A higher Dietary Inflammatory Index score is associated with a higher risk of breast cancer among Chinese women: a case–control study

Wu-Qing Huang1,2,3, Xiong-Fei Mo4, Yan-Bin Ye5, Nitin Shivappa6,7,8, Fang-Yu Lin9, Jing Huang1,2,3, James R. Hébert6,7,8, Bo Yan1 and Cai-Xia Zhang1,2,3*

1Department of Medical Statistics and Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, People’s Republic of China
2Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, School of Public Health, Sun Yat-sen University, Guangzhou 510080, People’s Republic of China
3Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, People’s Republic of China
4Department of Thyroid and Breast Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, People’s Republic of China
5Department of Nutrition, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, People’s Republic of China
6Cancer Prevention and Control Program, University of South Carolina, Columbia, SC 29208, USA
7Department of Epidemiology and Biostatistics, Arnold School of Public Health, University of South Carolina, Columbia, SC 29208, USA
8Connecting Health Innovations LLC, Columbia, SC 29201, USA
9Nursing Department, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, People’s Republic of China

(Submitted 23 January 2017 – Final revision received 14 April 2017 – Accepted 28 April 2017 – First published online 5 June 2017)

Abstract

Previous studies have investigated the association between dietary inflammatory potential and the development of cancer. For breast cancer the results have been equivocal. The present study aimed to investigate whether higher Dietary Inflammatory Index™ (DII) scores were associated with increased risk of breast cancer among Chinese women. A total of 867 cases and 824 controls were recruited into the present case–control study from September 2011 to February 2016. DII scores were computed based on baseline dietary intake assessed by a validated 81-item FFQ. The OR and 95 % CI were assessed by multivariable logistic regression after adjusting for various potential confounders. DII scores in this study ranged from −5.87 (most anti-inflammatory score) to +5.71 (most pro-inflammatory score). A higher DII score was associated with a higher breast cancer risk (adjusted ORquartile 4, continuous 1·28; 95 % CI 1·71, 3·03; adjusted ORcontinuous 1·40; 95%CI 1·25, 1·39). In stratified analyses, positive associations also were observed except for underweight women or women with either oestrogen receptor+ or progesterone receptor+ status (but not both). Results from this study indicated that higher DII scores, corresponding to more pro-inflammatory diets, were positively associated with breast cancer risk among Chinese women.

Key words: Dietary Inflammatory Index: Inflammation: Breast cancer: Case–control studies

China has a low incidence of breast cancer, though since the 1990s incidence has increased more than twice as fast as have the global rates(1). According to cancer statistics for China in 2015, breast cancer alone is expected to account for 15 % of all new cancers in women and is the leading cause of cancer death in women younger than 45 years(2). Although acute inflammatory response is needed for mounting a normal immune response, chronic inflammation is known to be associated with common epithelial cancers, including breast cancer(3). Although dietary factors have been shown to be related to chronic inflammatory states, which play an important role in breast cancer development, there is little evidence of the pro-inflammatory and anti-inflammatory effects of the overall diet on breast cancer risk(4,5).

It is known that mediators and cellular effectors of inflammation are important constituents of the tumour microenviron-ment(6,7). Inflammation has been suggested as an important player in breast cancer initiation, promotion and metastasis, all phases in

Abbreviations: CRP, C-reactive protein; DII, Dietary Inflammatory Index; ER, oestrogen receptor; PR, progesterone receptor.

* Corresponding author: Professor C.-X. Zhang, fax +86 20 87330446, email zhangcx3@mail.sysu.edu.cn
which cytokines are prominent players. A number of studies indicate that the levels of inflammatory cytokines, particularly C-reactive protein (CRP), are associated with breast cancer development. CRP is a classical acute phase reactant protein from the pentraxin family; and a moderate rise in CRP level is seen in chronic inflammatory states. IL-6 is involved in the Stat3 pathway, which results in the induction of carboxylic acid terminals from the pentraxin family, and increased expression of fascin, both of which play an important role in breast cancer cell migration and invasion.

To date, the association between diet and inflammatory states has been explored with respect to foods, nutrients and dietary patterns. For instance, fibre, PUFA, vitamin C/E, fruit and vegetable intake, Mediterranean diet pattern and low-glycaemic index diet are associated with lower levels of chronic inflammation. In contrast, red meat and butter intake, SFA and a Western dietary pattern appear to increase levels of high-sensitivity CRP (hs-CRP) and proinflammatory interleukins which are used as markers of inflammation.

The Dietary Inflammatory Index (DII), originally developed by Cavicchia et al. and updated by Shivappa et al., in 2014 at the University of South Carolina, is a literature review-based score that reflects the potential inflammatory effects of the diet. Previous studies have been performed to evaluate the associations between the DII score and cancer risk, including colorectal cancer, ovarian cancer and breast cancer. To date, six studies drawing mixed conclusions have been conducted to investigate the association between DII scores and breast cancer risk in Europe and the USA. In addition, no study has been performed in Asia, where dietary patterns are different from those of Europe and North America.

The aim of the present study was to investigate whether individual diets based on their inflammatory potential effects, as indicated by their DII scores, were associated with breast cancer risk. Our hypothesis was that a higher DII score (indicating a proinflammatory diet) increases the risk of breast cancer.

Methods

Study subjects

This is an ongoing case–control study begun in September 2011. Potential cases were recruited among patients who were admitted to the surgical units of three teaching and general hospitals in Guangzhou, China from September 2011 to February 2016. Eligible subjects were female, aged 25–70 years and natives of the province of Guangdong or having lived in Guangdong for at least 5 years, with incident primary histologically confirmed breast cancer diagnosed no more than 6 consecutive months. Passive smoking meant to be exposed to others’ tobacco smoke for at least one cigarette a day for more than 6 consecutive months. Passive smoking meant to be exposed to others’ tobacco smoke for at least 5 min/d in the previous 5 years. Regular drinking was defined as alcohol drinking at least once per week in the past year. Postmenopausal status was defined as at least 12 months since the last menstrual cycle. BMI was calculated by dividing weight (kg) by height (m²) squared. In addition, leisure-time physical activity was measured. Relevant medical information, medical diagnosis, histological findings and oestrogen receptor (ER) and progesterone receptor (PR) status were abstracted from the hospital medical records.

An 81-item FFQ was used to collect data on food consumption. Participants were asked to report information on frequency of intake and portion size during the preceding 12 months before diagnosis for cases or interview for controls. From these data the average intake of each food item in g/d were calculated. Food photographs were used to help participants quantify the portions consumed. Information on frequency of intake and portion size was used to calculate the amount of each food item consumed on average (g/d). Total energy and intakes of specific nutrients were computed based on the 2002 Chinese Food Composition Table.

Calculation of the Dietary Inflammatory Index score

The original DII was developed by Cavicchia et al. and updated by Shivappa et al. and the calculation process was documented elsewhere. hs-CRP measurements were used to examine construct validity of the DII in a longitudinal cohort.
using DII scores derived from 24-h dietary recall interviews and 7-d dietary recalls. In the updated version, 1943 articles were reviewed and scored. In all, forty-five food parameters, including foods, nutrients and other bioactive compounds, were evaluated based on their inflammatory effect on six specific inflammatory markers, such as CRP, IL-1β, IL-4, IL-6, IL-10 and TNF-α. A world database based on food consumption from eleven populations globally represented global daily intake for each of the forty-five parameters (i.e. foods, nutrients and other food components). This was used as standard dietary intake reference to standardise DII scores to global norms. A standard mean for each parameter from the representative world database was subtracted from the actual individual exposure and divided by its standard deviation to generate z scores. These z scores were converted to percentiles (minimising effects of outliers/right-skewing), then doubled the value and subtracted 1 to achieve symmetrical distribution with values centred on 0. The resulting value was then multiplied by the corresponding inflammatory score for each food parameter and summed across all food parameters, in order to obtain the overall DII score. The inflammatory score for each food parameter derived from a literature review on the basis of 1943 articles representing studies of different design on diet and parameter. The overall DII score was calculated by using unconditional logistic regression models: education, income, passive smoking, BMI, first-degree relative with cancer and history of benign breast disease. Confounding factors were selected by comparing baseline characteristics between the cases and controls. Tests for trend were performed by entering the categorical variables as continuous parameters in the models.

In China, BMI <18·5 kg/m² was defined as underweight, BMI ≥18·5 and <24·0 kg/m² as normal weight, BMI ≥24 and <28·0 kg/m² as overweight and BMI ≥28·0 kg/m² as obese(39). Analyses stratified by BMI (underweight, normal weight, overweight and obese) were conducted. Moreover, stratified analyses by menopausal status (premenopausal and postmenopausal) and sex hormone status (ER-positive (ER+), or ER-negative (ER−); PR-positive (PR+) or PR-negative (PR−)) also were conducted. The significance level was set at 0·05 (two-sided). All of the aforementioned statistical analyses were performed using SPSS® 13·0 (SPSS Inc.).

Results

The comparison of baseline characteristics between cases and controls is shown in Table 1. Compared with controls, breast cancer cases were more likely to have lower levels of education and income. Compared with controls, more cases reported having a first-degree relative with cancer, a history of benign breast disease and a higher BMI. A higher proportion of cases tended to smoke regularly and be exposed to second-hand smoke. All of the above-referenced variables were considered potential confounders and adjusted for in the subsequent multivariable analyses. No significant differences were observed between cases and controls on age, occupation, marital status, physical activity, alcohol drinking, age at menarche, age at first live birth, menopausal status, parity, breast-feeding history, ever use of oral contraceptive or hormone replacement therapy.

The DII score in this study ranged from −5·87 (most anti-inflammatory score) to +5·71 (most proinflammatory score) and the mean DII score was −1·48 (SD 1·78). For cases, the mean DII was −1·75 (SD 1·66), and it was −1·23 (SD 1·86) for controls. Intakes of thirty-three dietary nutrients available in the calculation of DII are presented in Table 2. A higher DII score was significantly associated with higher intake of SFA and distributions of some nutrients (total fat, folic acid, Fe, n-6 fatty acids, PUFA, vitamin A) were significantly different across quartiles of DII score. Total fat intake in the 3rd quartile of DII score was lower than that observed in any other quartile; the highest folic acid intake was in the 2nd quartile, whereas the lowest intake was observed in the 3rd quartile. The highest vitamin A intake was in the 2nd quartile, whereas the lowest intake was in the 4th quartile. Fe intake in the 4th quartile was the lowest and medians of intake in other quartiles were equal, which was the same distribution as PUFA; n-6 fatty acid intake was highest in the 4th quartile.

More control subjects in the 1st quartile of DII scores were exposed to passive smoking than in any other quartile. More case subjects in the 4th quartile of DII score had a first-degree relative with cancer than observed in any other quartile; the highest folic acid intake was in the 2nd quartile, whereas the lowest intake was observed in the 4th quartile. Fe intake in the 4th quartile was the lowest and medians of intake in other quartiles were equal, which was the same distribution as PUFA; n-6 fatty acid intake was highest in the 4th quartile.

The association between the DII and breast cancer risk is shown in Table 3. When analyses were carried out using continuous DII, a significant positive association between breast cancer risk and the DII score was observed (crude OR 1·36; 95% CI 1·23, 1·51; adjusted OR 1·40; 95% CI 1·25, 1·39). When fitted as quartiles, there was a trend of increasing risk for...
increasing levels of the DII. The crude OR was 2.08 (95% CI 1.59, 2.73) comparing the highest with the lowest quartile ($P_{\text{trend}}<0.001$). After adjusting for potential confounding factors, the association remained significant, with an adjusted OR for the highest quartile compared with the lowest of 2.28 (95% CI 1.71, 3.05) ($P_{\text{trend}}<0.001$).

The results of stratified analyses also are shown in Table 3. Totally, there were 1094 premenopausal women (561 cases and 533 controls) and 597 postmenopausal women (306 controls and 291 cases). A proinflammatory diet was found to increase the risk of breast cancer in both premenopausal and postmenopausal women (highest v. lowest quartile: adjusted OR 2.60 among premenopausal women; 95% CI 1.81, 3.78, $P_{\text{trend}}<0.001$; adjusted OR 1.89 among postmenopausal women; 95% CI 1.17, 3.06, $P_{\text{trend}}=0.005$).

When cases were stratified based on ER and PR status, 414 cases were in ER+ and PR+ stratum, seventy-one cases in ER+ or PR+ stratum and 194 cases in ER− and PR− status.
Compared with the lowest quartile, both the 3rd and 4th quartiles of the DII score were positively associated with ER+ and PR− breast cancer (adjusted OR 1.76; 95% CI 1.20−2.56; adjusted OR 2.81; 95% CI 1.96−4.03; \(P_{\text{trend}} < 0.001 \)). Among women with ER+ or PR+ status (but not both), the OR comparing the highest quartile with the lowest quartile was not significant. We also observed a positive association of breast cancer with DII scores in the ER− and PR− subtype (adjusted OR 2.13; 95% CI 1.35−3.49; \(P_{\text{trend}} < 0.001 \)).

In this study, 110 women (forty-eight cases and sixty-two controls) were overweight, 1047 (531 cases and 516 controls) were within normal weight, 427 (223 cases and 204 controls) were overweight and 107 (sixty-five cases and forty-two controls) were obese. Positive associations between DII score and breast cancer were found among normal weight, overweight and obese women (highest \(V \), lowest quartile: adjusted OR 1.97 among normal weight women; 95% CI 1.37−2.81; \(P_{\text{trend}} < 0.001 \); adjusted OR 2.60 among overweight women; 95% CI 1.47−4.57; \(P_{\text{trend}} = 0.001 \); adjusted OR 4.96 among obese women; 95% CI 1.35−18.23; \(P_{\text{trend}} = 0.008 \)), but no association was found among underweight women.

The correlation coefficients between each of the food parameters comprising the DII were calculated. The results showed that several components of DII were correlated with each other (online Supplementary Table S3). Some food parameters were strongly correlated, such as β-carotene and vitamin C (correlation coefficient = 0.89). Some were weakly correlated such as garlic and thiamin (correlation coefficient = 0.01).

Discussion

In this case−control study, a positive association was found between a higher DII score (corresponding to a proinflammatory diet) and breast cancer risk among Chinese women. We also observed that higher DII scores were related to increased risk of breast cancer among women with ER+ and PR+ status but not women with either ER+ or PR− status (but not both). When stratified by BMI, positive associations between DII and breast cancer were observed among normal weight, overweight and obese women but not among underweight women. In addition, the results of stratification analyses indicated that the inflammatory effect of diet on breast cancer was independent of menopausal status.

Chronic inflammation is a key contributor in the development and progression of carcinogenesis. Inflammatory pathways play an important role in the causation of breast cancer. Some risk factors for breast cancer (age, obesity, menopause and diet) are associated with systemic inflammation, as indicated by increased

![Table 2. Nutrition data across quartiles (Q) of the Dietary Inflammatory Index score in a Chinese case−control study, 2011−2016 (Medians and 25th, 75th percentiles)](https://www.cambridge.org/core/terms). Some food parameters were strongly correlated, such as β-carotene and vitamin C (correlation coefficient = 0.89). Some were weakly correlated such as garlic and thiamin (correlation coefficient = 0.01).
<table>
<thead>
<tr>
<th>Variables OR</th>
<th>Q1 95% CI</th>
<th>Q2 95% CI</th>
<th>Q3 95% CI</th>
<th>Q4 95% CI</th>
<th>Bluetooth OR</th>
<th>Continuous 95% CI</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall Cases/controls (n) 162/205 159/207 210/208 336/204 867/824</td>
<td>DII score Mean -3.56 -2.45 -1.50 0.61 -1.48</td>
<td>0.61</td>
<td>0.20</td>
<td>0.32</td>
<td>1.24</td>
<td>1.78</td>
<td><0.001</td>
</tr>
<tr>
<td>Crude OR 1 0.97 0.73, 1.30 1.28 0.96, 1.69 2.08 1.59, 2.73 <0.001 1.36 1.23, 1.51 <0.001</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adjusted OR† 1 1.01 0.75, 1.38 1.42 1.05, 1.91 2.28 1.71, 3.03 <0.001 1.40 1.25, 1.39 <0.001</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Menopausal status Premenopausal Cases/controls (n) 103/135 103/138 143/133 212/127 561/533</td>
<td>DII score Mean -3.60 -2.45 -1.50 0.59 -1.52</td>
<td>0.62</td>
<td>0.25</td>
<td>0.32</td>
<td>1.21</td>
<td>1.76</td>
<td><0.001</td>
</tr>
<tr>
<td>Crude OR 1 0.98 0.68, 1.40 1.41 0.99, 2.00 2.19 1.56, 3.07 <0.001 1.39 1.22, 1.59 <0.001</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adjusted OR† 1 0.95 0.64, 1.41 1.59 1.08, 2.31 2.60 1.81, 3.78 <0.001 1.50 1.30, 1.73 <0.001</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Postmenopausal Cases/controls (n) 59/70 56/69 67/75 124/77 306/291</td>
<td>DII score Mean -3.55 -2.44 -1.50 0.66 -1.42</td>
<td>0.57</td>
<td>0.25</td>
<td>0.32</td>
<td>1.30</td>
<td>1.83</td>
<td><0.001</td>
</tr>
<tr>
<td>Crude OR 1 0.96 0.59, 1.58 1.06 0.66, 1.71 1.91 1.22, 2.99 <0.002 1.28 1.15, 1.41 0.002</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adjusted OR† 1 1.09 0.64, 1.83 1.23 0.74, 2.06 1.89 1.17, 3.06 <0.005 1.27 1.06, 1.53 0.01</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sex hormone status ER+ and PR+ Cases/controls (n) 66/205 74/207 108/208 169/204 417/824</td>
<td>DII score Mean -3.56 -2.45 -1.52 0.64 -1.53</td>
<td>0.59</td>
<td>0.25</td>
<td>0.32</td>
<td>1.24</td>
<td>1.76</td>
<td><0.001</td>
</tr>
<tr>
<td>Crude OR 1 1.11 0.76, 1.63 1.61 1.12, 2.32 2.57 1.82, 3.63 <0.001 1.48 1.30, 1.68 <0.001</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adjusted OR† 1 1.17 0.79, 1.75 1.76 1.20, 2.56 2.81 1.96, 4.03 <0.001 1.50 1.31, 1.72 <0.001</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ER+ or PR− Cases/controls (n) 16/205 10/207 17/208 28/204 71/824</td>
<td>DII score Mean -3.55 -2.45 -1.54 0.55 -1.71</td>
<td>0.58</td>
<td>0.25</td>
<td>0.32</td>
<td>1.23</td>
<td>1.88</td>
<td><0.001</td>
</tr>
<tr>
<td>Crude OR 1 0.62 0.27, 1.40 1.05 0.52, 2.13 1.76 0.92, 3.35 0.030 1.36 1.05, 1.76 0.02</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adjusted OR† 1 0.62 0.26, 1.44 1.09 0.52, 2.30 1.91 0.97, 3.80 0.022 1.41 1.07, 1.86 0.015</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ER− and PR− Cases/controls (n) 41/205 36/207 36/208 81/204 194/824</td>
<td>DII score Mean -3.56 -2.45 -1.51 0.56 -1.65</td>
<td>0.60</td>
<td>0.25</td>
<td>0.32</td>
<td>1.29</td>
<td>1.73</td>
<td><0.001</td>
</tr>
<tr>
<td>Crude OR 1 0.87 0.53, 1.42 0.87 0.53, 1.41 1.99 1.30, 3.03 <0.001 1.36 1.15, 1.60 <0.001</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adjusted OR† 1 0.93 0.56, 1.55 0.91 0.54, 1.52 2.13 1.35, 3.49 <0.001 1.35 1.14, 1.61 0.001</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BMI (kg/m²) Underweight (<18.5) Cases/controls (n) 7/14 7/12 14/19 20/17 48/62</td>
<td>DII score Mean -3.5 -2.43 -1.55 0.62 -1.52</td>
<td>0.51</td>
<td>0.26</td>
<td>0.32</td>
<td>1.19</td>
<td>1.76</td>
<td><0.001</td>
</tr>
<tr>
<td>Crude OR 1 1.17 0.52, 2.48 1.47 0.47, 4.61 2.35 0.77, 7.17 0.103 1.52 0.96, 2.42 0.08</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adjusted OR† 1 1.32 0.27, 6.45 1.39 0.33, 5.91 3.80 0.93, 15.63 0.060 1.76 0.99, 3.13 0.06</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Normal weight (≥18.5 and <24) Cases/controls (n) 107/121 94/135 120/130 210/130 531/516</td>
<td>DII score Mean -3.61 -2.45 -1.51 0.67 -1.47</td>
<td>0.64</td>
<td>0.24</td>
<td>0.33</td>
<td>1.22</td>
<td>1.82</td>
<td><0.001</td>
</tr>
<tr>
<td>Crude OR 1 0.79 0.54, 1.14 1.04 0.73, 1.50 1.83 1.30, 2.57 <0.001 1.32 1.16, 1.50 <0.001</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adjusted OR† 1 0.84 0.57, 1.24 1.20 0.82, 1.75 1.97 1.37, 2.81 <0.001 1.34 1.17, 1.53 <0.001</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
levels of circulating proinflammatory cytokines\(^{41-45}\). Effects of diet and dietary components on inflammation have been identified\(^{4,66-68}\). However, little evidence exists on the proinflammatory and anti-inflammatory effects of the overall diet on breast cancer risk. The DII was developed and refined to quantify the inflammatory potential of individual diets based on the literature that assessed each food parameter having a positive or negative effect on inflammation\(^{19}\). For example, consistent with prior research linking SFA intake to increased inflammation\(^{11}\), the overall inflammatory score for SFA used in the DII calculation process is 0.573. This high score represents a strong proinflammatory effect. The DII has been used to evaluate the inflammatory effects of diet on the incidence of various diseases, including CVD, the metabolic syndrome and various cancers\(^{20-32,49-51}\).

To date, there have been two case–control studies and four prospective studies investigating the inflammatory effects of diet on breast cancer risk\(^{27-32}\). Consistent with the findings of the current study, one case–control and two prospective studies produced results consistent with a proinflammatory diet increasing the risk of breast cancer\(^{28-30}\). However, a recent study based on data from the Women’s Health Initiative, the DII was not associated with incidence of overall breast cancer; though increasing DII score was associated with a higher risk of death from breast cancer\(^{21}\). Consistent with this null result, no association was observed in a case–control study conducted in Germany among postmenopausal women\(^{27}\). Also the analysis based on the Women’s Health Initiative found that a history of proinflammatory diets or sustained intake of highly proinflammatory diets may be associated with a higher risk of developing the ER−, PR−, HER2+ subtype of breast cancer\(^{32}\).

Results from previous studies on the association between the DII score and breast cancer based on menopausal status have been mixed. A previous prospective study conducted in Sweden found that a higher DII score increased the risk of breast cancer, most convincingly among postmenopausal women\(^{30}\). Another recent prospective study using data from the Iowa Women’s Health Study also observed that a proinflammatory diet appears to increase the risk of developing breast cancer in postmenopausal women\(^{30}\). However, no significant association was observed among postmenopausal women in the German case–control study\(^{27}\). In the present study, the DII score was positively associated with breast cancer risk in both premenopausal and postmenopausal women.

We found that a higher DII score was associated with greater breast cancer in women with both hormone receptor (ER and PR)-positive or hormone receptor-negative status, but not significantly in women with just ER+ or PR+ alone. A key downstream mediator of proinflammatory cytokines is the NF-κB family of transcription factors, which is known to play a critical role in the development and progression of a variety of tumours\(^{52}\). Previous studies have found NF-κB activation to be predominantly associated with ER− breast tumours\(^{53}\). However, there is an increasing amount of evidence that NF-κB activation occurs in ER+ tumours\(^{54}\). The cause of NF-κB activation is largely unknown, but the status of PR, which has been shown to have an anti-inflammatory role in breast cancer cells, may be one contributing factor\(^{55}\). Thus, we speculate that...
there is different dietary inflammatory effect on the risk of breast cancer subtypes according to different hormone receptor status. This is an area requiring more intensive research.

Compared with the association among women within normal weight, a stronger positive association between the DII score and breast cancer was observed among overweight and obese women in the present study; however, no significant association was found for underweight women. This finding is consistent with the idea that overweight or obese women are more sensitive to the effects of inflammatory stimuli. One likely explanation for the tight link between obesity, inflammation and breast cancer can be explained by the recruitment of macrophages into adipose tissue, where they form characteristic ‘crown-like’ structures around apoptotic adipocytes. Macrophages and adipocytes are able to produce inflammatory factors, such as adipokines and cytokines, leading to activation of the proinflammatory transcription factor NF-κB in adipose tissue and liver. The other reasonable explanation may be the observation that adipocytes express aromatase and that this enzyme is up-regulated in the adipose tissue of obese women resulting in elevated sex-hormones biosynthesis. Aromatase expression is regulated not only by PG but also by proinflammatory cytokines. However, overweight women had less adipose tissue and the less apoptotic adipocytes and aromatase expression. The inflammatory effect of diet may be too weak to make a difference in the development of breast cancer for underweight women who are less sensitive to the effects of inflammation.

The strengths of this study are the relatively large sample, the satisfactory reproducibility and the reasonable validity of the 81-item FFQ. In addition, to the best of our knowledge, this is the first study to investigate the association of inflammatory effects of diet with breast cancer by the DII in China. Despite its strengths, some limitations should be acknowledged. First, although most of the forty-five DII variables were taken into account, some items were not available for the DII calculation, such as alcohol, caffeine, eugenol, saffron, green tea, vitamin D, ginger, turmeric, thyme or oregano, rosemary (anti-inflammatory factors) and trans-fat acids (proinflammatory factor) that were usually consumed in small amounts, infrequently, or not consumed at all in the Chinese women; thus, they may not have had a major impact on the scoring. Second, selection bias and recall bias are inevitable in hospital-based case–control studies. To minimise selection bias, all control subjects were carefully recruited to exclude any diagnosis potentially related either to breast cancer or dietary changes. The time-concordant period of hospitalisation and identical catchment areas of all subjects, and the relatively high response rate also helped to reduce selection bias. In addition, to minimise recall bias, cases were interviewed as soon as the diagnosis was made. In addition, in the present study, greater effort was invested in interviewing cases before their surgery. Moreover, food photographs were provided to assist participants with quantification of dietary intake. Third, in the present study, the controls were recruited from the hospitals. The participant referrals had a higher proportion of more highly educated women than that of the general population. As such, the participants might have different dietary habits; and maybe have been able to provide more accurate responses to questionnaires. Therefore, generalising the findings in this study should be made with caution. Fourth, there also were potential confounders that we were unable to measure, and therefore, residual confounding might also remain even though various dietary and non-dietary confounders were adjusted. However, potential confounding bias may be minimised by adjusting for a wide range of known confounding factors, such as income, BMI, family history of breast cancer and history of benign breast disease. Fifth, because CRP or other inflammation parameters in blood levels were not measured in the present study, we cannot evaluate how much of the variation of inflammatory markers could be explained by the DII. Further studies are needed to clarify this association. Sixth, we did observe collinearity between intake values of various food parameters which is integral to any dietary pattern and diet score.

In conclusion, compared with women who consumed an anti-inflammatory diet, women who consumed a more pro-inflammatory diet appeared to be at increased risk of breast cancer, especially overweight and obese women (i.e. with BMI >24 kg/m²) and women with ER+ and PR+ status and ER− and PR− status. Further studies are needed to investigate the mutual relationships between the inflammatory effect of diet, circulation cytokines levels and the risk of developing breast cancer.

Acknowledgements

The authors are gratefully thankful for the cooperation of the study participants.

This study was supported by Science and Technology Program of Guangzhou, China (no. 201510010151) and the National Natural Science Foundation of China (no. 81102188). Drs N. S. and J. R. H. were supported by grant no. R44DK103377 from the US National Institute of Diabetes and Digestive and Kidney Diseases. The funders had no role in study design, data collection and analysis, decision to publish or preparation of the manuscript.

The authors’ responsibilities were as follows: W.-Q. H. collected the data, analysed the data and wrote the paper; X.-F. M., C.-X. Z. and J. R. H. helped in the revision of the manuscript; C.-X. Z. constructed the project design, supervised the study and contributed to the revision of the manuscript; N. S. is an employee of CHI. The authors declare that there are no conflicts of interest.

Supplementary material

For supplementary material/s referred to in this article, please visit https://doi.org/10.1017/S0007114517001192
References

37. Wirth MD, Burch J, Shivappa N, et al. (2014) Association of a dietary inflammatory index with inflammatory indices and

