
J. Austral. Math. Soc. (Series A) « (1987), 390-398

GENERALIZATIONS OF F. E. BROWDER'S SHARPENED
FORM OF THE SCHAUDER FIXED POINT THEOREM

KOK-KEONGTAN

(Received 18 June 1985; revised 6 February 1986)

Communicated by J. H. Rubinstein

Abstract

Let £ be a Hausdorff topological vector space, let K be a nonempty compact convex subset of E and
let / , g: K -» 2E be upper semicontinuous such that for each x e K, f(x) and g(x) are nonempty
compact convex. Let Q c 2E be convex and contain all sets of the form x - f(x), y - x + g(x) —
f(x), for x, y e K. Suppose p: K X Q -> R satisfies: (i) for each (x, A) e K X fi and for a > 0, there
exist a neighborhood U of x in K and an open subset set G in E with A c G such that for all
(y, B) e K X Q. with y e U and B c G, \p(y, B) - p(x, A)\ < e, and (ii) for each fixed x e K,
p(x, •) is a convex function on Q. If p(x, x - / ( * ) ) < p(x,g(x) — /(*)) for all x e Jf, and if, for
each x e K with f(x)Cig(x)=0, there exists ; e K with p(x, y - x + g(x) - / ( * ) ) <
^(x, x - / (*)) , then there exists an x0 e A' such that / O 0 ) n g(jco) * 0 • Another coincidence
theorem on a nonempty compact convex subset of a Hausdorff locally convex topological vector space
is also given.
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Keywords and phrases: fixed point, Schauder fixed point theorem, set-value map, lower semicontinu-
ous, upper semicontinuous, ultimately continuous, convex function, inward set, outward set, topologi-
cal vector space, locally convex topological vector space.

1. Introduction and preliminaries

The classical Schauder fixed point theorem asserts that every continuous self-map
of a nonempty compact convex subset of a Banach space has a fixed point.
Obviously the Schauder fixed point theorem cannot be extended to non-self-maps
without additional conditions. Many generalizations for single- or multi-valued
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maps have been obtained, for example see [2], [3], [5], [7] and [8]. Recently, F. E.
Browder [4] gave a rather sharp improvement of these results for single-valued
maps. Generalizations of those results in [4] to set-valued maps are obtained by S.
Reich [12,13], J. H. Jiang [9,10] and others. In this paper, we shall extend some of
Browder's results in [4] to set-valued maps in different directions, one of which
extends a result of S. Reich in [12].

We shall denote by R the real line and, for any nonempty set X, by 2X the
collection of all nonempty subsets of X. Now let X and Y be topological spaces.
Then a map / : X -* 2Y is said to be (i) lower semicontinuous (respectively, upper
semicontinuous) [1] at x0 e X if for each open set G in Y with G O f(x0) # 0
(respectively, with f(x0) c G), there is a neighborhood U of x0 in X such that
G n f(x) # 0 (respectively, f(x) c G) for all x £ U; (ii) lower semicontinuous
(respectively, upper semicontinuous) on X if / is lower semicontinuous (respec-
tively, upper semicontinuous) at each point of X; (iii) continuous on X if / is both
lower semicontinuous on X and upper semicontinuous on X. Also if Q c 2Y,
then a map p: X X Q -* R is said to be (iv) ultimately continuous at (x, A) if for
each c > 0, there exist a neighborhood U of x in X and an open set G in Y with
A<zG such that |/>(>>, B) - p(x, A)\ < e for all (y, B) e X X fi with .y e £/
and B c G; (v) ultimately continuous on X X £1 if p is ultimately continuous at
each point of X x fl. We note that in the case fl = {{>>}: j e 7} , if we write
P(x, y) = p{x,{ y}), then the notions of ultimate continuity and continuity
coincide. If A c X, d(A) denotes the closure of A in X. Next let £ be a vector
space, let K be a nonempty subset of E and let x e X ; then the inward set and
outward set [8] of K at x, denoted by IK(x) and O^x), respectively, are defined
by

IK(x) = { y e £ : there exist u e AT and r > 0 such that j> = x + / • ( « - * ) }

and

OK(x) = [y e E: there exist u e AT and r > Osuchthat y = x - r(u - x)}.

Also, a subset Q of 2£ is convex if for each X, 5 G Q and for each t e [0,1],
tA + (1 — t)B e Q. Moreover, if £ is a topological vector space, we shall denote
by Jt(E) the collection of all compact convex sets in 2E and by # ( £ ) the
collection of all closed convex sets in 2E. Finally we shall need the following fixed
point theorem of K. Fan [6]:

THEOREM (K. Fan [6]). Let K be a nonempty compact convex subset of a
Hausdorff topological vector space E and let S: K -* 2K. Suppose, for each x e K,
that S(x) is convex, while for each u e K, the set S'\u) = {y & K: u e S(y)} is
open in K. Then there exists x0 e K such that x0 e S(x0).
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2. Main results

The following two propositions are easy consequences of the definitions.

PROPOSITION 2.1. Let E be a topological vector space, let K c E be nonempty,
let f, g: K -* 2E be lower semicontinuous, let h: K -* 2E be upper semicontinuous
and let c e R. Then f+g and eg are lower semicontinuous, and ch is upper
semicontinuous.

PROPOSITION 2.2. Let E be a topological vector space, let K c E be nonempty
and letf, g: K -* 2E be upper semicontinuous such that for each x e K, f(x) and
g(x) are both compact. Thenf+ g is also upper semicontinuous.

We note that Proposition 2.2 is false if the condition "/, g: K -» 2E be upper
semicontinuous such that for each x e K, f(x) and g(x) are both compact" is
replaced by the condition "/, g: K -» # ( £ ) be upper semicontinuous such that
for each x e K, at least one of /(JC) and g(x) is compact." This can be seen from
the following:

EXAMPLE 2.3. Let E = R2 and let K = {(JC, y) e R2: x2 + y2 < 1 and x,

y > 0}. Define / : K ->• Jf(E) by

/(rcos0,rsin0) = {(fcos0,f sin0): r < t < 2}

for each r e (0,1] and 6 e (0, m/2\ Define g: # -» <tf(E) by

for all (x, y) e K. It can be easily checked that / and g are both upper
semicontinuous (in fact, both continuous) but / + g is not upper semicontinuous.

The following result generalizes Proposition 2 in [4] and also Theorem 1 in [7}
to set-valued maps.

THEOREM 2.4. Let E be a Hausdorff topological vector space, let K c E be
nonempty compact convex and let f,g: K -* Jf(E) be upper semicontinuous. Let
B c 2 £ k convex and contain all sets of the form x — f(x), y - x + g(x) — f(x),
for x, y e K. Suppose p: K X Q -» R is ultimately continuous such that for each
x G K, p{x, •) is a convex function on Q. Assume that

(i)p(x, x - f{x)) < p(x, g(x) - f(x)) for all x e K, and
(ii)/or each x e K with f(x) n g(x) = 0 , there exists y e K such that

p(x,y - x + g(x) - f(x)) <p(x,x- f(x)).
Then there exists an x0 e Ksuch thatf(x0) n g(x0) + 0 .
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PROOF. Define h: K -* Jf(E) by h(x) = x + /(x) - g(x) for all x G K. Then
h is upper semicontinuous by Propositions 2.1 and 2.2. Assume that for each
x G K, f(x) n g(x) = 0, so that the set S(x) = {y e K: p(x, y - h(x)) <
p(x, x - /(x))} is nonempty by hypothesis. Thus S: K -* 2K. Let x G K, yx,
y2 G S(x) and t G [0,1]; then p(x, j , - h(x)) < p(x, x - /(x)) for / = 1,2.
Since ^ (^ - h(x)) + (1 - 0(^2 ~ *(•*)) = ty\ + (1 ~ 0^2 ~ M*)> ^ s i n c e

p(jc, •) is convex, we see that

p(x,ty1+(l - t)y2-h(x)) < p(x,x - f(x)),
so that tyl + (1 — 0^2 e •S'(̂ )- Hence S(x) is convex for each x e K.

Now let « G K. We shall show that S'\u) is open in A". Indeed, if x G S'\u),
then w G S'(x), so that p(x, u — h(x)) < p(x, x — /(*)). Let e = [p(x, x —
f(x)) — p(x, u — h(x))]/2. Since p is ultimately continuous at (JC, x — /(*)),
there exist an open neighborhood Ui of x in K and an open set G in E with
JC - /(JC) c G such that |/»(y, A) - p(x, x - f(x))\ < e for all (y, A) G K X B
with >> G L̂  and 4̂ c G. For each a G X - /(x), let #„ be an open neighbor-
hood of 0 in £ such that a + Na + Na c G. Since x - f(x) is compact, there
exist a1,...,an& x - f(x) such that x - f(x) c U,"=1(a, + iVa.). Since / is
upper semicontinuous at x, and since f(x) c x — Uf-xCa, + Na.), which is
open, there exists an open neighborhood U2 of x in K such that f(y)<zx —
U?_x(a, + A^̂ ) for all y e f/2. Let Fx = U^ n l/2 n (x + Df=1iVOj). Then Fx

is an open neighborhood of x in K. Let j e Fx; as y G f/2, we have f(y)(z x -
Ur_i(a, + #„,), so that

(•) * - / G O <= U («,• +JVJ ;

as >> G x + nf.jA^ , we have y - x G 0 ? . ^ , so that y - f(y) = y - x + x -
f(y) c njLxJV,, + Uf.xCa, + i^,) by (*). It follows that

(••) y - f(y)c U {«, + *ra, + K.)c G-,
1 = 1

as 7 G l^, by (**), we have
(t) \p(y,y-f(y))-p(x,x-f(x))\<e.

Next, since p is also ultimately continuous at (x, M — h(x)), there exist an open
neighborhood f/3 of x in K and an open set G' in E with u — h(x) c G' such
that \p(y, A) - p(x, u - h(x))\ < e for all (y, A) G K X Q with / £ ( / , and
4̂ c G'. Since /i(x) c u — G', which is open, and since h is upper semicontinu-
ous at x, there exists an open neighborhood t/4 of x in K such that h(y) c u — G'
for all y G UA. Let V2 = l/3 n f/4. Then F2 is an open neighborhood of x in K.
Let ^ G F2; as ^ G f/4, we have h(y) c « — G', so that

(*••) u-h(y)cG';
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as y G U3, by (***), we have

(t t) \p(y,u- h(y)) -p(x,u- h(x))\< B.
Let V = Vx n V2. Then V is an open neighborhood of x in K such that for each

y G V, (f) and (ft) hold; it follows that

p(y,u - *(>>)) </>(*," - *(*)) + « (by (tt))

= p(x,x-f(x))-e

<p(y,y-f(y)) (by(t))
so that « G S'(j') and hence y G S'H") for all y G F. Therefore S'H") is open
for each u e K.

By K. Fan's Theorem, there exists an x0 e # such that JC0 G 5(x0)); thus we
have

p(xo,g(xQ) -f(xo))=p(xo,xo - h(x0)) <p(xo,xo-f(xo)),

which contradicts (i). This shows that there must exist a n x o e ^ such that
f(x0) n g(x0) ¥= 0 . This completes the proof.

By applying Theorem 2.4 and an argument similar to that used in proving
Theorem 1 in [4], we obtain the following generalization of Theorem 1 in [4].

COROLLARY 2.5. Let E be a Hausdorff topological vector space, let Kc E be
nonempty compact convex and let f, g: K -* Jf(E) be upper semicontinuous. Let
Q c 2 £ i e convex and contain all sets of the form x — f(x), y — x + g(x) — f(x),
for x, y £ K. Suppose p: K X Q —> R is ultimately continuous on K X B. Assume
that

(i)p(x,x-f(x)) = p(x,g(x)-f(x))forallx e K, and
(ii)for each x G K with f(x)ng(x)= 0 , there exists y e IK(x) such that

p(x, y - x + g(x) - f(x)) < p(x, x - /(*)).
Then there exists an xQ G Ksuch thatf(xQ) n g(x0) ¥= 0.

By applying Corollary 2.5 and an argument similar to that used in proving
Theorem 2 in [4], we obtain the following generalization of Theorem 2 in [4].

COROLLARY 2.6. Let E be a Hausdorff topological vector space, let K c E be
nonempty comapct convex and let f, g: K -* Jf(E) be upper semi-continuous. Let
Q c 2£ be convex and contain all sets of the form x — f(x), y — x + g(x) — f(x),
for x, y G K. Supposep: K X S2 -» R is ultimately continuous on K X SI. Assume
that

(i)p(x, x - f(x)) = p(x, g(x) - / ( * ) ) for all x G K, and
(ii) for each x G K with f(x) n g(x) = 0 , there exist y G OK(x) such that

p(x, y - x + g(x) -f(x)) < p(x, x - f{x)).
Then there exists an x0 G Ksuch thatf(x0) n g(x0) ¥= 0 .
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Let £ be a locally convex topological vector space and let p be any continuous
seminorm on E. If A, B c E are nonempty, let dp(A, B) = inf{ p(a - b):
a&A and b e B}; if A = {a}, we shall write dp(a, B) instead of dp({a), B).
The following result is motivated by the proof of Theorem 3.1 in [11].

LEMMA 2.7. Let E be a Hausdorff locally convex topological vector space, let
K c E be nonempty comapct convex and letf, g: K -* <${E)be upper semicontinu-
ous such that for each x e K, either f(x) or g(x) is compact. Assume that for each
continuous seminorm p on E, there exists an x e K such that dp(f(x), g(x)) = 0.
Then there exists an xQ e Ksuch thatf(x0) D g(x0) ¥= 0.

PROOF. Let & be the set of all continuous seminorms on E. For each p e &,
let Kp = {x e K: dp(f(x), g(x)) = 0}. If p e 9> is arbitrarily fixed, then Kp is
nonempty by hypothesis; we shall show that Kp is also closed in K. Indeed, let
( jc a ) o e r be a net in Kp such that xa -* x for some x e K. Suppose r =
dp(f(x),g(x))>0. Let V,= {zeE: dp(z,f(x))<r/3] and Vg={z<=E:
dp(z, g(x)) < r/3}. Then Vf and Vg are open in E, and f(x) c Vf and g(x) c Vg.
Since / and g are upper semicontinuous at x, there exists a neighborhood U of x
in K such that for all y e U, f(y) c Vf and g(y) c Vg. Since xa -» x, there
exists a0 G F such that xa G t/ for all a > a0; it follows that, in particular,
/(**„) c Vf and g(xO0) c Vg, so that dp(f(xao), g(xao)) > r/3, which con-
tradicts our assumption that dp(f(xao), gix^)) = 0. Thus dp(f(x), g(x)) = 0,
whence x e Kp. Therefore Kp is closed in K for each /? e ^ . Now let
{/»!,...,/»„} be any finite subset of &. Let /» = £"_!/>,. Then p&@, and
Hf.!^. 3 Kp # 0 . Thus the family { ^ : / i e ^ } has the finite intersection
property, whence, by compactness of K, f]p e &Kp ¥= 0 . It follows that there
exists an x0 e K such that dp(f(x0), g(x0)) = 0 for all p e ^". By the Hahn-
Banach separation theorem, /(x0) n g(x0) ¥= 0 . This completes the proof.

The following result generalizes part of Theorem 3 in [12]. We shall present a
different proof than the one used in [12].

THEOREM 2.8. Let E be a Hausdorff locally convex topological vector space, let
K c E be nonempty compact convex and let f, g: K -* 'g(E) be continuous such
that for each x e K, either f(x) or g(x) is compact. Suppose for each x e K
and for each continuous seminorm p on E with dp(f(x), g(x)) > 0, we have
dp(K, x + f(x) - g(x)) < dp(f(x), g(x)). Then there exists an x0 e K such that
f(xo)ng(xo)* 0.
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PROOF. Define h: K -> # ( £ ) by h(x) = x + f(x) - g(x) for all x e K. Then
A is lower semicontinuous on K by Proposition 2.1. Let ̂  be the set of all
continuous seminorms on E. By Lemma 2.7, it is sufficient to show that for each
p G &>, there exists an x G # such that dp(f(x), g(x)) = 0. If not, then there
exists a ; e # such that dp(f(x), g(x)) > 0 for all x G K, so that the set
S(x) = {y<=K: dp(y, h(x)) < dp(f(x), g(x))} is nonempty for all x G K, by
hypothesis. Thus S: K -* 2K. Let x G K. As A(x) is convex, dp(-,h(x)) is a
convex function on # , and hence S(x) is convex. Let w e AT. We shall show that
S~\u) is open in K. Indeed, if x e S~\u), then w e 5(x), so that dp(u, h(x))
< dp(f(x), g(x)). Let e = [«/,(/(*), g(x)) - rf,(«, A(*))]/4. Choose w0 e A(x)
such that />(u - w0) < dp(u, h(x)) + e. Let G = {z G if: />(z - w0) < e}. Then
G is open in K, and G n A(JC) # 0 . Since h is lowe semicontinuous at x, there
exists an open neighborhood Vx of x in K such that /j(jOnG=* 0 for all
y G Kx. Let V2 = Fx n (z e A": />(z — x) < e}. Then F2 is an open neighbor-
hood of x in A:. Let y e V2. Then h(y) n G # 0 , and if we choose any
w e A(^) n G, we have

(*) ^ (u , / ! (> - ) )< /> (« - w ) < p ( « - w o )+ j p(w o - w)

< dp{u, h{x)) + £ + e = dp(u, h(x)) + It.

Next, note that for Vf={z^K: dp(z,f(x))<e/2} and Fg = {z G ^ ;
^/,(z> g(x)) < £ / 2} , f/ and Vg are open in T̂, and they contain f{x) and g(x),
respectively. Since / and g are upper semicontinuous at x, there exists an open
neighborhood F3 of x in K such that / ( J O c Vf and g(j) c Fg for all y G F3.
Let y G F3, and then choose a G /(_y) and b G g(^) such that p(a — b) <
dp(f(y), g(y)) + £• Since a e /(>>) c F7 and 6 G g(^) c Fg, there are a0 G / ( X )
and b0 G g(x) with p(a - a0) < e/2 and p(b - b0) < e/2. It follows that

(**) dp(f(x),g(x))^p(a0-b0)

<p(a0- a) +p(a- b) + p{b - b0)

= dp(f(y),g(y))+2e.

If now V — V2C\ F3, then F is an open neighborhood of x in K, and for each
y G F, we have

dp(u,h(y))<dp(u,h(x)) + 2e, by (.)

«</,(/(*), g(x))-2e

). by(**)
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so that u G S(y), and hence y e S'\u) for all y e F. Therefore S'\u) is open
in K for each u e K. By K. Fan's Theorem, there exists a n x o £ X such that
x0 G S(x0). so that dp(x0,h(x0))< dp(f(x0),g(x0)), and this is impossible
because dp(x0, h(xQ)) = dp(f(x0), g(x0)). This completes the proof.

Analogous to Corollary 2.5 and Corollary 2.6, we have the following results,
which form generalizations of Corollary 1 (respectively, Corollary 1') in [4].

COROLLARY 2.9. Let E be a Hausdorff locally convex topological vector space, let
K c E be nonempty compact convex and let f,g:K^>'#(E)be continuous such
that for each x e K, either f(x) or g(x) is compact. Suppose for each x e K and
for each continuous seminormp on E with dp(f(x), g(x))> 0, there existy e IK(x)
(respectively, y e OK(x)) such that dp(y, x + f(x) - g(x)) < dp(f(x), g(x)).
Then there exists an x0 e K such thatf(x0) n g(x0) ¥= 0 .

The following is an immediate consequence of Corollary 2.9.

COROLLARY 2.10. Let E be a Hausdorff locally convex topoological vector space,
let K c E be nonempty compact convex and letf, g: K -* 'S(E) be continuous such
that for each x e K, either f(x) or g(x) is compact. Suppose for each x e K and
for each continuous seminorm p on E with dp(f(x), g(x)) > 0, there exists y e
cl(/,,(*)) (respectively, y e cl(O^(x)) such that dp(y, x + f(x) - g(x)) <
dp(f(x), g(x)). Then there exist an x0 e K such that f(x0) O g(x0) ± 0 .
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