient condition for the assumption in Proposition 5.12.

Lemma 5.13. Let Σ be a ϕ0-subdivisional rational polytopal decomposition of San and let σ ∈ Σ
be a polytope. Let ∆S be a canonical simplex in S(X ′) such that f(∆S) ⊃ σ and dim faff(∆S) =
dim val(σ). Then there exists a rational point u ∈ relin ∆S such that f(u) ∈ relin(σ).

Proof. Since val|σ : σ → Rn/Λ is a piecewise linear map, there exists a polytope σ′ ⊂ σ with
dimσ′ = dimσ such that val is affine over σ′. Then val(σ′) is a polytope in Rn/Λ such that
relin(val(σ′)) ⊂ relin(faff(∆S)), so that there exists a rational point u ∈ relin(∆S) such that
faff(u) ∈ relin(val(σ′)). Since val|σ′ is an injective affine map (cf. Remark 5.7), we have f(u) ∈
relin(σ′) ⊂ relin(σ), as required. 2

6. Tropical triviality and density of small points

6.1 Notation, convention and remarks
In the sequel, we fix the following notation and convention. Let k be an algebraically closed field,
B a normal projective variety over k, and H an ample line bundle on B.14 Let K be the function
field of B, and fix an algebraic closure K of K.

For a finite extension K ′ in K of K, let BK′ denote the normalization of B in K ′. Let MK′

denote the set of points in BK′ of codimension one. For any w ∈MK′ , the local ring OBK′ ,w is a

discrete valuation ring having K ′ as the fraction field, and the order function ordw : (K ′)×→ Z
gives an additive discrete valuation. If K ′′ is a finite extension of K ′, then we have a canonical
finite surjective morphism BK′′ → BK′ , which induces a surjective map MK′′ →MK′ . Thus we
have an inverse system (MK′)K′ , where K ′ runs through the finite extensions of K in K. We set
MK := lim

←−K′MK′ , and call an element of MK a place of K.

Each place v = (vK′)K′ ∈MK determines a unique non-archimedean multiplicative absolute
value | · |v on K in such a way that the following conditions are satisfied.
• The restriction of | · |v to K ′ is equivalent to the absolute value associated with the order

function ordvK′ .

• For any x ∈ K×, |x|v = e−ordvK
x.

Through this correspondence, we regard a place of K as an absolute value of K. For a
v ∈MK , let Kv denote the completion of K with respect to v. It is an algebraically closed field
complete with respect to the non-archimedean absolute value | · |v.

For each vK ∈MK , let | · |vK ,H be the absolute value normalized in such a way that

|x|vK ,H := e−(ordvK
x)(degH vK),

where degH vK stands for the degree of the closure of vK in B with respect to H. It is well
known that the set V := {| · |vK ,H}v∈MK

of absolute values satisfies the product formula, and
hence we define the notion of heights with respect to this set of absolute values, namely, an

14 We assume B to be a curve in § 8.
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absolute logarithmic height with respect to V (cf. [Lan83b, ch. 3, § 3]). By ‘height’ in this paper
we always mean this height.

Let F/k be any field extension. For a scheme X over k, we write XF := X ×Spec k SpecF .
If φ : X → Y is a morphism of schemes over k, we write φF : XF → YF for the base extension
to F .

Let X be an algebraic scheme over K. For each place v of K, we have a Berkovich analytic
space associated to X ×SpecK SpecKv. We write Xv for this analytic space.

Let A be an abelian variety over K and suppose that X is a subvariety of A. Then A and
X can be defined over a finite extension of K in K, so that Av and Xv can be defined over a
subfield of Kv over which the valuation is a discrete valuation. Thus the assumptions in § 5 are
fulfilled for them, and we can apply the arguments in § 5 in this setting.

6.2 Tropically trivial subvarieties and density of small points
In this subsection we introduce the notion of tropically trivial subvarieties and investigate in
Theorem 6.2 the relationship between tropical triviality and density of small points.

Let A be an abelian variety over K. Let L be an even ample line bundle on A. Then we can
define the canonical height function ĥL : A(K)→ R associated to L. Refer to [Lan83b] for the
definition and properties. Note that it is a non-negative function.

Let X be a closed subvariety of A. We say X has dense small points if X(ε;L) is Zariski
dense in X for any ε > 0 (cf. [Yam13, Definition 2.2]), where X(ε;L) := {x ∈ X(K) | ĥL(x) 6 ε}.
Note that this notion does not depend on the choice of an even ample line bundle L.

From the viewpoint of the geometric Bogomolov conjecture (cf. Conjecture C), it is interesting
to ask what properties a closed subvariety with dense small points has. Theorem 6.2 gives an
answer to this. For the statement, we make the following definition.

Definition 6.1. Let A be an abelian variety over K and let X be a closed subvariety of A. We
say that X is tropically trivial if val(Xv) consists of a single point for any v ∈MK , where val is
the valuation map for Av (cf. § 3.1).

For a closed subvariety X of A, let GX be the stabilizer of X, i.e. GX := {a ∈ A | a+X ⊂X}.
We regard it as a reduced closed subgroup scheme of A.

Theorem 6.2. Let A be an abelian variety over K and let X be a closed subvariety of A. If X
has dense small points, then the closed subvariety X/GX of A/GX is tropically trivial.

Proof. To argue by contradiction, suppose that we have a counterexample, that is, there exists a
closed subvariety X satisfying the following: X has dense small points, and there exists a place
v ∈ MK such that val((X/GX)v) is not a single point, where val : Av → Rn/Λ is the valuation
map for Av (and n is the torus rank of Av); cf. § 3.1. Then X/GX is also a counterexample
by [Yam13, Lemma 2.1], so we may and do assume that the stabilizer GX is trivial. We consider
a homomorphism α : AN → AN−1 defined by α : (x1, . . . , xN ) 7→ (x2 − x1, . . . , xN − xN−1). Put
Z := XN ⊂ AN and Y := α(Z). Since GX = 0, the restriction Z → Y of α is a generically finite
surjective morphism for a large N (cf. [Zha98, Lemma 3.1]). We fix such an N . Let the same
symbol α denote the morphism Zv → Yv between the associated analytic spaces over Kv.

Let ĥAN and ĥAN−1 be the canonical height functions associated to any even ample line
bundles on AN and AN−1, respectively. Since X has dense small points, so does Z (cf. [Yam13,
Lemma 2.4]), and hence Z has a generic net (Pm)m∈I , where I is a directed set, such that
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limm ĥZ(Pm) = 0 (cf. [Gub07b, Proof of Theorem 1.1]). The image (α(Pm))m∈I is also a generic

net of Y with limm ĥY (α(Pm)) = 0.

Let K ′ be a finite extension of K in K over which A and X, and hence Z and Y , are defined.

For a point P in Z(K) or in Y (K), let O(P ) denote the Gal(K/K ′)-orbit of P . Then, by the

equidistribution theorem [Gub08, Theorem 1.1], we find that

νZv ,m :=
1

|O(Pm)|
∑

z∈O(Pm)

δz and νYv ,m :=
1

|O(α(Pm))|
∑

y∈O(α(Pm))

δy

weakly converge, as m→∞, to the canonical measures µZv on Zv and to µYv on Yv associated

to the even ample line bundles, respectively. Since α∗(νZv ,m) = νYv ,m, we obtain α∗(µZv) = µYv .

Note in particular that α(SZv) = SYv , where SZv and SYv are the canonical subsets.

We take the Mumford models of ANv and of AN−1
v associated to rational polytopal

decompositions of (Rn/Λ)N and (Rn/Λ)N−1, respectively. Subdividing the rational polytopal

decomposition of (Rn/Λ)N if necessary, we may and do assume that the map α : ANv → AN−1
v

extends to a morphism between the Mumford models (cf. § 3.3). Let Z and Y be the closure of Zv
and Yv in these Mumford models of ANv and of AN−1

v , respectively. Note that we have a morphism

Z → Y . It follows from Lemma 5.3 that there exists a semistable alteration ϕ : Z ′
→ Z for Z

as in Remark 5.4. Note that the composite ψ : Z ′
→ Z → Y is a semistable alteration for Y as

in Remark 5.4. Let g be the composite (Z ′)an
→ Zv ↪→ ANv and put h := α◦g : (Z ′)an

→ AN−1
v .

We note that α|SZv
: SZv → SZv is a piecewise linear map. Indeed, we consider the diagram

SZv

val|SZv
��

α|SZv // SYv

val|SYv
��

val(SZv)
αaff |val(SZv

)

// val(SYv)

where αaff is the affine map associated to α (cf. § 3.2). Then αaff |val(SZv ) is a piecewise linear

map. Since the columns are finite piecewise linear maps (cf. Remark 5.5), it follows that the

continuous map α|SZv
is a piecewise linear map.

By Lemma 5.8, there exist a ϕ-subdivisional rational polytopal decomposition ΣZv of SZv

and a ψ-subdivisional rational polytopal decomposition ΣYv of SYv . Taking a subdivision of ΣZv

if necessary, we may assume that, for any σ′ ∈ ΣZv , there exists a unique σ′′ ∈ ΣYv such that

relin(α(σ′)) ⊂ relin(σ′′) and that α|σ′ is an affine map. In particular, for any σ′ ∈ ΣZv , α(σ′) is

a polytope contained in some polytope in ΣYv .

By [Gub10, Theorem 1.1], val(Xv) coincides with the support of val∗(µXv). Since it contains

a polytope of positive dimension by our assumption at the beginning, there exists a positive-

dimensional rational polytope P in val(Xv) such that val∗(µXv)− εδP is semipositive for a small

ε > 0. By [Yam13, Lemma 4.1 and Proposition 4.5], val
N
∗ (µZv) is the product measure of N

copies of val∗(µXv). Thus val
N
∗ (µZv) − εδPN is semipositive for a small ε > 0, where we recall

that val
m

: Amv → (Rn/Λ)m is the valuation map for Amv for m ∈ N (cf. § 3.2). Since ΣZv is

ϕ-subdivisional, we have an expression

val
N
∗ (µZv) =

∑
σ′

rσ′val
N
∗ (δσ′) (rσ′ > 0),
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where σ′ runs through the polytopes in ΣZv that are strict supports of µZv . It follows that there

exists a strict support σ ∈ ΣZv of µZv such that relin(val
N

(σ)) ∩ relin(PN ) 6= ∅, where we remark

that val
N

(σ) is a polytope. Note that dim(val
N

(σ)) = dimPN .
Consider the affine map αaff : (Rn/Λ)N → (Rn/Λ)N−1. Since αaff |PN contracts the diagonal of

PN to a point, it follows that dim(αaff(PN )) < dim(PN ), and thus we have dim(val
N−1

(α(σ))) <

dim(val
N

(σ)). This inequality, together with Remark 5.5, leads to

dimα(σ) < dimσ. (6.1)

We take a polytope τ ∈ ΣYv with relin(α(σ)) ⊂ relin(τ). By our assumption on ΣZv and ΣYv ,
such a polytope τ uniquely exists and is characterized by the condition that relin(α(σ)) ∩ relin
τ 6= ∅. We claim that dim τ = dimα(σ) and that τ is a strict support of µYv . Indeed, we take a
compact subset V ⊂ relin(α(σ)) such that V is a polytope in α(σ) with dimV = dimα(σ). Then
there is an ε′ > 0 such that α∗δσ − ε′δV > 0. Since σ is a strict support of µZv , there exists an
ε′′ > 0 such that µZv − ε′′δσ > 0. Putting ε := ε′ε′′, we obtain

µYv − εδV > α∗µZv − ε′′α∗δσ = α∗(µZv − ε′′δσ) > 0.

Since we can write µYv =
∑

σ′∈ΣYv
rσ′δσ′ with rσ′ > 0 (cf. (5.3)), we find a strict support τ ′ ∈ ΣYv

of µYv such that relin(V )∩relin(τ ′) 6= ∅ and dimV = dim τ ′. Note that relin(α(σ))∩relin(τ ′) 6= ∅
in particular, for relin(V ) ⊂ relin(α(σ)). Since τ is the unique polytope in ΣYv with relin(α(σ))∩
relin(τ) 6= ∅, it follows that τ = τ ′. Thus τ is a strict support of µYv . Further, we have dim τ =
dimV = dimα(σ).

Since σ is a strict support of µZv , Lemma 5.10 gives us a canonical simplex ∆S of S(Z ) non-
degenerate with respect to g such that g(∆S) ⊃ σ and dim ∆S = dimσ. Note that dimhaff(∆S) =
dim τ ; indeed, we see that

dimhaff(∆S) = dimαaff(gaff(∆S)) = dimαaff(val(σ)) = dim val(α(σ)) = dimα(σ) = dim τ.

Since g(∆S) ⊃ σ, we have h(∆S) ⊃ α(σ). Since relin(τ) ⊃ relin(α(σ)), it follows that
h(∆S) ∩ relin(τ) 6= ∅. By the assumption that polytopal decomposition ΣYv is ψ-subdivisional,
this shows that h(∆S) ⊃ τ . Since τ is a strict support of µYv , it follows from Proposition 5.12
with Lemma 5.13 that dimhaff(∆S) = dim ∆S . However, inequality (6.1) shows that

dimhaff(∆S) = dimα(σ) < dimσ = dim ∆S .

That is a contradiction. Thus we complete the proof of the theorem. 2

7. Main results

In this section, after recalling the geometric Bogomolov conjecture for abelian varieties, we prove
Theorems F and E with the use of Theorem 6.2.

7.1 Special subvarieties and the geometric Bogomolov conjecture

Let A be an abelian variety over K. Let (AK/k,TrA) be the K/k-trace of A, that is, the pair

of an abelian variety AK/k over k and a homomorphism TrA : (AK/k)K → A with the following
universal property: for any abelian variety A′ over k and for any homomorphism φ : A′

K
→ A,

there exists a unique homomorphism Tr(φ) : A′→ AK/k over k such that TrA ◦Tr(φ)K = φ. We
refer to [Lan83a, Lan83b] for details.
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We recall the notion of special subvarieties introduced in [Yam13]. Let X be a closed
subvariety of A. We say that X is special if there exist a torsion point τ ∈ A(K) and a closed

subvariety X ′ ⊂ AK/k over k such that X = GX + TrA(X ′
K

) + τ , where GX is the stabilizer of
X. We say that a point x ∈ A is a special point if {x} is a special subvariety. In the definition of
special subvariety, we may replace the condition for τ being torsion by that for τ being special
(cf. [Yam13, Remark 2.6]).

We gather together some properties of special subvarieties in the following lemma. Note
that the equivalence between (a) and (b) in (1) below shows that the special subvariety in the
introduction is the same as the one recalled above. Note also that [Yam13, Proposition 2.11]
shows that X is a special subvariety of A if and only if X/GX is a special subvariety of A/GX ,
and Lemma 7.1(1) generalizes this equivalence.

Lemma 7.1. Let A be an abelian variety over K and let X be a closed subvariety of A. Further,
let G′ be a closed algebraic subgroup of GX , where GX is the stabilizer of X.

(1) The following are equivalent.

(a) X is a special subvariety.

(b) There exist an abelian variety B over k, a closed subvariety Y ⊂ B, a homomorphism
φ : BK → A, a torsion point τ ∈ A(K), and an abelian subvariety A′ of A such that
X = A′ + φ(YK) + τ .

(c) The quotient X/G′ is a special subvariety of A/G′.

(2) Let A1 be an abelian variety over K and let ψ : A→ A1 be a homomorphism. Suppose that
X is a special subvariety of A. Then ψ(X) is a special subvariety of A1.

Proof. In this proof, we first show the equivalence between (a) and (b), next show that (2) holds,
and finally show the equivalence between (a) and (c).

We begin by showing that (a) implies (b). Suppose that X is a special subvariety. Then by

definition, X = GX + TrA(X ′
K

) + τ for some closed variety X ′ ⊂ AK/k and some torsion point τ .
Let G◦X be the connected component of GX with 0 ∈ GX . Since X is irreducible, we then have
X = G◦X + TrA(X ′

K
) + τ , which shows (b).

To complete the proof of the equivalence between (a) and (b), we next show that (b) implies
(a). Write X = A′ + φ(YK) + τ as in (b). Then A′ ⊂ GX , and hence X = GX + φ(YK) + τ .

Further, by the universality of the trace, there exists a homomorphism Tr(φ) : B → AK/k such
that φ = TrA ◦Tr(φ)K . Putting X ′ := Tr(φ)(Y ), we have X = GX + TrA(X ′

K
) + τ , which shows

(a).
Now, using the equivalence between (a) and (b) shown above, let us prove (2). Since X is

special, we write X = A′+φ(YK) + τ as in (b). Then we have ψ(X) = ψ(A′) +ψ ◦φ(YK) +ψ(τ),
which is again an expression as in (b). This shows that ψ(X) is special in A1.

Let us return to (1) and prove the remaining equivalences. It follows immediately from (2)
that (a) implies (c). Suppose that (c) holds. Then by (2), X/GX is also special, and hence [Yam13,
Proposition 2.11] tells us that X is special. 2

Remark 7.2. We consider the case where k is an algebraic closure of a finite field. In [Sca05,
Definition 2.1], Scanlon defined ‘special’ subvarieties, from which our special subvarieties are a
little different. Let X be a closed subvariety of A. Then, in the setting of this section, one sees
that X is special in the sense of Scanlon if and only if there exist a closed subvariety X ′ of AK/k
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and a (not necessarily torsion) point a ∈ A(K) such that X = GX + TrA(X ′
K

) + a. Thus X is
special in our sense if and only if it is special in the sense of Scanlon and the point a above can
be taken to be a torsion point.

As remarked in the introduction, it is known that any special subvariety has dense small
points. The geometric Bogomolov conjecture claims that the converse should also hold.

Conjecture 7.3 (Geometric Bogomolov conjecture for abelian varieties). Let A be an abelian
variety over K. Let X ⊂ A be a closed subvariety. If X has dense small points, then X is a
special subvariety.

Remark 7.4. A point is special if and only if it is of height zero (cf. [Yam13, (2.5.4)]), and hence
{x} has dense small points if and only if x is a special point. This means that Conjecture 7.3
holds if dimX = 0.

We make a remark on the relationship between special subvarieties and tropically trivial
subvarieties. Since a special subvariety has dense small points, it follows from Theorem 6.2 that,
if X is a special subvariety of A, then X/GX is tropically trivial. This assertion itself can be
shown directly, rather than as a corollary of Theorem 6.2. Indeed, taking the quotient by GX , we
may assume that GX = 0. Since X is a special subvariety, we translate X by a special point to
take an abelian variety A′ over k, a closed subvariety Y ⊂ A′ and a homomorphism α : A′

K
→ A

such that α(YK) = X. Since A′
K

has torus rank 0 at any place, the subvariety YK is tropically
trivial, and hence its image X is also tropically trivial (cf. (3.8)).

7.2 Isogeny and the conjecture
Let φ : A→ B be an isogeny of abelian varieties over K and let X ⊂ A be a closed subvariety.
By [Yam13, Lemma 2.3], X has dense small points if and only if the same property holds for
φ(X). This suggests that, if our formulation of the geometric Bogomolov conjecture is correct,
then X being special should be equivalent to φ(X) being special. In fact, this holds true.

Proposition 7.5. Let φ : A→ B be an isogeny of abelian varieties over K and let X ⊂ A be a
closed subvariety. Then X is a special subvariety if and only if Y := φ(X) is a special subvariety.

Proof. It follows from Lemma 7.1(2) that if X is special, Y is also special. Let us show the other
implication. We note that φ(GX) ⊂ GY , so that we have a homomorphism φ′ : A/GX → B/GY .
Furthermore, we see that φ′ is an isogeny. Indeed, let a ∈ A(K) be a point with φ(a) ∈ GY . Then
for any m ∈ Z, we have φ(ma + X) = mφ(a) + Y = Y , and thus ma + X ⊂ φ−1(Y ). Since φ
is an isogeny, the subset ma + X is an irreducible component of φ−1(Y ) for any m ∈ Z. Since
the number of irreducible components of φ−1(Y ) is at most deg φ, it follows that there exists
a positive integer m0 with m0 6 deg φ such that m0a + X = X, i.e. m0a ∈ GX . This shows
that any element of the kernel of φ′ : A/GX → B/GY is a torsion point of order at most deg φ,
leading to the conclusion that φ′ is an isogeny.

Now suppose that Y is special. By the equivalence between (a) and (c) in Lemma 7.1(1) or
by [Yam13, Proposition 2.11], we see that Y/GY is special and that the specialness of X should
follow from that of X/GX . Since φ′ : A/GX → B/GY is an isogeny, we may and do thus assume
that GX and GY are trivial. Further, taking the translation by a torsion point, we may assume
that Y = TrB(Y ′

K
) for some closed subvariety Y ′ ⊂ BK/k, where (BK/k,TrB) is the K/k-trace

of B. It follows from the universality of the K/k-trace that there is a unique homomorphism
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Tr(φ) : AK/k → BK/k characterized by TrB ◦ Tr(φ)K = φ ◦ TrA, where (AK/k,TrA) is the
K/k-trace of A. Since the homomorphism Tr(φ) is surjective by [Yam13, Lemma 1.5], we have
Tr(φ)(Tr(φ)−1(Y ′)) = Y ′. Note that Tr(φ)−1(Y ′)K = (Tr(φ)K)−1(Y ′

K
). Then we have

φ(TrA(Tr(φ)−1(Y ′)K)) = TrB(Tr(φ)K((Tr(φ)K)−1(Y ′
K

))) = TrB(Y ′
K

) = φ(X).

Since φ is an isogeny and X is irreducible, it follows that there exists a torsion point τ ∈ A(K)
such that Z := X − τ is an irreducible component of TrA(Tr(φ)−1(Y ′)K). Thus there exists
an irreducible component W of Tr(φ)−1(Y ′)K such that TrA(W ) = Z. Since k is algebraically
closed, there exists an irreducible component W ′ of Tr(φ)−1(Y ′) such that W ′

K
= W . Then

TrA(W ′
K

) + τ = Z + τ = X, and we conclude that X is a special subvariety. 2

Corollary 7.6. Let φ : A→ B be an isogeny of abelian varieties over K. Then the geometric
Bogomolov conjecture holds for A if and only if it holds for B.

Proof. This assertion follows from [Yam13, Lemma 2.3] and Proposition 7.5 above. 2

The following lemma will be used in the proof of Corollary 7.22.

Lemma 7.7. Let φ : A → B be a surjective homomorphism of abelian varieties over K. If the
geometric Bogomolov conjecture holds for A, then it holds for B.

Proof. By Poincaré’s complete reducibility theorem (cf. [Mil86, Proposition 12.1] or [Mum08,
§ 19, Theorem 1]), we take an abelian subvariety A′ ⊂ A such that φ|A′ : A′ → B is an
isogeny. Note that the geometric Bogomolov conjecture for A implies that for A′. Furthermore,
Corollary 7.6 shows that the geometric Bogomolov conjecture for A′ implies that for B. Thus we
conclude that the conjecture for A implies that for B. 2

7.3 Maximal nowhere degenerate abelian subvariety and nowhere-degeneracy rank
In this subsection, we define the notion of maximal nowhere degenerate abelian subvarieties and
that of nowhere-degeneracy rank, and we describe their properties. In our main results on the
geometric Bogomolov conjecture, they play key roles.

An abelian variety A over K is said to be somewhere degenerate if A is degenerate at some
place of K, and is said to be nowhere degenerate if Av is non-degenerate for all v ∈MK (cf. § 3.1).

Lemma 7.8. Let A1, A2 and A be abelian varieties over K.

(1) Let B1 and B2 be nowhere degenerate abelian subvarieties of A1 and A2, respectively. Then
B1 ×B2 is a nowhere degenerate abelian subvariety of A1 ×A2.

(2) Let φ : A1→ A2 be a homomorphism of abelian varieties. Let B1 be a nowhere degenerate
abelian subvariety of A1. Then φ(B1) is a nowhere degenerate abelian subvariety of A2.

(3) If B and B′ are nowhere degenerate abelian subvarieties of A, then so is B +B′.

(4) Let B be an abelian subvariety of A. Suppose that A is nowhere degenerate. Then B is
nowhere degenerate.

Proof. For an abelian variety A′ over K and for a place v ∈ MK , let n((A′)v) denote the torus
rank of (A′)v.

(1) For any v ∈MK , we have n((B1 ×B2)v) = n((B1)v) + n((B2)v) by Proposition 3.3, and
the right-hand side equals 0 by the assumption. This shows that B1×B2 is nowhere degenerate.
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(2) For any v ∈MK , we have n(φ(B1)v) 6 n((B1)v) by Proposition 3.3. Since n((B1)v) = 0,
we have n(φ(B1)v) = 0, which shows that φ(B1) is nowhere degenerate.

(3) Let φ : B ×B′→ A be the homomorphism given by φ(b, b′) = b+ b′. Then φ(B ×B′) =
B + B′. It follows from (1) and (2) that, if B and B are nowhere degenerate, then B + B′ is
nowhere degenerate.

(4) For any v ∈ MK , we have n(Bv) 6 n(Av) by Proposition 3.3. Since n(Av) = 0, we have
n(Bv) = 0, which shows that B is nowhere degenerate. 2

The following lemma is used to make the key definitions.

Lemma 7.9. Let A be an abelian variety over K. Then there exists a unique nowhere degenerate
abelian subvariety m of A such that, for any nowhere degenerate abelian subvariety B′ of A, we
have B′ ⊂ m.

Proof. The uniqueness follows from the condition. We show the existence. Let m be a nowhere
degenerate abelian subvariety of A of maximal dimension. For any nowhere degenerate abelian
subvariety B′, the sum m + B′ is nowhere degenerate by Lemma 7.8(3). Since m has maximal
dimension among the nowhere degenerate abelian subvarieties, we have dim(m + B′) = dimm.
Thus we have m +B′ = m and hence B′ ⊂ m. 2

Definition 7.10. Let A be an abelian variety over K.

(1) The unique abelian subvariety m of A in Lemma 7.9 is called the maximal nowhere
degenerate abelian subvariety of A.

(2) Let m be the maximal nowhere degenerate abelian subvariety of A. The nowhere-degeneracy
rank of A is defined to be nd-rk(A) := dimm.

Note that m = 0 if and only if nd-rk(A) = 0.

Proposition 7.11. Let A1 and A2 be abelian varieties over K. Let m1 and m2 be the maximal
nowhere degenerate abelian subvarieties of A1 and A2, respectively. Let φ : A1 → A2 be a
homomorphism. Suppose that φ is surjective. Then φ(m1) = m2.

Proof. It follows from Lemma 7.8(2) that φ(m1) is nowhere degenerate. By the maximality of
m2, we obtain φ(m1) ⊂ m2.

Let us prove the other inclusion. By considering the homomorphism A1/m1 → A2/φ(m1)
between the quotients instead of φ : A1 → A2, we may and do assume that m1 = 0. Then our
goal is to show that m2 = 0. By the Poincaré complete reducibility theorem and Mumford’s
remark [Mum08, p. 157], there exists an abelian subvariety A′2 of A2 with an isogeny α : A2 →

A′2 ×m2. Let p : A′2 ×m2→ m2 be the second projection. Let ψ : A1→ m2 be the composite of
homomorphisms

A1
φ // A2

α // A′2 ×m2
p // m2.

Then ψ is surjective, and thus we are reduced to showing ψ = 0.
If A1 = 0, then ψ = 0. Therefore we consider the case where A1 6= 0. We recall that there

exist non-trivial simple abelian varieties B1, . . . , Bs and an isogeny γ : B1 × · · · ×Bs→ A1. Let
n be the maximal nowhere degenerate abelian subvariety of B1 × · · · × Bs. We have γ(n) ⊂ m1

by Lemma 7.8(2). Since m1 = 0, it follows that γ(n) = 0. Since γ is finite, we obtain n = 0. It

1031

https://doi.org/10.1112/S0010437X15007721 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X15007721


K. Yamaki

follows from Lemma 7.8(1) that the maximal nowhere degenerate abelian subvariety of each Bi
is trivial. Thus each Bi is somewhere degenerate.

Let ιi : Bi → B1 × · · · × Bs be the canonical injection, and set ϕi := ψ ◦ γ ◦ ιi : Bi → m2.

Note that ψ = 0 if ψ ◦ γ = 0, and that ψ ◦ γ = 0 if ϕi = 0 for any i = 1, . . . , s. Thus we only have

to show that ϕi = 0 for any i = 1, . . . , s.

Claim. Let A be a somewhere degenerate simple abelian variety and let B be a nowhere

degenerate abelian variety. Then any homomorphism ϕ : A→ B is trivial.

Proof. Set B′ := ϕ(A). By Lemma 7.8(4), it is nowhere degenerate. To argue by contradiction,

we suppose that B′ is non-trivial. Then, since A is simple, the morphism ϕ : A → B′ is an

isogeny. Therefore we have an isogeny ϕ′ : B′ → A. By Lemma 7.8(2), this shows that A is

nowhere degenerate, which is a contradiction. Thus B′ = ϕ(A) is trivial. 2

Applying the claim to ϕi : Bi → m2 shows that ϕi is trivial for each i = 1, . . . , s. This

completes the proof of Proposition 7.11. 2

Corollary 7.12. Let φ : A1 → A2 be a homomorphism of abelian varieties. If φ is surjective,

then nd-rk(A1) > nd-rk(A2).

Proof. Let mi be the maximal nowhere degenerate abelian subvariety of Ai for i = 1, 2. It follows

from Proposition 7.11 that dimm1 > dimm2. Thus nd-rk(A1) > nd-rk(A2). 2

Proposition 7.13. Let B1, . . . , Bs and A be abelian varieties over K. Suppose that A is

isogenous to B1 × · · · ×Bs. Then nd-rk(A) = nd-rk(B1) + · · ·+ nd-rk(Bs).

Proof. We set B := B1×· · ·×Bs. Since there are surjective homomorphisms A→ B and B→ A,

it follows from Corollary 7.12 that nd-rk(A) = nd-rk(B). It remains to show that nd-rk(B) =

nd-rk(B1) + · · ·+ nd-rk(Bs). Let n be the maximal nowhere degenerate abelian subvariety of B

and pi : B→ Bi be the canonical projection. Let ni be the maximal nowhere degenerate abelian

subvariety of Bi, for i = 1, . . . , s. We prove nd-rk(B) = nd-rk(B1) + · · ·+ nd-rk(Bs) by showing

n = n1×· · ·×ns. By Lemma 7.8(1), n1×· · ·×ns is a nowhere degenerate abelian subvariety of B.

Then, by the maximality of n, we have n ⊃ n1×· · ·×ns. On the other hand, Proposition 7.11 gives

us pi(n) = ni for all i = 1, . . . , s, which shows n ⊂ n1× · · · × ns. Thus we obtain n = n1× · · · × ns
and hence the proposition. 2

7.4 Proof of Theorem F

In this subsection, we establish Theorem F as a consequence of Theorem 7.17. This theorem shows

that if a closed subvariety of an abelian variety has dense small points, then it is contained in

the translate of the sum of the maximal nowhere degenerate abelian subvariety and the identity

component of its stabilizer by a special point.

We begin with two lemmas. For a subvariety X of an abelian variety A, let 〈X〉 denote the

abelian subvariety of A generated by X, that is, the smallest abelian subvariety containing X.

Lemma 7.14. Let X be a closed subvariety of an abelian variety A over K. Assume that 0 ∈ X.

Let v be a place of K. Then 〈X〉v is the smallest analytic subgroup of Av containing Xv.
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Proof. Let us consider, for each l ∈ N, a morphism X2l
→ A given by

(x1, x2, . . . , x2l−1, x2l) 7→ (x1 − x2) + · · ·+ (x2l−1 − x2l). (7.2)

Let Xl be the image of this morphism. It is a closed subvariety of A. Note that Xl ⊂ 〈X〉. Taking

into account that 0 ∈ X, we find X ⊂ X1 ⊂ X2 ⊂ · · · ⊂ Xl ⊂ · · · . Since each Xl is an irreducible

closed subset, there exists l0 such that Xl = Xl0 for all l > l0, and thus
⋃
l∈NXl = Xl0 . We have

Xl +Xm ⊂ Xl+m, 0 ∈ Xl, and −Xl = Xl for all l,m ∈ N by their definitions, which tells us that⋃
l∈NXl = Xl0 is a subgroup scheme. Since Xl0 is irreducible, it follows that Xl0 is an abelian

subvariety. Since Xl0 ⊂ 〈X〉 and since 〈X〉 is the smallest abelian subvariety containing X, we

obtain 〈X〉 = Xl0 .

Let B be an analytic subgroup of Av containing Xv. We then have B ⊃ (Xl0)v by the

definition of Xl0 and hence B ⊃ 〈X〉v. This shows that 〈X〉v is the smallest analytic subgroup

containing Xv. 2

Lemma 7.15. Let A be an abelian variety over K and let X be a closed subvariety of A. Let v

be a place of K. Suppose that A is simple and is degenerate at v. Then if val(Xv) consists of a

single point, then the same holds for X, where val is the valuation map for Av.

Proof. Taking the translation of X by a point in A(K), we may assume that 0 ∈ X. Then

val(Xv) = {0} by assumption, and hence Xv ⊂ val
−1

(0). Since val
−1

(0) is an analytic subgroup

of A◦v (cf. § 3.1), it follows from Lemma 7.14 that 〈X〉v ( Av, and thus 〈X〉 ( A. Since A is

simple, it follows that 〈X〉 = {0}, which shows the lemma. 2

We now show the following proposition.

Proposition 7.16. Let X be a closed subvariety of an abelian variety A over K. Then the

following statements are equivalent.

(a) The subvariety X is tropically trivial.

(b) There exists a point a ∈ A(K) such that X ⊂ a + m, where m is the maximal nowhere

degenerate abelian subvariety of A.

Proof. We first show that (a) implies (b). We may assume that m 6= A. By Poincaré’s reducibility

theorem and Mumford’s remark [Mum08, p. 157], there exist an abelian subvariety A′ of A and

an isogeny β : A→ A′ × m. Note that nd-rk(A′) = 0 by Proposition 7.13. Let p : A′ × m→ A′

be the canonical projection and put ψ := p ◦ β : A→ A′.

By the Poincaré complete reducibility theorem, there exists an isogeny ν : A′→ B′1×· · ·×B′s,
where each B′i is a simple abelian variety. Since nd-rk(A′) = 0, it follows from Proposition 7.13

that nd-rk(B′i) = 0 for any i = 1, . . . , s, and thus any B′i is degenerate at some place vi.

Let pi : B′1 × · · · ×B′s→ B′i be the canonical projection for each i, and put ψi := pi ◦ ν ◦ ψ :

A→ B′i. Since val(Xvi) is a single point by our assumption, so is (ψi)aff(val(Xvi)), where (ψi)aff

is the affine map associated to ψi (cf. § 3.2). Since val(ψi(X)vi) = (ψi)aff(val(Xvi)) (cf. (3.8)), we

see that val(ψi(X)vi) is a single point. Since B′i is simple and degenerate at vi, it follows from

Lemma 7.15 that ψi(X) is a single point for any i, which implies that ν(ψ(X)) is a single point.

Since ν is finite and ψ(X) is connected, we see that ψ(X) is a single point, and thus we write

ψ(X) = {b′} for some b′ ∈ B′(K).
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We then have p−1(ψ(X)) = {b′} ×m, and hence

ψ−1(ψ(X)) = β−1({b′} ×m) =
⋃

σ∈β−1(b′,0)

(σ + m),

which is a finite union of subvarieties. Since X ⊂
⋃
σ∈β−1(b′,0)(σ+m) and X is irreducible, there

exists a point a ∈ β−1(b′, 0) with X ⊂ a+ m. Thus we obtain (b).
Next we show that (b) implies (a). Since m is nowhere degenerate, the valuation map for

m is trivial. Take any v ∈ MK . By the compatibility of valuation maps with homomorphisms
(cf. (3.8)), we have val(mv) = {0}, where val : Av → Rn/Λ is the valuation map for Av. Then
val(Xv) ⊂ {val(a)}, and thus val(Xv) is a single point. Since v is arbitrary, we conclude that X
is tropically trivial. 2

Using Theorem 6.2 with Proposition 7.16, we show the following theorem. Here, let G◦X
denote the connected component of the stabilizer GX with 0 ∈ G◦X .

Theorem 7.17. Let A be an abelian variety over K with maximal nowhere degenerate abelian
subvariety m and let X be a closed subvariety of A. Suppose that X has dense small points.
Then there exists a special point a0 of A such that X ⊂ a0 +G◦X + m.

Proof. Let φ : A → A/GX be the quotient homomorphism. Then φ(X) = X/GX has trivial
stabilizer. Since X has dense small points, it follows that φ(X) is tropically trivial by
Theorem 6.2. Note that by Proposition 7.11, φ(m) is the maximal nowhere degenerate abelian
subvariety of A/GX . By Proposition 7.16, it follows that there exists a point a′0 ∈ A(K) such that
φ(X) ⊂ φ(a′0) +φ(m), and hence X ⊂ a′0 +GX +m. Since X is irreducible, X ⊂ a′0 +G′X +m for
some connected component G′X of GX . Note that G′X = b+G◦X for some torsion point b ∈ A(K).
Setting a0 := a′0 + b, we then have X ⊂ a0 +G◦X + m.

Now it suffices to show that a0 can be chosen to be a special point. Let ψ : A→ A/(G◦X +m)
be the quotient. Then ψ(X) = {ψ(a0)} has dense small points by [Yam13, Lemma 2.1], and thus
ψ(a) is a special point of A/(G◦X + m) (cf. Remark 7.4). By [Yam13, Lemma 2.10], there exists
a special point a′′0 of A with ψ(a′′0) = ψ(a0). Replacing a0 with a′′0, we have X ⊂ a0 + G◦X + m
with a0 special. Thus, the proof of the theorem is complete. 2

As a consequence, we obtain the following two corollaries. The first gives us a sufficient
condition for a closed subvariety having dense small points to be the translate of an abelian
subvariety by a special point.

Corollary 7.18. Let A be an abelian variety over K and let X be a closed subvariety of A.
Let GX be the stabilizer of X in A. Assume that dimX/GX > nd-rk(A/GX). Then if X has
dense small points, then there exists a special point x0 ∈ X(K) such that X = x0 +GX .

Proof. Let φ : A → A/GX be the quotient homomorphism and let m be the maximal
nowhere degenerate abelian subvariety of A. Then φ(m) is the maximal nowhere degenerate
abelian subvarieties of A/GX by Proposition 7.11. Suppose that X has dense small points. By
Theorem 7.17, there exists a special point x0 of A such that X/GX = φ(X) ⊂ φ(x0) + φ(m).
Since dim(X/GX) > nd-rk(A/GX) = dim(φ(m)), it follows that X/GX = φ(x0) + φ(m). Since
X/GX has trivial stabilizer, we find that X/GX = {φ(x0)}, which shows that X = x0 + GX .
Further, this equality also shows that x0 ∈ X(K). Thus we obtain the corollary. 2
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The second corollary shows Theorem F, which gives us a partial answer to the geometric
Bogomolov conjecture.

Corollary 7.19 (cf. Theorem F). Let A be an abelian variety over K with nd-rk(A) 6 1 and
let X be a closed subvariety of A. Suppose that X has dense small points. Then X is the translate
of an abelian subvariety by a special point. In particular, it is a special subvariety.

Proof. Let φ : A→ A/GX be the quotient. Since X has dense small points, Theorem 7.17 gives
us a special point x0 ∈ X(K) such that X ⊂ x0 + GX + m, where m is the maximal nowhere
degenerate abelian subvariety of A. We then have X/GX ⊂ φ(x0) + φ(m).

Note that if we show dimX/GX = 0, then X/GX = {φ(x0)} and hence X = x0 + GX .
Further, since X is irreducible, GX is an abelian subvariety. Therefore it suffices to claim that
dimX/GX = 0. Since nd-rk(A) 6 1, φ(m) has dimension 0 or 1. If dimφ(m) = 0, then we are
done. Suppose that dimφ(m) = 1. Since X/GX has trivial stabilizer, we find that X/GX (
φ(x0) +φ(m), which implies dimX/GX = 0. Thus we obtain the corollary. 2

Remark 7.20. Let A be an abelian variety over K.

(1) Suppose that b(Av) 6 1 for some place v, where b(Av) is the abelian rank of Av. Since
b(Av) > nd-rk(A) in general, Corollary 7.19 generalizes Theorem D and hence Theorem B.

(2) Suppose that A is simple and somewhere degenerate. Then nd-rk(A) = 0 and hence the
geometric Bogomolov conjecture holds for A.

7.5 Reduction to the nowhere degenerate case
In this subsection, we reduce the geometric Bogomolov conjecture for an abelian variety to the
conjecture for its maximal nowhere degenerate abelian subvariety (Theorem E).

We first establish the following theorem.

Theorem 7.21. Let A be an abelian variety over K, B a nowhere degenerate abelian variety
over K, and let φ : A → B be a surjective homomorphism with dimB = nd-rk(A). Let X be
a closed subvariety of A. Suppose that X has dense small points and that φ(X) is a special
subvariety. Then X is a special subvariety.

Proof. Let G◦X be the connected component of the stabilizer GX of X with 0 ∈ G◦X . Let m be the
maximal nowhere degenerate abelian subvariety of A. Note that the restriction φ|m : m→ B is
an isogeny. Indeed, we have dimm = dimB by assumption, and φ(m) = B by Proposition 7.11.

Step 1. First we show the assertion under the assumption that G◦X = 0. Under this assumption,
Theorem 7.17 gives us a special point a0 of A such that X ⊂ a0 +m. We put X ′ = X − a0. Then
X ′ ⊂ m, and X ′ has dense small points. On the other hand, since φ(a0) is a special point of B,
φ|m(X ′) = φ(X)− φ(a0) is also special (cf. [Yam13, Remark 2.6]). By Proposition 7.5, it follows
that X ′ is special. Since a0 is a special point, X = a0 +X ′ is special (cf. [Yam13, Remark 2.6]).

Step 2. Next we conclude the theorem by reducing the general case to Step 1. The quotient
B/φ(G◦X) is nowhere degenerate by Lemma 7.8(2). We would like to show that nd-rk(A/G◦X) =
dim(B/φ(G◦X)).

First, we note that

dim(G◦X ∩m) = dimφ(G◦X). (7.3)

Indeed, let n be the maximal nowhere degenerate abelian subvariety of G◦X and let (G◦X ∩ m)◦

be the connected component of G◦X ∩ m with 0 ∈ (G◦X ∩ m)◦. By Lemma 7.8(4), we then have
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(G◦X ∩m)◦ ⊂ n. Further, the maximality of m tells us that n ⊂ m and hence n ⊂ (G◦X ∩m)◦. Thus
(G◦X ∩m)◦ = n. On the other hand, φ(G◦X) is nowhere degenerate by Lemma 7.8(4). Therefore,
by Proposition 7.11, we have φ|m((G◦X ∩m)◦) = φ|m(n) = φ(G◦X). Since φ|m is a finite morphism,
this shows (7.3).

Let α : A → A/G◦X and β : B → B/φ(G◦X) denote the quotient homomorphisms and let
φ′ : A/G◦X → B/φ(G◦X) be the homomorphism induced from φ. Remark that Proposition 7.11
tells us that α(m) is the maximal nowhere degenerate abelian subvariety of A/G◦X , and hence
nd-rk(A/G◦X) = dimα(m). We consider the homomorphism φ′|α(m) : α(m) → B/φ(G◦X). Since
α(m) ∼= m/(G◦X ∩ m), we have dimα(m) = nd-rk(A) − dim(G◦X ∩ m). Since nd-rk(A) = dimB
and since we have (7.3), that equals dimB − dimφ(G◦X). Therefore dimα(m) = dimB/φ(G◦X),
and thus nd-rk(A/G◦X) = dim(B/φ(G◦X)).

Now we can apply Step 1 to φ′ : A/G◦X → B/φ(G◦X). Indeed, we know that nd-rk(A/G◦X) =
dim(B/φ(G◦X)). Since X has dense small points, so does α(X). Since φ(X) is special, φ′(α(X)) =
β(φ(X)) is also special by Lemma 7.1(2). Further, α(X) has stabilizer GX/G

◦
X , which has

dimension 0. Now applying Step 1, we see that X/G◦X = α(X) is a special subvariety. By
Lemma 7.1(1), we conclude that X is a special subvariety. 2

As a consequence, we obtain the following corollary (Theorem E).

Corollary 7.22 (Theorem E). Let A be an abelian variety and let m be the maximal nowhere
degenerate abelian subvariety of A. Then the following are equivalent.

(a) The geometric Bogomolov conjecture holds for A.

(b) The geometric Bogomolov conjecture holds for m.

Proof. By the Poincaré complete reducibility theorem and Mumford’s remark [Mum08, p. 157],
we have a surjective homomorphism φ : A→ m. Then (a) implies (b) by Lemma 7.7. To see the
other direction, suppose (b) and let X be a closed subvariety of A having dense small points.
Then φ(X) has dense small points. Since the conjecture holds for m, φ(X) is a special subvariety
of m. By Theorem 7.21, we conclude that X is special. Thus (b) implies (a). 2

Further, we have the following corollary.

Corollary 7.23. For any non-negative integer s, the following statements are equivalent.

(a) Conjecture 7.3 holds for any abelian variety A with nd-rk(A) 6 s.

(b) Conjecture 7.3 holds for any nowhere degenerate abelian variety B with dimB 6 s.

Proof. It is trivial that (a) implies (b). Suppose that (b) holds. Let A be an abelian variety over
K with nd-rk(A) 6 s. Let m be the maximal nowhere degenerate abelian subvariety of A. Then
dimm 6 s, so that Conjecture 7.3 holds for m by assumption. It follows from Corollary 7.22 that
Conjecture 7.3 holds for A. 2

We remark that Theorem F follows also from Corollary 7.23, since the geometric Bogomolov
conjecture holds for elliptic curves.

Finally in this section, we remark that by Corollary 7.23, Conjecture 7.3 is equivalent to the
following conjecture.

Conjecture 7.24 (Geometric Bogomolov conjecture for nowhere degenerate abelian varieties).
Let A be a nowhere degenerate abelian variety over K and let X be a closed subvariety of A.
Then if X has dense small points, then it should be a special subvariety.
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8. Geometric Bogomolov conjecture for curves

In this section we consider the geometric Bogomolov conjecture for curves. This conjecture
claims that the set of K-points of a non-isotrivial smooth projective curve of genus at least 2 is
‘discrete’ in its Jacobian with respect to the Néron–Tate seminorm. To be precise, let C be a
smooth projective curve over K of genus g > 2 and let JC be its Jacobian variety. For a divisor
D of degree 1 on C, let jD : C → JC be the embedding given by x 7→ [x − D], where [x − D]
denotes the divisor class of x − D. Let ‖ · ‖NT be the canonical Néron–Tate seminorm arising
from the canonical Néron–Tate pairing on JC . The following assertion is called the geometric
Bogomolov conjecture for curves. Here C is said to be isotrivial if there is a curve C ′ over k such
that C ′

K
∼= C.

Conjecture 8.1. Assume that C is non-isotrivial. For any divisor D of degree 1 on C and for
any P ∈ JC(K), there should exist an ε > 0 such that

{x ∈ C(K) | ‖jD(x)− P‖NT 6 ε}

is a finite set.

A stronger version of this conjecture is also well known as the effective geometric Bogomolov
conjecture for curves.

Conjecture 8.2. Assume that C is non-isotrivial. Then there should exist an ε > 0 such that
{x ∈ C(K) | ‖jD(x) − P‖NT 6 ε} is a finite set for any divisor D of degree 1 on C and any
P ∈ JC(K). Moreover, if C has a stable model over B, then we can describe such an ε effectively
in terms of geometric information of the stable model.

There are some results on Conjecture 8.2 in the setting where B is a curve, i.e. K is a function
field of one variable. In charK = 0, after partial results by Zhang [Zha93], Moriwaki [Mor96,
Mor97, Mor98], the author [Yam02, Yam08], and Faber [Fab09], Cinkir proved Conjecture 8.2
in [Cin11]. In the positive characteristic case, Conjecture 8.1 as well as Conjecture 8.2 are
unsolved in full generality, and there are only some partial results. Conjecture 8.2 is solved
in the case where:
• the stable model of C has only irreducible fibers [Mor98];
• C is a curve of genus 2 [Mor96];
• C is a hyperelliptic curve [Yam08]; or
• C is non-hyperelliptic and g = 3 [Yam02].

The geometric Bogomolov conjecture for abelian varieties implies Conjecture 8.1.15 Indeed,
let ĥ be the Néron–Tate height such that ĥ(x) = ‖x‖2NT . Then we have ĥ(jD+P (x)) =
‖jD(x) − P‖NT for all P ∈ JC(K). Thus Conjecture 8.1 is equivalent to saying that, if C is
non-isotrivial, then jD(C) does not have dense small points for any divisor D on C of degree 1.
To show its contraposition, we assume that jD(C) has dense small points for some D. Since
Conjecture 7.3 is assumed to be true, it follows that jD(C) is a special subvariety of JC .
Since jD is an embedding and since the trace homomorphism is a purely inseparable finite
morphism (cf. [Lan83b, VIII, § 3, Corollary 2] or [Yam13, Lemma 1.4]), there exist a smooth
projective curve C0 over k and a purely inseparable finite morphism φ : (C0)K → C. Let

15 The argument from here to the end of the proof of Theorem 8.3 works well even if B is a higher-dimensional
variety.
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C0 → C
(q)
0 be the qth relative Frobenius morphism, where q is the degree of φ. Then its base-

change to K is also the qth relative Frobenius morphism. It follows from [Sil86, Corollary II 2.12]

that (C
(q)
0 )K

∼= C. We conclude that C is isotrivial.
The following result is obtained as a consequence of Theorem 6.2 without assumption on

the characteristic. Recall that a curve C over K is of compact type at v if the special fiber of
the stable model of Cv is a tree of smooth irreducible components. Further, C is said to be of
non-compact type at v if it is not of compact type at v. It is well known that C is of compact
type at v if and only if Cv has non-degenerate Jacobian variety (cf. [BLR90, ch. 9]).

Theorem 8.3. Suppose that there exists a place at which C is of non-compact type. Then,
for any divisor D of C of degree 1 and for any P ∈ JC(K), there exists an ε > 0 such that
{x ∈ C(K) | ‖jD(x)− P‖NT 6 ε} is finite.

Proof. Let v be a place at which C is of non-compact type. Then the Jacobian JC is degenerate
at v. It follows from the Poincaré complete reducibility theorem and Proposition 7.13 that there
is a non-trivial simple abelian variety A′ over K degenerate at v with a surjective homomorphism
φ : JC → A′.

Let D be any divisor on C of degree 1. Let x0 ∈ jD(C(K)) be a point. Note that JC itself
is the smallest abelian subvariety of JC containing jD(C) − x0. Since φ is surjective and since
dimA′ > 0, it follows that the image of jD(C)− x0 by φ cannot be a point. By Lemma 7.15, we
see that jD(C) is tropically non-trivial. Since jD(C) has at most finite stabilizer in JC , it follows
from Theorem 6.2 that jD(C) does not have dense small points. Thus the assertion holds for C,
as is noted above. 2

We end with a couple of remarks. In characteristic zero, Conjecture 8.1 is deduced from the
combination of [Mor98, Theorem E] and our Theorem 8.3. This suggests that we can avoid the
hard analysis on metric graphs carried out in [Cin11] inasmuch as we consider the non-effective
version only. If the inequality of [Mor98, Theorem D] also holds in positive characteristic, then
the same proof as for [Mor98, Theorem E] works, and hence we obtain Conjecture 8.1. Thus
our argument makes a contribution to Conjecture 8.1. We should also note, however, that our
approach does not say anything on Conjecture 8.2, the effective version of Conjecture 8.1.
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