GENERALIZATIONS OF F. E. BROWDER'S SHARPENED FORM OF THE SCHAUDER FIXED POINT THEOREM

KOK-KEONG TAN

(Received 18 June 1985; revised 6 February 1986)
Communicated by J. H. Rubinstein

Abstract

Let E be a Hausdorff topological vector space, let K be a nonempty compact convex subset of E and let $f, g: K \rightarrow 2^{E}$ be upper semicontinuous such that for each $x \in K, f(x)$ and $g(x)$ are nonempty compact convex. Let $\Omega \subset 2^{E}$ be convex and contain all sets of the form $x-f(x), y-x+g(x)-$ $f(x)$, for $x, y \in K$. Suppose $p: K \times \Omega \rightarrow \mathbf{R}$ satisfies: (i) for each $(x, A) \in K \times \Omega$ and for $\varepsilon>0$, there exist a neighborhood U of x in K and an open subset set G in E with $A \subset G$ such that for all $(y, B) \in K \times \Omega$ with $y \in U$ and $B \subset G,|p(y, B)-p(x, A)|<\varepsilon$, and (ii) for each fixed $x \in K$, $p(x, \cdot)$ is a convex function on Ω. If $p(x, x-f(x)) \leqslant p(x, g(x)-f(x))$ for all $x \in K$, and if, for each $x \in K$ with $f(x) \cap g(x)=\varnothing$, there exists $y \in K$ with $p(x, y-x+g(x)-f(x))<$ $p(x, x-f(x))$, then there exists an $x_{0} \in K$ such that $f\left(x_{0}\right) \cap g\left(x_{0}\right) \neq \varnothing$. Another coincidence theorem on a nonempty compact convex subset of a Hausdorff locally convex topological vector space is also given.

1980 Mathematics subject classification (Amer. Math. Soc.): 47 H 10, 54 C 60.
Keywords and phrases: fixed point, Schauder fixed point theorem, set-value map, lower semicontinuous, upper semicontinuous, ultimately continuous, convex function, inward set, outward set, topological vector space, locally convex topological vector space.

1. Introduction and preliminaries

The classical Schauder fixed point theorem asserts that every continuous self-map of a nonempty compact convex subset of a Banach space has a fixed point. Obviously the Schauder fixed point theorem cannot be extended to non-self-maps without additional conditions. Many generalizations for single- or multi-valued

[^0]maps have been obtained, for example see [2], [3], [5], [7] and [8]. Recently, F. E. Browder [4] gave a rather sharp improvement of these results for single-valued maps. Generalizations of those results in [4] to set-valued maps are obtained by S. Reich [12, 13], J. H. Jiang [9, 10] and others. In this paper, we shall extend some of Browder's results in [4] to set-valued maps in different directions, one of which extends a result of S. Reich in [12].

We shall denote by \mathbf{R} the real line and, for any nonempty set X, by 2^{X} the collection of all nonempty subsets of X. Now let X and Y be topological spaces. Then a map $f: X \rightarrow 2^{Y}$ is said to be (i) lower semicontinuous (respectively, upper semicontinuous) [1] at $x_{0} \in X$ if for each open set G in Y with $G \cap f\left(x_{0}\right) \neq \varnothing$ (respectively, with $f\left(x_{0}\right) \subset G$), there is a neighborhood U of x_{0} in X such that $G \cap f(x) \neq \varnothing$ (respectively, $f(x) \subset G$) for all $x \in U$; (ii) lower semicontinuous (respectively, upper semicontinuous) on X if f is lower semicontinuous (respectively, upper semicontinuous) at each point of X; (iii) continuous on X if f is both lower semicontinuous on X and upper semicontinuous on X. Also if $\Omega \subset 2^{Y}$, then a map $p: X \times \Omega \rightarrow \mathbf{R}$ is said to be (iv) ultimately continuous at (x, A) if for each $\varepsilon>0$, there exist a neighborhood U of x in X and an open set G in Y with $A \subset G$ such that $|p(y, B)-p(x, A)|<\varepsilon$ for all $(y, B) \in X \times \Omega$ with $y \in U$ and $B \subset G$; (v) ultimately continuous on $X \times \Omega$ if p is ultimately continuous at each point of $X \times \Omega$. We note that in the case $\Omega=\{\{y\}: y \in Y\}$, if we write $p(x, y)=p(x,\{y\})$, then the notions of ultimate continuity and continuity coincide. If $A \subset X, \operatorname{cl}(A)$ denotes the closure of A in X. Next let E be a vector space, let K be a nonempty subset of E and let $x \in K$; then the inward set and outward set [8] of K at x, denoted by $I_{K}(x)$ and $O_{K}(x)$, respectively, are defined by

$$
I_{K}(x)=\{y \in E: \text { there exist } u \in K \text { and } r>0 \text { such that } y=x+r(u-x)\}
$$

and

$$
O_{K}(x)=\{y \in E: \text { there exist } u \in K \text { and } r>0 \text { such that } y=x-r(u-x)\} .
$$

Also, a subset Ω of 2^{E} is convex if for each $A, B \in \Omega$ and for each $t \in[0,1]$, $t A+(1-t) B \in \Omega$. Moreover, if E is a topological vector space, we shall denote by $\mathscr{X}(E)$ the collection of all compact convex sets in 2^{E} and by $\mathscr{C}(E)$ the collection of all closed convex sets in 2^{E}. Finally we shall need the following fixed point theorem of K. Fan [6]:

Theorem (K. Fan [6]). Let K be a nonempty compact convex subset of a Hausdorff topological vector space E and let S : $K \rightarrow 2^{K}$. Suppose, for each $x \in K$, that $S(x)$ is convex, while for each $u \in K$, the set $S^{-1}(u)=\{y \in K: u \in S(y)\}$ is open in K. Then there exists $x_{0} \in K$ such that $x_{0} \in S\left(x_{0}\right)$.

2. Main results

The following two propositions are easy consequences of the definitions.
Proposition 2.1. Let E be a topological vector space, let $K \subset E$ be nonempty, let $f, g: K \rightarrow 2^{E}$ be lower semicontinuous, let $h: K \rightarrow 2^{E}$ be upper semicontinuous and let $c \in \mathbb{R}$. Then $f+g$ and $c g$ are lower semicontinuous, and ch is upper semicontinuous.

Proposition 2.2. Let E be a topological vector space, let $K \subset E$ be nonempty and let $f, g: K \rightarrow 2^{E}$ be upper semicontinuous such that for each $x \in K, f(x)$ and $g(x)$ are both compact. Then $f+g$ is also upper semicontinuous.

We note that Proposition 2.2 is false if the condition " $f, g: K \rightarrow 2^{E}$ be upper semicontinuous such that for each $x \in K, f(x)$ and $g(x)$ are both compact" is replaced by the condition " $f, g: K \rightarrow \mathscr{C}(E)$ be upper semicontinuous such that for each $x \in K$, at least one of $f(x)$ and $g(x)$ is compact." This can be seen from the following:

Example 2.3. Let $E=\mathbb{R}^{2}$ and let $K=\left\{(x, y) \in \mathbb{R}^{2}: x^{2}+y^{2} \leqslant 1\right.$ and x, $y>0\}$. Define $f: K \rightarrow \mathscr{K}(E)$ by

$$
f(r \cos \theta, r \sin \theta)=\{(t \cos \theta, t \sin \theta): r \leqslant t \leqslant 2\}
$$

for each $r \in(0,1]$ and $\theta \in(0, \pi / 2)$. Define $g: K \rightarrow \mathscr{C}(E)$ by

$$
g(x, y)=\{(z, 0): z \geqslant x\}
$$

for all $(x, y) \in K$. It can be easily checked that f and g are both upper semicontinuous (in fact, both continuous) but $f+g$ is not upper semicontinuous.

The following result generalizes Proposition 2 in [4] and also Theorem 1 in [7] to set-valued maps.

Theorem 2.4. Let E be a Hausdorff topological vector space, let $K \subset E$ be nonempty compact convex and let $f, g: K \rightarrow \mathscr{K}(E)$ be upper semicontinuous. Let $\Omega \subset 2^{E}$ be convex and contain all sets of the form $x-f(x), y-x+g(x)-f(x)$, for $x, y \in K$. Suppose $p: K \times \Omega \rightarrow \mathbb{R}$ is ultimately continuous such that for each $x \in K, p(x, \cdot)$ is a convex function on Ω. Assume that
(i) $p(x, x-f(x)) \leqslant p(x, g(x)-f(x))$ for all $x \in K$, and
(ii) for each $x \in K$ with $f(x) \cap g(x)=\varnothing$, there exists $y \in K$ such that $p(x, y-x+g(x)-f(x))<p(x, x-f(x))$.
Then there exists an $x_{0} \in K$ such that $f\left(x_{0}\right) \cap g\left(x_{0}\right) \neq \varnothing$.

Proof. Define $h: K \rightarrow \mathscr{K}(E)$ by $h(x)=x+f(x)-g(x)$ for all $x \in K$. Then h is upper semicontinuous by Propositions 2.1 and 2.2. Assume that for each $x \in K, f(x) \cap g(x)=\varnothing$, so that the set $S(x)=\{y \in K: p(x, y-h(x))<$ $p(x, x-f(x))\}$ is nonempty by hypothesis. Thus $S: K \rightarrow 2^{K}$. Let $x \in K, y_{1}$, $y_{2} \in S(x)$ and $t \in[0,1]$; then $p\left(x, y_{i}-h(x)\right)<p(x, x-f(x))$ for $i=1,2$. Since $t\left(y_{1}-h(x)\right)+(1-t)\left(y_{2}-h(x)\right)=t y_{1}+(1-t) y_{2}-h(x)$, and since $p(x, \cdot)$ is convex, we see that

$$
p\left(x, t y_{1}+(1-t) y_{2}-h(x)\right)<p(x, x-f(x))
$$

so that $t y_{1}+(1-t) y_{2} \in S(x)$. Hence $S(x)$ is convex for each $x \in K$.
Now let $u \in K$. We shall show that $S^{-1}(u)$ is open in K. Indeed, if $x \in S^{-1}(u)$, then $u \in S(x)$, so that $p(x, u-h(x))<p(x, x-f(x))$. Let $\varepsilon=[p(x, x-$ $f(x))-p(x, u-h(x))] / 2$. Since p is ultimately continuous at $(x, x-f(x))$, there exist an open neighborhood U_{1} of x in K and an open set G in E with $x-f(x) \subset G$ such that $|p(y, A)-p(x, x-f(x))|<\varepsilon$ for all $(y, A) \in K \times \Omega$ with $y \in U_{1}$ and $A \subset G$. For each $a \in x-f(x)$, let N_{a} be an open neighborhood of 0 in E such that $a+N_{a}+N_{a} \subset G$. Since $x-f(x)$ is compact, there exist $a_{1}, \ldots, a_{n} \in x-f(x)$ such that $x-f(x) \subset \bigcup_{i=1}^{n}\left(a_{i}+N_{a_{i}}\right)$. Since f is upper semicontinuous at x, and since $f(x) \subset x-\bigcup_{i=1}^{n}\left(a_{i}+N_{a_{i}}\right)$, which is open, there exists an open neighborhood U_{2} of x in K such that $f(y) \subset x-$ $\bigcup_{i=1}^{n}\left(a_{i}+N_{a_{i}}\right)$ for all $y \in U_{2}$. Let $V_{1}=U_{1} \cap U_{2} \cap\left(x+\bigcap_{i=1}^{n} N_{a_{i}}\right)$. Then V_{1} is an open neighborhood of x in K. Let $y \in V_{1}$; as $y \in U_{2}$, we have $f(y) \subset x-$ $\bigcup_{i=1}^{n}\left(a_{i}+N_{a_{i}}\right)$, so that

$$
\begin{equation*}
x-f(y) \subset \bigcup_{i=1}^{n}\left(a_{i}+N_{a_{i}}\right) \tag{*}
\end{equation*}
$$

as $y \in x+\bigcap_{i=1}^{n} N_{a_{i}}$, we have $y-x \in \bigcap_{i=1}^{n} N_{a_{i}}$, so that $y-f(y)=y-x+x-$ $f(y) \subset \bigcap_{i=1}^{n} N_{a_{i}}+\bigcup_{i=1}^{n}\left(a_{i}+N_{a_{i}}\right)$ by (*). It follows that

$$
\begin{equation*}
y-f(y) \subset \bigcup_{i=1}^{n}\left(a_{i}+N_{a_{i}}+N_{a_{i}}\right) \subset G \tag{**}
\end{equation*}
$$

as $y \in U_{1}$, by (**), we have

$$
|p(y, y-f(y))-p(x, x-f(x))|<\varepsilon .
$$

Next, since p is also ultimately continuous at $(x, u-h(x))$, there exist an open neighborhood U_{3} of x in K and an open set G^{\prime} in E with $u-h(x) \subset G^{\prime}$ such that $|p(y, A)-p(x, u-h(x))|<\varepsilon$ for all $(y, A) \in K \times \Omega$ with $y \in U_{3}$ and $A \subset G^{\prime}$. Since $h(x) \subset u-G^{\prime}$, which is open, and since h is upper semicontinuous at x, there exists an open neighborhood U_{4} of x in K such that $h(y) \subset u-G^{\prime}$ for all $y \in U_{4}$. Let $V_{2}=U_{3} \cap U_{4}$. Then V_{2} is an open neighborhood of x in K. Let $y \in V_{2}$; as $y \in U_{4}$, we have $h(y) \subset u-G^{\prime}$, so that

$$
\begin{equation*}
u-h(y) \subset G^{\prime} \tag{***}
\end{equation*}
$$

as $y \in U_{3}$, by (***), we have

$$
|p(y, u-h(y))-p(x, u-h(x))|<\varepsilon
$$

Let $V=V_{1} \cap V_{2}$. Then V is an open neighborhood of x in K such that for each $y \in V,(\dagger)$ and $(\dagger \dagger)$ hold; it follows that

$$
\begin{align*}
p(y, u-h(y)) & <p(x, u-h(x))+\varepsilon \quad(\text { by }(\dagger \dagger)) \\
& =p(x, x-f(x))-\varepsilon \\
& <p(y, y-f(y)) \quad(\text { by }(\dagger))
\end{align*}
$$

so that $u \in S(y)$ and hence $y \in S^{-1}(u)$ for all $y \in V$. Therefore $S^{-1}(u)$ is open for each $u \in K$.

By K. Fan's Theorem, there exists an $x_{0} \in K$ such that $\left.x_{0} \in S\left(x_{0}\right)\right)$; thus we have

$$
p\left(x_{0}, g\left(x_{0}\right)-f\left(x_{0}\right)\right)=p\left(x_{0}, x_{0}-h\left(x_{0}\right)\right)<p\left(x_{0}, x_{0}-f\left(x_{0}\right)\right)
$$

which contradicts (i). This shows that there must exist an $x_{0} \in K$ such that $f\left(x_{0}\right) \cap g\left(x_{0}\right) \neq \varnothing$. This completes the proof.

By applying Theorem 2.4 and an argument similar to that used in proving Theorem 1 in [4], we obtain the following generalization of Theorem 1 in [4].

Corollary 2.5. Let E be a Hausdorff topological vector space, let $K \subset E$ be nonempty compact convex and let $f, g: K \rightarrow \mathscr{X}(E)$ be upper semicontinuous. Let $\Omega \subset 2^{E}$ be convex and contain all sets of the form $x-f(x), y-x+g(x)-f(x)$, for $x, y \in K$. Suppose $p: K \times \Omega \rightarrow \mathbf{R}$ is ultimately continuous on $K \times \Omega$. Assume that
(i) $p(x, x-f(x))=p(x, g(x)-f(x))$ for all $x \in K$, and
(ii) for each $x \in K$ with $f(x) \cap g(x)=\varnothing$, there exists $y \in I_{K}(x)$ such that $p(x, y-x+g(x)-f(x))<p(x, x-f(x))$.
Then there exists an $x_{0} \in K$ such that $f\left(x_{0}\right) \cap g\left(x_{0}\right) \neq \varnothing$.

By applying Corollary 2.5 and an argument similar to that used in proving Theorem 2 in [4], we obtain the following generalization of Theorem 2 in [4].

Corollary 2.6. Let E be a Hausdorff topological vector space, let $K \subset E$ be nonempty comapct convex and let $f, g: K \rightarrow \mathscr{K}(E)$ be upper semi-continuous. Let $\Omega \subset 2^{E}$ be convex and contain all sets of the form $x-f(x), y-x+g(x)-f(x)$, for $x, y \in K$. Suppose $p: K \times \Omega \rightarrow \mathbb{R}$ is ultimately continuous on $K \times \Omega$. Assume that
(i) $p(x, x-f(x))=p(x, g(x)-f(x))$ for all $x \in K$, and
(ii) for each $x \in K$ with $f(x) \cap g(x)=\varnothing$, there exist $y \in O_{K}(x)$ such that $p(x, y-x+g(x)-f(x))<p(x, x-f(x))$.
Then there exists an $x_{0} \in K$ such that $f\left(x_{0}\right) \cap g\left(x_{0}\right) \neq \varnothing$.

Let E be a locally convex topological vector space and let p be any continuous seminorm on E. If $A, B \subset E$ are nonempty, let $d_{p}(A, B)=\inf \{p(a-b)$: $a \in A$ and $b \in B\}$; if $A=\{a\}$, we shall write $d_{p}(a, B)$ instead of $d_{p}(\{a\}, B)$. The following result is motivated by the proof of Theorem 3.1 in [11].

Lemma 2.7. Let E be a Hausdorff locally convex topological vector space, let $K \subset E$ be nonempty comapct convex and let $f, g: K \rightarrow \mathscr{C}(E)$ be upper semicontinuous such that for each $x \in K$, either $f(x)$ or $g(x)$ is compact. Assume that for each continuous seminorm p on E, there exists an $x \in K$ such that $d_{p}(f(x), g(x))=0$. Then there exists an $x_{0} \in K$ such that $f\left(x_{0}\right) \cap g\left(x_{0}\right) \neq \varnothing$.

Proof. Let \mathscr{P} be the set of all continuous seminorms on E. For each $p \in \mathscr{P}$, let $K_{p}=\left\{x \in K: d_{p}(f(x), g(x))=0\right\}$. If $p \in \mathscr{P}$ is arbitrarily fixed, then K_{p} is nonempty by hypothesis; we shall show that K_{p} is also closed in K. Indeed, let $\left(x_{\alpha}\right)_{\alpha \in \Gamma}$ be a net in K_{p} such that $x_{\alpha} \rightarrow x$ for some $x \in K$. Suppose $r=$ $d_{p}(f(x), g(x))>0$. Let $V_{f}=\left\{z \in E: d_{p}(z, f(x))<r / 3\right\}$ and $V_{g}=\{z \in E$: $\left.d_{p}(z, g(x))<r / 3\right\}$. Then V_{f} and V_{g} are open in E, and $f(x) \subset V_{f}$ and $g(x) \subset V_{g}$. Since f and g are upper semicontinuous at x, there exists a neighborhood U of x in K such that for all $y \in U, f(y) \subset V_{f}$ and $g(y) \subset V_{g}$. Since $x_{\alpha} \rightarrow x$, there exists $\alpha_{0} \in \Gamma$ such that $x_{\alpha} \in U$ for all $\alpha \geqslant \alpha_{0}$; it follows that, in particular, $f\left(x_{\alpha_{0}}\right) \subset V_{f}$ and $g\left(x_{\alpha_{0}}\right) \subset V_{g}$, so that $d_{p}\left(f\left(x_{\alpha_{0}}\right), g\left(x_{\alpha_{0}}\right)\right) \geqslant r / 3$, which contradicts our assumption that $d_{p}\left(f\left(x_{\alpha_{0}}\right), g\left(x_{\alpha_{0}}\right)\right)=0$. Thus $d_{p}(f(x), g(x))=0$, whence $x \in K_{p}$. Therefore K_{p} is closed in K for each $p \in \mathscr{P}$. Now let $\left\{p_{1}, \ldots, p_{n}\right\}$ be any finite subset of \mathscr{P}. Let $p=\sum_{i=1}^{n} p_{i}$. Then $p \in \mathscr{P}$, and $\cap_{i=1}^{n} K_{p_{t}} \supset K_{p} \neq \varnothing$. Thus the family $\left\{K_{p}: p \in \mathscr{P}\right\}$ has the finite intersection property, whence, by compactness of $K, \bigcap_{p \in \mathscr{P}} K_{p} \neq \varnothing$. It follows that there exists an $x_{0} \in K$ such that $d_{p}\left(f\left(x_{0}\right), g\left(x_{0}\right)\right)=0$ for all $p \in \mathscr{P}$. By the HahnBanach separation theorem, $f\left(x_{0}\right) \cap g\left(x_{0}\right) \neq \varnothing$. This completes the proof.

The following result generalizes part of Theorem 3 in [12]. We shall present a different proof than the one used in [12].

Theorem 2.8. Let E be a Hausdorff locally convex topological vector space, let $K \subset E$ be nonempty compact convex and let $f, g: K \rightarrow \mathscr{C}(E)$ be continuous such that for each $x \in K$, either $f(x)$ or $g(x)$ is compact. Suppose for each $x \in K$ and for each continuous seminorm p on E with $d_{p}(f(x), g(x))>0$, we have $d_{p}(K, x+f(x)-g(x))<d_{p}(f(x), g(x))$. Then there exists an $x_{0} \in K$ such that $f\left(x_{0}\right) \cap g\left(x_{0}\right) \neq \varnothing$.

Proof. Define $h: K \rightarrow \mathscr{C}(E)$ by $h(x)=x+f(x)-g(x)$ for all $x \in K$. Then h is lower semicontinuous on K by Proposition 2.1. Let \mathscr{P} be the set of all continuous seminorms on E. By Lemma 2.7, it is sufficient to show that for each $p \in \mathscr{P}$, there exists an $x \in K$ such that $d_{p}(f(x), g(x))=0$. If not, then there exists a $p \in \mathscr{P}$ such that $d_{p}(f(x), g(x))>0$ for all $x \in K$, so that the set $S(x)=\left\{y \in K: d_{p}(y, h(x))<d_{p}(f(x), g(x))\right\}$ is nonempty for all $x \in K$, by hypothesis. Thus $S: K \rightarrow 2^{K}$. Let $x \in K$. As $h(x)$ is convex, $d_{p}(\cdot, h(x))$ is a convex function on K, and hence $S(x)$ is convex. Let $u \in K$. We shall show that $S^{-1}(u)$ is open in K. Indeed, if $x \in S^{-1}(u)$, then $u \in S(x)$, so that $d_{p}(u, h(x))$ $<d_{p}(f(x), g(x))$. Let $\varepsilon=\left[d_{p}(f(x), g(x))-d_{p}(u, h(x))\right] / 4$. Choose $w_{0} \in h(x)$ such that $p\left(u-w_{0}\right)<d_{p}(u, h(x))+\varepsilon$. Let $G=\left\{z \in K: p\left(z-w_{0}\right)<\varepsilon\right\}$. Then G is open in K, and $G \cap h(x) \neq \varnothing$. Since h is lowe semicontinuous at x, there exists an open neighborhood V_{1} of x in K such that $h(y) \cap G \neq \varnothing$ for all $y \in V_{1}$. Let $V_{2}=V_{1} \cap\{z \in K: p(z-x)<\varepsilon\}$. Then V_{2} is an open neighborhood of x in K. Let $y \in V_{2}$. Then $h(y) \cap G \neq \varnothing$, and if we choose any $w \in h(y) \cap G$, we have
(*)

$$
\begin{aligned}
d_{p}(u, h(y)) & \leqslant p(u-w) \leqslant p\left(u-w_{0}\right)+p\left(w_{0}-w\right) \\
& <d_{p}(u, h(x))+\varepsilon+\varepsilon=d_{p}(u, h(x))+2 \varepsilon
\end{aligned}
$$

Next, note that for $V_{f}=\left\{z \in K: d_{p}(z, f(x))<\varepsilon / 2\right\}$ and $V_{g}=\{z \in K$; $\left.d_{p}(z, g(x))<\varepsilon / 2\right\}, V_{f}$ and V_{g} are open in K, and they contain $f(x)$ and $g(x)$, respectively. Since f and g are upper semicontinuous at x, there exists an open neighborhood V_{3} of x in K such that $f(y) \subset V_{f}$ and $g(y) \subset V_{g}$ for all $y \in V_{3}$. Let $y \in V_{3}$, and then choose $a \in f(y)$ and $b \in g(y)$ such that $p(a-b)<$ $d_{p}(f(y), g(y))+\varepsilon$. Since $a \in f(y) \subset V_{f}$ and $b \in g(y) \subset V_{g}$, there are $a_{0} \in f(x)$ and $b_{0} \in g(x)$ with $p\left(a-a_{0}\right)<\varepsilon / 2$ and $p\left(b-b_{0}\right)<\varepsilon / 2$. It follows that

$$
\begin{align*}
d_{p}(f(x), g(x)) & \leqslant p\left(a_{0}-b_{0}\right) \tag{**}\\
& \leqslant p\left(a_{0}-a\right)+p(a-b)+p\left(b-b_{0}\right) \\
& <\frac{\varepsilon}{2}+d_{p}(f(y), g(y))+\varepsilon+\frac{\varepsilon}{2} \\
& =d_{p}(f(y), g(y))+2 \varepsilon .
\end{align*}
$$

If now $V=V_{2} \cap V_{3}$, then V is an open neighborhood of x in K, and for each $y \in V$, we have

$$
\begin{aligned}
d_{p}(u, h(y)) & <d_{p}(u, h(x))+2 \varepsilon, \quad \text { by }(*) \\
& =d_{p}(f(x), g(x))-2 \varepsilon \\
& <d_{p}(f(y), g(y)), \quad \text { by }(* *)
\end{aligned}
$$

so that $u \in S(y)$, and hence $y \in S^{-1}(u)$ for all $y \in V$. Therefore $S^{-1}(u)$ is open in K for each $u \in K$. By K. Fan's Theorem, there exists an $x_{0} \in K$ such that $x_{0} \in S\left(x_{0}\right)$, so that $d_{p}\left(x_{0}, h\left(x_{0}\right)\right)<d_{p}\left(f\left(x_{0}\right), g\left(x_{0}\right)\right)$, and this is impossible because $d_{p}\left(x_{0}, h\left(x_{0}\right)\right)=d_{p}\left(f\left(x_{0}\right), g\left(x_{0}\right)\right)$. This completes the proof.

Analogous to Corollary 2.5 and Corollary 2.6 , we have the following results, which form generalizations of Corollary 1 (respectively, Corollary 1^{\prime}) in [4].

Corollary 2.9. Let E be a Hausdorff locally convex topological vector space, let $K \subset E$ be nonempty compact convex and let $f, g: K \rightarrow \mathscr{C}(E)$ be continuous such that for each $x \in K$, either $f(x)$ or $g(x)$ is compact. Suppose for each $x \in K$ and for each continuous seminorm p on E with $d_{p}(f(x), g(x))>0$, there exist $y \in I_{K}(x)$ (respectively, $y \in O_{K}(x)$) such that $d_{p}(y, x+f(x)-g(x))<d_{p}(f(x), g(x))$. Then there exists an $x_{0} \in K$ such that $f\left(x_{0}\right) \cap g\left(x_{0}\right) \neq \varnothing$.

The following is an immediate consequence of Corollary 2.9.
Corollary 2.10. Let E be a Hausdorff locally convex topoological vector space, let $K \subset E$ be nonempty compact convex and let $f, \mathrm{~g}: K \rightarrow \mathscr{C}(E)$ be continuous such that for each $x \in K$, either $f(x)$ or $g(x)$ is compact. Suppose for each $x \in K$ and for each continuous seminorm p on E with $d_{p}(f(x), g(x))>0$, there exists $y \in$ $\operatorname{cl}\left(I_{K}(x)\right)$ (respectively, $y \in \operatorname{cl}\left(O_{K}(x)\right)$ such that $d_{p}(y, x+f(x)-g(x))<$ $d_{p}(f(x), g(x))$. Then there exist an $x_{0} \in K$ such that $f\left(x_{0}\right) \cap g\left(x_{0}\right) \neq \varnothing$.

References

[1] C. Berge, Topological Spaces (Oliver \& Boyd, Edinburgh and London, 1963).
[2] F. E. Browder, A new generalization of the Schauder fixed point theorem, Math. Ann. 174 (1967), 285-290.
[3] F. E. Browder, The fixed point theory of multi-valued mappings in topological vector spaces, Math. Ann. 177 (1968), 283-301.
[4] F. E. Browder, On a sharpened form of the Schauder fixed-point theorem, Proc. Nat. Acad. Sci. U. S. A. 74 (1977), 4749-4751.
[5] J. Caristi, Fixed point theorem for mapping satisfying inwardness conditions, Trans. Amer. Math. Soc. 215 (1976), 241-251.
[6] K. Fan, A generalization of Tychonoff's fixed point theorem, Math. Ann. 142 (1961), 305-310.
[7] K. Fan, Extensions of two fixed point theorems of F. E. Browder, Math. Z. 112 (1969), 234-240.
[8] B. Halpern and G. Bergman, A fixed point theorem for inward and outward maps, Trans. Amer. Math. Soc. 130 (1968), 353-358.
[9] J. H. Jiang, Fixed point theorems for multi-valued mappings in locally convex spaces, Acta Math. Sinica 25 (1982), 365-373.
[10] J. H. Jiang, Generalization of two fixed point theorems of S. Reich, Acta Math. Sinica 24 (1981), 359-364.
[11] S. Reich, Approximate selections, best approximations, fixed points, and invariant sets, J. Math. Anal. Appl. 62 (1978), 104-113.
[12] S. Reich, Fixed point theorems for set-valued mappings, J. Math. Anal. Appl. 69 (1979), 353-358.
[13] S. Reich, Some problems and results in fixed point theory, Contemporary Math. 21 (1983), 179-187.

Department of Mathematics, Statistics and Computing Science
Dalhousie University
Halifax, Nova Scotia B3H 3J5
Canada

[^0]: This work was partially supported by NSERC of Canada under grant A-8096.
 (c) 1987 Australian Mathematical Society 0263-6115/87\$A2.00 +0.00

