08AI5, 08A25, 18A30

BULL. AUSTRAL. MATH. SOC. VOL. 20 (1979), 71-76.

On profiniteness of compact totally disconnected algebras

B.J. Day

The paper presents a necessary and sufficient condition for a given compact totally disconnected space C to be the projective limit of a given directed cone of epimorphisms onto finite discrete quotients of C. This problem is related to the question of when a compact totally disconnected algebra is profinite and some observations in this direction are recorded.

Introduction

The notion of a pro-object is closely related to problems in duality (see Day [2] and Hofmann [4]). The usual technique is to obtain duality on the models M and then lift this duality to the pro-M-objects.

In the present paper we reverse the above mentioned procedure and use Stone duality to deduce a necessary and sufficient condition for a given compact totally disconnected space to be a pro-M-object for a given M. The resulting observations on profiniteness of algebras are closely related to the work of Choe [1] and Numakura [6]. The method we employ is a generalisation of Numakura's method for semigroups and leads to Choe-type conditions for profiniteness.

The general references for this article are Grätzer [3] and Mac Lane [5].

1. General conditions for profiniteness

Let $K = (K, 1, \times, [-, -], ...)$ be the cartesian closed category of

Received 8 November 1978.

71

compactly generated Hausdorff spaces and let B be the category of boolean rings. Then, for each $C \in C$, the category of compact totally disconnected spaces, we have an isomorphism $C \cong B([C, 2], 2)$ by Stone duality which asserts that $B(-, 2) : B^{OP} + C$ is a category equivalence.

Let $U : B \rightarrow Ens$ be the underlying-set functor. Then U creates filtered colimits since B is finitary over Ens; U also preserves and reflects regular epimorphisms.

Now let $D: \mathcal{D} \neq C$ be a diagram in C with each $D(\alpha)$ a finite set, and let $\rho: C \neq D$ be a natural transformation each of whose components is an epimorphism. Then the aim is to find a condition for this transformation ρ to be a limit cone in C.

THEOREM 1.1. If D is directed then the canonical map $\rho : C \rightarrow \lim D$ is a monomorphism (respectively an isomorphism) if and only if the canonical map colim $U[D, 2] \rightarrow U[C, 2]$ in Ens is a surjection (respectively a bijection).

Proof. Consider

 $C \cong B([C, 2], 2) \xrightarrow{\alpha} \lim B([D, 2], 2) \cong \lim D$.

Here ρ is a monomorphism (respectively an isomorphism) if and only if α is a monomorphism (respectively an isomorphism). But α is just the image of the canonical map

 $\beta : \operatorname{colim}[D, 2] \rightarrow [C, 2]$

in \mathcal{B} under the category equivalence $\mathcal{B}^{\operatorname{op}} \neq C$. Thus ρ is a monomorphism (respectively an isomorphism) if and only if β is an epimorphism (respectively an isomorphism). But the domain of β is a filtered colimit. Thus, on considering the aforementioned properties of U, the result follows. //

COROLLARY 1.2. The canonical map $\rho: C \rightarrow \lim D$ is a monomorphism if and only if each continuous map $C \rightarrow 2$ factors through some e in the cone. //

A directed cone $\rho : C \rightarrow D$ is called *saturated* if:

(i) given any commuting diagram

72

with e_m , e_n in the cone, then h = Df;

(ii) given any pair in the cone, their pushout in C is in the cone.

THEOREM 1.3. The canonical map $\rho : C \rightarrow \lim D$ is an isomorphism if $\rho : C \rightarrow D$ is saturated and each map $g : C \rightarrow 2$ factors through some e in the cone.

Proof. Firstly colim $U[D, 2] \rightarrow U[C, 2]$ is a surjection (see Corollary 1.2). It is an injection since, given any two factorisations of a given $g: C \rightarrow 2$,

we can form the pushout of (e_m, e_n) in C and relate both factorisations to a third via maps in the diagram (since we are assuming $\rho : C \rightarrow D$ is saturated). //

EXAMPLE 1.4. Let $\Pi = (T, \mu, \eta)$ be a monad on *Ens*. Then we can lift this to a monad on *K*; namely $\overline{TX} = \int^{Y} TY \cdot [Y, X]$. If we associate each compact totally disconnected $\overline{\Pi}$ -algebra *C* with its set of finite quotients then we obtain a (directed) saturated cone under *C*. //

2. Special conditions for profiniteness

Throughout this section we will consider the situation in the preceding example in which Π is a *finitary* monad on *Ens* (this makes $\overline{\Pi}$

finitary on K). The set of all non-nullary finitary operations of Π will be denoted by Ω for short.

Let A be a compact $\overline{\Pi}$ -algebra. We will call a subset $M \subseteq A \times A$ a Δ -module if $x \in M$ implies $\mu(\Delta, \ldots, x, \ldots, \Delta) \subseteq M$ for all $\mu \in \Omega$. Given any set $X \subseteq A \times A$ we will denote by X^* the union of all the Δ -modules contained in X.

LEMMA 2.1. X^* is a Δ -module. //

For any $Y \subset A \times A$ we define

$$\begin{array}{c} a(\mu) \\ \langle y \rangle = \bigcup \quad \bigcup \quad \mu(\Delta, \ \dots, \ Y, \ \dots, \ \Delta) \\ \mu \in \Omega \quad i=1 \end{array}$$

LEMMA 2.2. (Y) is a Δ -module. //

We will call A Δ -finite if there exists a finite number of operations $\{\mu_1, \ldots, \mu_k\} \subset \Omega$ such that

for all $Y \subseteq A \times A$.

THEOREM 2.3. Let X be an open equivalence relation on a Δ -finite A . Then X* is an open algebra congruence on A .

Proof. Choose $x \in X^*$. Then, by continuity of μ and compactness of A, there exists an open set V_{μ} about x such that $\mu(\Delta, \ldots, V_{\mu}, \ldots, \Delta) \subseteq X$ for each $\mu \in \Omega$. Thus there exists an open set V about x such that $\mu_i(\Delta, \ldots, V, \ldots, \Delta) \subseteq X$ for all $i = 1, \ldots, k$. Thus, by Δ -finiteness of A, there exists an open V about x such that $\langle V \rangle \subseteq X$. Therefore $\langle V \rangle \subseteq X^*$ and so X^* is open. It is straightforward to check that X^* is an A-congruence (see Numakura [6], Lemma 4). //

COROLLARY 2.4. A Δ -finite totally disconnected algebra A is profinite. //

Now suppose that Ω is generated by only a *finite* set Ω_b of basic operations. Call A Δ -associative if, for each $\mu \in \Omega_b$, there exists an integer $m = m(\mu) > 0$ such that

 $\mu\{\Delta, \ldots, \mu(\Delta, \ldots, \mu(\Delta, \ldots, Y, \ldots, \Delta), \ldots)\} \subseteq \mu(\Delta, \ldots, Y, \ldots, \Delta)$ for all $Y \subseteq A \times A$, where the only restriction on the left-hand side is that μ should occur precisely m times. Call A Δ -distributive if $\mu\{\Delta, \ldots, \rho(\Delta, \ldots, Y, \ldots, \Delta), \ldots, \Delta\}$ $= \rho\{\Delta, \ldots, \mu(\Delta, \ldots, Y, \ldots, \Delta), \ldots, \Delta\}$

for all μ , $\rho \in \Omega_{h}$ and $Y \subseteq A \times A$.

PROPOSITION 2.5. If A is Δ -associative and Δ -distributive then it is Δ -finite.

Proof. The diagonal Δ is a subalgebra of $A \times A$ so $\mu(\Delta, \ldots, \Delta) \subseteq \Delta$ for all $\mu \in \Omega$. Thus any derived expression whose entries are all Δ except for one entry which is Y, can be contained in the expression $\mu_1(\Delta, \ldots, \mu_2(\Delta, \ldots, \mu_n(\Delta, \ldots, Y, \ldots, \Delta), \ldots))$ in which the μ_1, \ldots, μ_n are basic operations from Ω_b . By Δ -distributivity followed by Δ -associativity, any such derived expression can be contained in an expression in which each basic μ occurs less than $m(\mu)$ times, and there is only a finite number of such expressions; so the result follows. //

Examples of Δ -associative and Δ -distributive algebras include groups, rings, semigroups, distributive lattices, and lattice ordered groups.

References

- [1] Tae Ho Choe, "Zero-dimensional compact associative distributive universal algebras", Proc. Amer. Math. Soc. 42 (1974), 607-613.
- [2] B.J. Day, "On Pontryagin duality", Glasgow Math. J. (to appear).
- [3] George Grätzer, Universal algebra (Van Nostrand, Princeton, New Jersey; Toronto; London; Melbourne; 1968).
- [4] Karl Heinrich Hofmann, "Category theoretical methods in topological algebra", *Categorical topology*, 345-403 (Proc. Conf. Mannheim, 1975. Lecture Notes in Mathematics, 540. Springer-Verlag, Berlin, Heidelberg, New York, 1976).

- [5] S. Mac Lane, Categories for the working mathematician (Graduate Texts in Mathematics, 5. Springer-Verlag, New York, Heidelberg, Berlin, 1971).
- [6] Katsumi Numakura, "Theorems on compact totally disconnected semigroups and lattices", Proc. Amer. Math. Soc. 8 (1957), 623-626.

Department of Pure Mathematics, University of Sydney, Sydney, New South Wales.

.

76