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A continuum approach for modelling induced anisotropy
in glaciers and ice sheets”
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ABSTRACT. This paper presents a formulation of a continuum model for so-called
(stress or deformation) induced anisotropy in natural ice which, unlike computer-
based Taylor-type models, can be incorporated in numerical simulations of large ice
masses to account for the effects of this process on the flow of these bodies in a physical
fashion. To do this, we treat natural ice as a rigid—elastic. non-linear inelastic material
which can develop transverse isotropic behaviour (accounting for the simplest kind of
induced anisotropy in natural ice masses), where the degree of such anisotropy at each
point is controlled by the distribution of crystal glide-plane orientations there. This
distribution is described by a so-called orientation-distribution function, for which an
evolution relation can be derived. The central constitutive assumption of this
formulation relates this distribution to the “structure™ tensor representing the
transverse isotropy of the material. On the basis of this relation, the model predicts in
particular isotropic (e.g. classical Glen’s flow-law type) behaviour at a given point

when the distribution of crystal glide-plane orientations is uniform there.

1. INTRODUCTION

During various kinds of loading histories, many poly-
crystalline materials such as ice develop what is generally
referred to as a stress- or deformation-induced “‘aniso-
tropy”. Generally speaking, the emergence and evolution
of such induced anisotropy is primarily driven by the
mismatch between the geometry of the stress or deforma-
tion field and the orientations of crystals (glide planes) in
the polycrystalline material. Such an anisotropy is
conceptually different from the standard constitutive
notion of antsotropic material behaviour or material symmelry
(although it may lead to such behaviour), describing
instead the emergence and/or evolution ol an oriented
structure (1.e. fabric or texture) in the material due to the
evolution of corresponding structural “elements™, e.g.
crystals in the case of a polycrystalline material. In the
case of natural ice, for example, one often observes a
progressive alignment of caxes in the vertical direction
(e.g. Herron and Langway, 1982; Castelnau and others,
1996). The development of such a texture in natural ice
leads in extreme cases (0 a macroscopic anisotropic
material behaviour, e.g. observed laboratory and in-situ
strain rates in bore hole ice (e.g. Azuma and Higashi,
1984; Lyle Hansen and Gundestrup, 1988) undergoing,
for example, simple shear, are up to an order-of-
magnitude larger in ice possessing a single caxis texture
than in textureless ice under the same conditions.
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Polycrystalline materials have traditionally been
modelled using a Taylor-type approach (e.g.
1983), which is in principle capable of describing the
development of (in this case) crystallographic texture. In
particular, such models for the evolution of crystal-
lographic texture in natural and laboratory ice have been

Asaro,

investigated recently by Van der Veen and Whillans
(1994). A common feature of such computer-based
models is the representation of the polverystal as a finile
collection of erystals and/or slip systems, i.e. “structural
elements.” As such, these models are quite amenable to
computer simulations. On the other hand, the discrete
nature of these models precludes their use to formulate
macroscopic constitutive relations for polycrystals which
account for the efects of a texture or induced anisotropy.
In other words, these are not true continuum (i.e. field)
models for polycrystalline materials exhibiting induced
anisotropy. Furthermore, such models cannot realistically
be incorporated into numerical simulations of the motion
of large ice masses currently being used and developed in
the natural ice community. The purpose of this work is to
[ormulate one such model appropriate to such modelling
of large natural ice masses whose large-scale motion is
affected by induced anisotropy.

To do this, we treat natural ice as a continuum in
which ecach point contains “microscopically” crystal
(glide planes) of all orientations whose distribution, and
so influence on the macroscopic material behaviour, is
described by an orientation-distribution [unction (e.g.
Clement, 1982: Giessen, 1989). Such a model is for-
mulated in the macroscopic context ol natural ice as a
rigid—elastic, non-linear inelastic material which can
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develop transverse isotropic behaviour (which can
account for the simplest kind of induced anisotropy in
natural ice masses), where the degree of anisotropy at
each point is controlled by the distribution of crystal
glide-plane orientations there. After introducing the
kinematics for such a material body (section 2), we
formulate the extension ol Glen’s flow rule (section 3) to
the case of transverse isotropic material behaviour in ice
using a dissipation potential approach (e.g. Johnson,
1977). The flow rule so obtained depends in particular on
the “structure tensor’” describing the transverse isotropy.
Next, we formulate the evolution model for the crystal
glide-plane orientations in cach point of the material
(section 4), together with that for their distribution, i.e,
the orientation-distribution function f (section 4), for
which an evolution relation is obtained (section 4). After
examining the form taken by f in the case of a two-
dimensional material subject to homogeneous simple
shear (section 3), we introduce the central constitutive
assumption of the current model, which relates the erystal
glide-plane orientation distribution in each point of the
material to the degree of anisotropy (i.e. transverse
isotropy) there (section 6). In particular, it is shown
(section 6) that, on the basis of this constitutive
assumption, a uniform distribution of glide-plane orienta-
tions in a given point yields isotropic material behaviour
there, an intuitively reasonable result. Finally, we discuss
briefly (section 7) general aspects of the implementation

of our model in a numerical simulation of the motion of

natural ice masses which are currently being worked on.
To take one step at a time, as it were, we do not
incorporate the very important process of recrystallization
in this work: models for the incorporation of such a
process in the [ramework used here are also being
currently investigated.

Lastly, a word on notation. In this work, bold face,
lower-case italic letters such as @, n and v represent
elements of three-dimensional Euclidean vector space V,
and bold face, upper-case italic letters such as D. F and
T Euclidean tensors. In addition, @ @ b represents the
dyadic or tensor product of two vectors a, b€V, a-b
their inner product, and A-B:= tr(A' B) the inner
product of two Euclidean tensors A and B, where AT
represents the transpose of A. Lastly, sym(A): =1(A + A"
and skw (A) := 1(A — AT) represent the symmetric and
skew-symmetric i)zu'ls of any Euclidean tensor A. Other
notations and mathematical concepts will be introduced
as they arise in what follows.

2. KINEMATICS

Let @ = @(t, X) represent the position of a material point
of the body in the current (ie. time #) configuration
relative to its position X in the corresponding reference
configuration, F(t, X) := (dxx) (t. X) the deformation
gracdient, and @(t, @) := (9,2)(¢, X) the spatial velocity.
The model formulated in this work is based on the
assumption that ice behaves for quasi-static loads over
long time-scales as a rigid elastic, non-linear creeping
material. By analogy with finite-deformation and crystal
clastoplasticity (e.g. Asaro, 1983), the deformation
gradient F of such a material can he expressed in the
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constitutive form

= Rk, (2.1}
where Rp represents the elastic rotation of the ice (i.e. of
the ice-crystal lattices in the polycrystalline material) and
F| is its inclastic deformation (i.e. inelastic deformation in
the basal glide plane of ice crystals). On the basis of the
evolution relations

F=LF,
RI}I == WF.RE s
Fy = LiFy, (2.2)

the material time derivative of Equation (2.1) yields the
form

L =Wy + RegL RL, (2:8)

where L = (0,@) represents the velocity gradient of the
material, Wy the (skew-symmetric) elastic spin of the
erystal lattice, and Ly the inelastic velocity “gradient™ in
the glide systems. The symmetric and skew-symmetric
parts of Equation (2.3) are given by

D = RgD\R} (2.4)
and
W =Wg+ R]:W]RII g

respectively, where D =sym(L), Dy =sym(L;), W =
skw(L) and W = skw(Lj). In the current context, then,
D is related directly via Equation (2.4) to the inelastic
deformation rate in the glide systems of the marterial,
while the spin of the material W is composed of the
crystal lattice spin W, as well as a spin RLW;R’[I due to
inelastic deformation of the glide planes.

3. TRANSVERSE ISOTROPIC DISSIPATION
POTENTIAL AND FLOW RELATION

As discussed in the introduction, we consider the simplest
type of model for induced anisotropy in glaciers and ice
sheets in this work by assuming that the onset and
development of a microscopic texture in these bodies with
the caxis of the corresponding crystals evolving towards
the axis of maximum compressive (principal) stress leads
to a macroscopic transverse isotropic material behaviour.
Indeed, in this case. we need work with but a single
evolving “structure tensor” to describe the anisotropy.
More sophisticated models for induced anisotropy (e.g.
orthotropy) can in principle be formulated in the same
way as done in this work, involving in essence only the
introduction of additional structure tensors analogous to
Equation (3.3) below; for the moment, however, this is
beyond the scope of our work. For further information on
classical aspects of constitutive theory, including the
classical notions of isotropic and anisotropic material
behaviour, the reader is referred to Truesdell and Noll
(1965), and for the notion of structure tensors, to Bochler
(1987).

Assuming that ice is a non-polar material, which
implies that the Cauchy stress T' is symmetric, i.e.
TT =T, the mechanical dissipation-rate density in ice

263
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takes the form
=" I, = T =1, @1

In this paper, we work with the constitutive form
b =P(T, A, 6) (3.2)

for @ in the transverse isotropic case, where

A:=a®a (3.3)

represents the perpendicular to the isotropic plane in the
material with unit normal @ and @ the temperature. This
isotropic plane in the material is that plane in which the
material behaviour is independent of the loading direc-
tion. Requiring that Equation (3.2) satisfies material
frame indifference, i.e. be independent of observer,
Equation (3.2) reduces to

& = S(Ip, Uy, . Tpa, Ipe 4. 6) (3.4)

with T4 =1 and A® = A, where
Iy =@M,
1
Tyt =5 Tan
g = d(“f(M) 3

- I3,
(3.5)

represent the invariants of some tensor M. 1t should be
emphasized that it is the requirement that material
behaviour be independent of observer that necessitates
the introduction of the invariants. In addition to the
usual invariants of T', @ as given in Equation (3.4)
depends on the “anisotropic™ invariants {4 = a - Ta
and I, = a - T"a, representing the components of T
and T2, respectively, in the a direction, ie. the
direction perpendicular to the isotropic plane in the
material.

The relevance of working with the dissipation
potential in the current context is the form

D = (9rd) (3.6)

taken by D in terms of € via Equations (3.1), and
(3.2), where dp® represents the partial derivative of @
with respect to T. On the basis of the observer-
independent form in Equation (3.4) of &, Equation
(3.6) becomes

D = ¢\ I + ¢uT + (O, @) T+ T~"

+¢ps A+ (TA+ AT, (3.7)
where
¢ = (01,P) + (O, ) Ir .
Qo = ((')qu"s) ;
by = (01, 9), (3.8)

by =101, P).

Note that dpd is symmetric since T" and A are. Now,
since T' can be zero (i.e. in the natural state), it cannot in
general be inveruble. As such, the only way that
Equation (3.7) can hold is il @ does not depend on
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HIr, ie.
(O, @) = 0. (3.9)

In this case, Equations (3.4) and (3.7) reduce to

& = D(Ip, oy, Ipa. I 4.0) (3.10)

and

D = ¢ I+ T + o3 A + ¢p3(TA + AT) (3:11)
respectively.

Assuming further as usual that the flow of ice is
independent of pressure, ie. p= —%IT. the dissipation
potential in Equation (3.4) reduces to

& =D, Iwy, I ) (3.12)

‘-T“]‘.‘A:
where we have replaced T by its deviatoric part
T° =7 — %ITI. In this case, the flow relation (3.7) also
simplifies further to

D = (0r®)
= (0 )" (3.13)
=nT" +7,4° +7,(T°A + ATP)°
where now
W= (0.’17”‘1:’%
Y2t = (010, 9). (3.14)
Yy 5= (O] 19, P)

hold for the coeflicients appearing in Equation (3.13).
The reduced form ol Equation (3.12) for the dissipation
potential is that assumed by Van der Veen and Whillans
(1990, appendix), whose approach is based on that of
Johnson (1977). Note that v, must vanish as T goes to
zero for D to vanish as well. In addition, note that
Equation (3.13) is consistent with the incompressihility of
ice, i.e. Ip = 0 holds identically. Furthermore, Equation
(3.13) reduces to a form equivalent to Glen’s flow law
when, e.g. 79 =0 and 3 = 0. As will be shown in what
follows, however, there is another way that it can reduce
to a form equivalent to Glen’s relation when A is allowed
to evolve, i.e. when induced anisotropy is being modelled.

To understand the physical meaning of the material
coeflicients appearing in Equation (3.13), it is uselul to
examine this constitutive relation relative to an ortho-
normal basis (€1, €2, e3), assuming at the same time, lor
cexample, that a is instantaneously parallel 0o ej. In
particular, then Equation (3.13) reduces to the matrix
form

Dy = '}ITIIJI — [l;.f o %(’}’” B 7l)]T§."} !

gz =4y T?z - [%-' = %(’m — 4T3, (3.15)
Dyy =7, T3s® + 20 + 30y — 7)1T5
for the diagonal components, and
Dy =7 | Tz
Dyy = T3y, (3.16)
Dyg =~ T13
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for the shear components, of D, with

¥yt =1=(01,%),
Ti=1 s = O, ®) + (0, 8)  (3.17)

r2aA

s _ D
Ya lITllA _IT.'S:S'

From these component forms, we see that 7 represents
the shear fluidity in planes parallel to @, and = that in
the isotropic plane perpendicular to a. From the
“enhancement factor” point of view (e.g. Jacka and
Budd, 1991). note that we would expect 5 to be 3-8
times larger than v for ice sheets. The general conditions
v, = 0 and ~4 = 0 for isotropy in the context of Equation
3.13), and its reduction o Glen’s [low relation, become
in the context of Equation (3.17) ¢ =0 and 5 =7,
respectively, Again, in a polyerystalline material in which
anisotropy, and so A, is evolving, however, there is an
alternative reduction 1o Glen’s [low relation in the case of
isotropy. T'o show this, we first require an appropriate
model for A, our next task.

4. ORIENTATION STRUCTURE, KINEMATICS
AND DENSITY

In any physical system consisting of a very large number
of “structural” elements, it is generally impossible to
model in detail the evolution of each element. as well as
their interactions with each other. As such, tractable
models for such systems are inevitably based on various
kinds of idealizing assumptions. In particular, for poly-
crystalline materials consisting of perhaps many thou-
sands, tens of thousands, or even millions, of crystals, one
can idealize the corresponding evolving microscopic crystal
texture macroscopically by assuming, analogous to super-
posed constituents in mixture theory, that a given
(erystal) glide system exists in all orientations at cach
material point of the continuum.

Let 7 be the unit normal to these glide systems in the
reference configuration, and m the corresponding unit
normal in the current configuration, of the material. In
the context of the multiplicative decomposition (Equation
(2.1)) of the deformation gradient F. the elastic rotation
Ry determines the rotation of the erystal structure, and so
the evolution of the glide-plane orientation, i.e.

(4.1)

The time derivative of this last relaton vields the

no= Rgr.

evolution relation

ﬂ:Wl._-nz(W—W[)n (

o=
[
2

(7

for m in the current context via Equations (2.2),, (2.
and (4.4),

where

W, := ReW R} . (4.3)

With W determined by the spatial variation of the spatial
velocity field @, the sole unknown quantity in Equation
(4.2) is W1, which, being an “internal’™ quantity, must be
specified constitutively, Unlike D = R|.3D|RE. note that
W, is not constrained by a dissipation potential type
relation in the current non-polar case. On the other hand,
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W represents the diflerence of two spins, and as such, can
be considered a Euclidean frame-indiflerent quantity for
which we can introduce the isotropic, quasi-linear
constitutive form

Wi:= RgW R! = w(T°N - NT) (4.4)

(in the spirit of the “plastic spin™ of Dafalias (1984)),

with N = n & n where the coeflicient
= ;u(ﬂ';. T3, Ty Tty 9) (4.5)

is in general an isotropic, scalar-valued function of T'. N
and 0; in accordance with the previous assumption that
the llow of ice is independent of p, however, we have
that w is

[urther assumed in writing Equation (4.5
independent of I, In particular, note that the constitu-
tive form of Equation (4.4) implies that the only non-zero
components of Wy are those in the isotropic plane of the
material. Indeed, introducing once again the orthonor-
mal basis (e, 2. e3), and assuming that 7 is instanta-
neously parallel to ej, Equaton (4.4) takes the
component forms

Wi; =0,

W, = whhis, (4.6)
= Fri

4] 13 = wT 137

showing indeed that inelastic spin then takes place only in
planes perpendicular to .

Now. the major influence of the glide-plane orienta-
tion structure on macroscopic material behaviour is
manifest in essence by the orientation distribution in the
material. In the case of a continuum description of such a
material, such a distribution can be described by an
orientation-distribution function or orientation density f
(e.g. Clement. 1982; Giessen, 1989), analogous for
example to the classical mass density o of the material.
Distribution functions formally analogous to f can be
found in kinetic gas theory, or the theory of liquid crystals
with variable orientation (e.g. Blenk and others. 1991).
Like the mass density, [ depends on both time and space:
unlike p, however, [ depends in addition on glide-plane
orientation.

To formulate f heuristically, consider a [finite dis-
tribution of N glide-plane orientations (c.g. a unit vector
n and its negative —m) in the unit sphere §%:=
{neV||n|=1} at some point @ in the current
configuration of the material body. Let the evolution of
these N glide-plane orientations be described by the N
time-dependent curves ¢;(t, @) (i =1,....N) in S*. The
distribution of such a discrete set of orientations at time ¢
and position & can be represented in the form

i (8, e 1) = o(n—ei(t,x)) (4.7)

where 8 is the Dirac delta function. Here. ny(t,x,n)
represents the number of orientations in the distribution
at time ¢ and point @& with unit normal n; further, since
both n and —mn lic on the perpendicular normal o the
glide plane, ny(t.@.n) = ny(t,z. —n), i.c. each orienta-
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tion is described by both ¢;(t, z) and —¢;(t,x). Integra-
tion of ny over S% results in the constant function

[ nydv=2N (4.8)
Js2

ol t and @, where the integral has a value 2NV since cach
orientation is counted twice, i.e. once for ¢;(t, @) and once
for —e;(t, ) in the integration. Note that the integral of
any continuous function ¥ on S is given by

j =
52

m /2
f / h(cos ¢ costd, sin ¢ cos i, sin ) cos ) di) de

- J—n/2
(4.9)

with @ = cos¢cos, zs = sing cost) and x3 =sind,
where ¢€ [—m, 7] and d€[—n/2,7/2] are the “longitude”
and “latitude” angles on S?, such that n = cos ¢ cos e,
+sin¢ coste, +sin ey in this chart. On the basis of
Equation (4.7), the value of the time-dependent function

flit;z;m) = lim {2}V -n._,\.(f.,:n,n)} (4.10)

N—o

represents the number densily of glide systems with unit
normal m at ume ¢ and point @, and f(f,z,n)=
f(t,&, —n). The definition in Equation (4.10) then vields
the constant function

fdv=1
SL’

(4.11)

of t and . Analogous to the total mass of a material body,
the relation (4.11) mmplies that the total orientation of
each material point is also conserved. As such, the
evolution relation

O + (Duf) - & + div,, (fr) = 0 (4.12)

for f follows from Equation (4.11) via time differentiation
and continuity of the integrand, where div,, represents
the divergence operator on 5%, The result in Equation
(4.12) for the evolution of f is influenced by both that of
the material as a whole, as well as that of the glide-plane
orientations.

5. EXAMPLE: TWO-DIMENSIONAL SIMPLE
SHEAR

To look into Equation (4.12) in more detail, consider the
special case of a two-dimensional polycrystalline material
subject to a homogeneous simple shear (e.g. Giessen,
1989; Svendsen and Hutter, 1995). Since compression

dominates in the upper, and shear in the lower, regions of

natural ice masses, this example may be in particular
relevant to the lower (basal) regions. In the two-
dimensional case, the orientation structure evolves in S’
(1.e. the circle) at each @, and the evolution relation (4.2)
simplifies to

a=-wk, (5.1)

with m = —sina e + cosa es, where a is the angle of the
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Fg. 1. Two-dimensional geometry of glide plane and its
orientation in S,

glide-plane orientation relative to the vertical (see Fig. 1).
In the case of two-dimensional simple shear, we have the
matrix [orm

[F(t)] = [(1, “(lt)] (5.2)

[or the deformation gradient of the material relative to
(e1,ez) (see Fig. 2), vielding the form

a=Wj, -1 (5.3)

for Equation (5.1). To keep this example entirely kine-
matic, we can, rather than using Equation (4.4), assume
for example that no instantaneous inelastic deformation of
the glide planes takes place vertically, i.e. L'jll =l
implying VVII2 — Dll2 = %h cos 2¢v; substituting this into
Equation (5.3) and integrating the result yields

a(t) = cot ' [cot a(0) + (t)] (5.4)

with £(0) = 0. As an alternative kinematic constraint, we
can assume that no instantaneous inelastic deformation
takes place parallel 1o the glide planes, in which case

n-Lis=0 (see Fig. 1), implying H"lu = é.'{'.('osiln«,

-

Fig. 2. Time-dependent simple shear of the material in the
ey direction by the amount K(t).
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Fig. 3. Relative orientation density as a_function of o for
two values of K. The smaller and larger solid curves
represent Equation (5.8) for k=05 and k=1,
respectively. Likewise, the smaller and larger dashed curves
vepresent Equation (5.7) for k=1 and k=2,
respectively. The dolted straight line represents a uniform
distribution. The vertical scale is irrelevant,

vielding

a(t) =4 cot™!eot 2a(0) + 2k(2)] (5.5)

which appears similar to Equation (5.4) but in fact leads
to different maxima for f, as we next show. Assuming
next that f is independent of  in this example, Equation
(4.12) reduces to

O f +0,(f&) =0 (5.6)

where now f is a function of ¢t and . In the context of
Equation (5.4), this last result can be integrated to yield
the form

foley)

. B .« 9
1 — k sin2a + %2 sin” o

fs, @) =

(5.7)

for f (replacing ¢ by k) when no instantaneous vertical
inelastic deformation in the glide planes takes place,
where fo is the initial distribution of glide-plane orienta-
tions. On the other hand, integration of Equation 5.6)
using Equation 5.5) leads to the form

Jolap)

% P a9
1 — 2k sinda + 4k2 sin” 2a

f(r,a) =

for f when no instantaneous inelastic deformation in the
glide planes parallel to these takes place.

The results in Equations (53.8) and (5.7) can be
compared qualitatively with observations on the emer-
gence of an oriented texture in natural ice, Assuming the
initial distribution f is uniform, i.e. fy = 1/27 on S,
the result Equation (5.8) is displayed in Figure 3 as a
function of oriention o for various values of the amount
of shear x. As shown in this figure, Equation (5.8)
implies a bimodal distribution for the glide-plane
which rtend
horizontal with increasing shear, while Equation (5.7)

orientations towards the vertical and
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yields a single-maximum density of glide-plane orienta-
tions tending towards the vertical with increasing shear.
In the latter case, this tendency is certainly due mainly
to the constraint L.[_,] = 0, which allows the glide planes
to deform instantaneously only in the horizontal
direction, [orcing the corresponding orientation towards
the vertical with increasing shear. On the other hand, in
the former case. the constraint n - Lys = () allows both
vertical and horizontal instantancous deformation of the
glide planes, such that both horizontal and vertical
glide-plane orientation distributions can arise. Qualita-
tively, at least, the evolution of the distribution of glide-
plane orientations towards the vertical is precisely that
most often observed for the evolution of the distribution
of caxes in polycrystalline ice in shear, as evidenced by
laboratory work (e.g. Jacka and Budd, 1991) as well as
observations on deep ice cores from the base of large ice
sheets (e.g. Thorsteinsson, 1994). In particular, experi-
ments (e.g. Jacka and Budd, 1991) show that a single e-
axis orientation distribution is generated in simple shear,
in agreement with the kinematic constraint L'lzl = (i tie
the resulting form in Equation (3.7) for f.

6. TEXTURE EVOLUTION AND MATERIAL
BEHAVIOUR

[n the current model, we assume that the large-scale
alignment of the caxes, and so basal slip planes, in the
hexagonal ice crystals leads to a transverse-isotropic
material behaviour, with the transverse isotropic plane
in the material at a given point corresponding to the
“mean” glide plane there. As such, we are interested in
the orientation of this mean glide plane, representing
simultaneously that of the transverse isotropic plane of the
material by constitutive assumption. This “macroscopic™
orientation is given in fact by the second moment
At,x) =

ft,z,n)n@ndv (6.1)

5

ol the orientation-distribution function integrated over
S?. a constitutive assumption that is consistent with the
definition of A as given in Equation (3.3) in the sense
that

tr(Ad)= [ fn-ndv= / fdy=1 (6.2)
5

S5

follows rom Equation (4.11). The constitutive relation
(6.1) clearly connects the evolution of the glide-plane
orientation distribution [ as determined by Equation
(4.12) to the macroscopic material behaviour as given by
Equation (3.13).

The relevance of the constitutive assumption (6.1} for
A in terms of the evolution of the glide-plane orientation
(micro)structure can be appreciated for example in the
context of the special case of a uniform (i.e. random)
distribution of crystal glide-plane orientations at each
material point, in which case

15— / f(lt.':f[ (lt':‘ff:_l*
J 52 Jg2 47

(6.3)
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holds with Js’ dv = 4. In this case, A reduces to

1
=— [ nondv=1I (6.4)
A §2 :

from Equation (6.3). For a uniform f, then, we obtain
D_ T e I 1 , =2

jﬂ‘l —.0. Loy = EIT'.’ = U_, and I(Tn.xm_ = :sI(T“)-’ = g,
implying that @ as given in Equation (3.12) reduces to a
function of o and 0 alone. Consequently, Equation
(3.13) simplifies to

D =-T", (6.5)
i.e. the form of Glen’s flow relation, with

3 e 2 P ¥y 2
(g, 0) : =31 (o, 0,5 o, 0) + 5Y3(H g0, 0,5 7o, ),
- 2 s e
0= Q(IITU‘O,;:;HTII.()). (6.()}
As such, a random distribution of crystals in the material
leads to macroscopic isotropic material behaviour in the
current model. as would be expected physically. Note that
the result in Equation (6.6), is consistent with the
assumed form for v, in Equation (3.17)3 above.

7. DISCUSSION

The ultimate goal we have in mind for the induced
anisotropy model formulated in this work is ol course to
incorporate it into a numerical simulation of the motion
of large ice masses, something that is not feasible with
Talyor-Bishop—Hill-type models for such anisotropy (e.g.
Van der Veen and Whillans, 1994). Since this represents

work in progress, however, we finish up with a briel

discussion of some of the aspects of this implementation
which are currently being worked out.

As is well known, the basis of any such numerical
simulation of the evolution of a glacier or ice sheet is the
usual balance relations for mass, momentum and energy,
which in this context take the particular forms

Ip =idigwe =0
—(Vp) +divT® 4+ pg =0, (7.1)
och — div[k(V0)] -T" - D =0,

respectively, where p:= f_.'; Ip is the pressure, g the
aravitational acceleration, ¢ the specific heat at constant
pressure and & the thermal conductivity, the last two
being, together with TP, constitutive quantities. Since :
appears directly in both the above momentum and
energy relations, it would appear to be more straightlor-
ward (in the sense of a numerical implementation of the
model formulated here) to obtain a constitutive relation
for TV, instead of for D, as done above. To do this, one
can, instead of Equation (3.2), work with the constitutive
form

& =d(D, A0 (7.2)

for the dissipation potential, whose material [rame in
dillferent form reduces to

&=90(lp,Ipa,Ipy0), (7.3)
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when we assume that ice is incompressible (i.e. Ip = 0),
and note that D is not invertible (since it can be zero),
requiring (dpr, @) = 0. Indeed, in this case, Equations
(3.1) and (7.3) yield the constitutive relation
&
TP = (9pP)"
)
mD + 1, AP +13(DA + AD) (7.4)

for the deviatoric part of T', where

M = (0m,®) ,

Ny : = (81,,P) s (7-5)
iy = (01,,,9)

define the coefficients in Equation (7.4). In particular,
when f is uniform, AP = 0 follows from Equation (6.4),
and so IL}A = %ID =0,and Iy = %ID*’ = %HD. imply-
ing that @ as given in Equation (7.3) reduces to a function
of IIp and 6 alone. Consequently, Equation (7.4)
simplifies to

T = nD (7.6)

with

i1 p.0) : =i (0 p.,0.3p,0) + 203 p, 0.3 p,0) ,
0 =1,y (lp,0,3p.0), (7.7)

analogous to Equation (6.6). Clearly, Equation (7.6) can
be rewritten in the form of Glen’s llow relation since
1 # 0. Indeed, comparing Equations (6.5) and (7.6), we
have n=~""

With TP determined in general by Equation (7.4), the
only remaining field at the macroscopic level to be
specified is A. The spatio-temporal evolution of A as
determined by Equation (6.1) is based on that of f as
given in Equation (4.12), which in turn depends on the
spatial velocity @ of the body, as well as the evolution ol ne
given by Equation (4.2). This latter evolution is
determined by the body spin W (and so the initial
conditions) as well as the constitutive relation (4.4) for
Wi. Since this latter relation depends itsell on N, the
model is in general highly non-linear. As in the case of the
flow relation, it may be numerically more advantageous
to formulate Wy relative to D rather than T as done in
Equation (4.4), i.c.

W, = (DN — ND) (7.8)

where now

V= IA/(IID. IDN- ID‘:_\.'.H) (79)

analogous to Equation (4.27).

In conclusion, then, Equations (4.2), (4.12), (6.1), (7.4)
and (7.8), together with the balance relations (7.1),
represent a closed system of equations for which initial
boundary-value problems can be formulated and solved.
once functional forms for the constitutive quantities ¢, k,
s Ty 1l3. and v, are established, the latter four being
functions of Up, Ipn, Ip2y and 6. A first step in this
direction currently under investigation is to assume ¢ and
k are unaffected by the induced anisotropy, i.c. use the
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standard constitutive forms for these, and concentrate on
the forms of the remaining material properties. To this
end, note for example that the result in Equation (7.7),
suggests that 7, could be proportional to (a power of)
I'pn. On this basis, we are currently investigating power-
law type relations for all four of these material coeflicients
analogous to that in  Glen’s flow relation satisfving the
asymptotic relations (7.7) in the case of isotropy.
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