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QUADRATIC NON-RESIDUES AND PRIME-PRODUCING 
POLYNOMIALS 

BY 

R. A. MOLLIN AND H. C. WILLIAMS 

ABSTRACT. We will be looking at quadratic polynomials having pos
itive discriminant and having a long string of primes as initial values. 
We find conditions tantamount to this phenomenon involving another long 
string of primes for which the discriminant of the polynomial is a quadratic 
non-residue. Using the generalized Riemann hypothesis (GRH) we are able 
to determine all discriminants satisfying this connection. 

1. Introduction. There has been a certain fascination throughout mathematical 
history with prime-producing quadratic polynomials. The most celebrated of these is 
the one discovered by Euler [1] in 1722, namely; x2 — x + 41 is prime for all integers 
x with 1 ^ x ^ 40, (or Legendre's version x2 +x + 41 is prime for 0 ^ x ^ 39). The 
discriminant of the Euler polynomial is —163. This is related to Gauss' class number 
one problem for complex quadratic fields. For a discussion of the history and solution 
of this problem there is an excellent article [2] by D. Goldfeld. 

It is well-known that: 

THEOREM 1.1. Let d > 1 be an integer with d = 3 (mod 4), then the following are 
equivalent: 
(1) The polynomial fd(x) — x2 +x + (d+ l)/4 is prime for all integers x with 0 è x ^ 
(</-7)/4. 
(2) (—d/p) = — 1 for all odd primes p < (d + l)/4 and d = 3 (mod 8) where (*/*) 
is the Leg-endre symbol. 

Employing the solution of the class number one problem for complex quadratic 
fields one gets: 

COROLLARY 1.1. Let d = 3 (mod 8) be a positive square-free integer. Thus, 
(-d/p) = - 1 for all primes p < (d + l)/4 if and only if d G {3,11,19,43,67, 
163}. 

The situation for quadratic polynomials of positive discriminant is not so neat, and 
in general is substantially more difficult as we will see in the next section. 
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2. Positive discriminants. Using the techniques of [3]-[7] it can be shown that 
the following analogue of Theorem 1.1 holds. 

THEOREM 2.1. If d > 17 is a positive integer and d = 1 (mod 4) then the following 
are equivalent: 
(1) The polynomial fd(x) — —x2 + x + (d — l)/4 is prime for all integers x with 
Kx< (y/d - l)/2. 
(2) (d/p) = — 1 for all odd primes p < (y/d — l)/2 and d = 5 (mod 8). 

Similarly the following results for d ^ 1 (mod 4) can be verified using the tech
niques of [3]-[7]. 

THEOREM 2.2. Ifd = 2 (mod 4) and d ^ 2p2 for any prime p then the following 
are equivalent: 
(1) fd(x) — —2x2 + d/2 is prime or 1 for all integers x with 0 ^ x ^ y/d/2 
(2) (d/p) — — 1 for all odd primes p < y/d/2. 

THEOREM 2.3. Let d = 3 (mod 4) be a positive integer with d ^ 2p2 + 1 for any 
prime p. Then the following are equivalent: 
(1) fd(x) = —2x2-\-2x-\-(d — l)/2 is prime or 1 for all integers x with 0 < x Û 
(yfd^ï)/2. 
(2) (d/p) = -lfor all odd primes p < (y/d - 2)/2. 

The following tables 2.1 and 2.2 illustrate Theorems 2.2 and 2.3: 

TABLE 2.1 

d 

6 
10 
14 
26 
38 
62 
122 
362 
398 

fd(x) 

3, 
5, 
7, 
13, 
19, 
31, 
61, 
181, 
199, 

= -2x2 + d/2 for 0 ̂  x < 

1 
3 
5 
11, 5 
17, 11, 
29, 23, 
59, 53, 
179, 173, 
197, 191, 

1 
13 
43, 29, 11 
163, 149, 131, 
181, 167, 149, 

(Vd)/2 

109, 83, 53, 19 
127, 101, 71, 37 

Now we use the GRH to show that Tables 2.1 and 2.2 contain all the values. 
Set b = b(d) = [\/dj2] ifd = 2 (mod 4) and b = [(y/d- l)/2] if d = 3 (mod 4). 

Our problem is to find all d = 2 or 3 (mod 4) such that: 

(*) (d/p) = — 1 for all odd primes p < b(d). 

We first set S(t) = YlP<t(d/p), where the sum is taken over all odd primes p < t. In 
order for (*) to hold up we must have: 

\S(b)\ = n(b) - 1 - e 
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TABLE 2.2 

d 

3 
7 

11 
15 
23 
35 
47 
83 

143 
167 
227 

fdW = -2x2 + 2x + (d-
0 < x ^ (Vd -

3 
5 
7 

11, 
17, 
23, 
41, 
71, 
83, 

113, 

1 
13 
19, 11 
27, 29, 
67, 59, 
79, 71, 

109, 101, 

- l)/2 

17 
47, 31 
59, 43, 
89, 73, 

- l)/2for 

23 
53, 29 

where as usual, n(x) denotes the number of primes ^ x and e = 0 unless b is a prime, 
in which case e = 1. 

If we denote by A(= Ad) the discriminant of Q(\fd), then for X(p) = (A//?) and 

A(0 = X)X(p), 
P<t 

we get A(t) = S(t). Also, by assuming the truth of the GRH, we can use Theorem 3 
of Oesterlé [8] (see [5]) to get 

|A(f)|<fi(f,A), 

where 

From a result of Rosser and Schoenfeld [10], we have 

?r(0 - 1 - e > (f/log 0 - 1 - e = T(t) 

for t > 17. If we put t = b(d), it can be shown that for all d > 1011 we have 

B(b,4d)<T(b). 

Hence, if (*) holds and d > 1011, we have 

\S(b)\ = \A(b)\<B(b,4d) < T(b) < \S(b)l 

a contradiction. It follows that if condition (*) is satisfied by some J, then d < 1011. 
We need now deal only with values of d < 1011. We denote by N((q) the least 

positive integer Af such that N = / (mod 4) and (N/p) = — 1 for all odd primes 
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TABLE 2.3 

q 

3 
5 
7 
11 
13 
17 
19 
23 
29 
31 
37 
41 
43 
47 
53 
59 
61 
67 
71 
73 
79 
83 
89 
97 
101 
103 
107 
109 
113 
127 
131 
137 
139 
149 
151 
157 
163 
167 

N2(q) 

2 
2 
38 
62 
362 
362 
398 
398 
398 
398 

47318 
64382 
238262 
238262 
238262 
430022 
430022 

30356618 
52642322 
52642322 
95200838 
172712678 
231912722 
231912722 
231912722 
231912722 
231912722 
3668933078 
5638787822 
5638787822 
5638787822 
5638787822 
6154772762 
6154772762 

2115451385858 
3356290346702 

— 
— 

N3(q) 

11 
23 
47 
83 
83 
167 
167 
227 

13163 
23327 
23327 
69467 
69467 
116387 
331427 
331427 

14853467 
19739387 
59055167 
59089103 
86374763 
86374763 

278778407 
278778407 
361651883 
545559467 
545559467 
545559467 
2832363203 
2832363203 
7012246247 
7012246247 
7012246247 
7012246247 
7012246247 
7012246247 
7012246247 

6821069695523 

p ^ q. To compute the values of Ni(q) for various values of q we used a sieving 
device (UMSU, see Patterson and Williams [9]) at the University of Manitoba. We 
list in Table 3.3 the results of about a day's run of UMSU. 

Consider now the case of d = 3 (mod 4). If d > 3363, then y/(d - l)/2 > 29. 
The least value of d such that (*) holds for all p ^ 29 is 13163. But if d ^ 13163, 
then \/(d - l)/2 > 57; and this means that if (*) is satisfied, then d ^ 331427 
and {\Jd- l)/2 > 287. Since tf3(167) > 1012 then (*> can hold only for values of 
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d ^ 3363. Similarly, when d = 2 (mod 4), the condition (*) can hold only for values 
of d ^ 2738. 

A direct search of all values of d ^ 3363 revealed that only those values given in 
Tables 2.1 and 2.2 satisfy condition (*). 

We have now proved: 

THEOREM 2.4. Under the GRH, if d = 2,3 (mod 4) and d satisfies (*), then d must 
be one of the values given in Table 2.1 or Table 2.2. 

REFERENCES 

1. E. Euler, Mem de Berlin, année 1722, 36; Comm. Arith. 1, 384. 
2. D. Goldfeld, Gauss' Glass Number Problem for Imaginary Quadratic Fields, Bull. Amer. Math. 

Soc. (New Series) 13 (1985), 23-37. 
3. R. Mollin, Necessary and Sufficient Conditions for the Class Number of a Real Quadratic Field to 

be One, and a Conjecture of S. Chowla, Proceedings Amer. Math. Soc. 102 (1988), 17-21. 
4. , Class Number One Criteria for Real Quadratic Fields I, Proceedings Japan Acad. Ser. A. 

63 (1987), 121-125. 
5. R. Mollin and H. Williams, A Conjecture of S. Chowla via the Generalized Riemann Hypothesis, 

Proceedings Amer. Math. Soc. 102 (1988), 794-796. 
6. , On Prime-Valued Polynomials and Class Numbers of Real Quadratic Fields, Nagoya Math. 

J. 112 (1988), 143-151. 
7. , Prime Producing Quadratic Polynomials and Real Quadratic Fields of Class Number One 

(to appear: Proceedings of the International Number Theory Conference at Quebec City, July 1987). 
8. Oesterlé, Versions effectives du theorem de Chebotarev sous LHypothèse de Riemann Généralisé, 

Soc. Math. France Astérisque 61 (1979), 165-167. 
9. C. D. Patterson and H. C. Williams, A report on the University of Manitoba Sieve Unit, Congresses 

Numerantium 37 (1983), 85-98. 
10. J. B. Rosser and L. Schoenfeld, Approximate Formulas for Some Functions of Prime Numbers, 

Illinois J. Math. 6 (1962), 64-94. 

Mathematics Dept., 
University of Calgary, 
Calgary, Alberta, 
T2N 1N4, 
Canada 

Computer Science Dept., 
University of Manitoba, 
Winnipeg, Manitoba, 
R3T2N2, 
Canada 

https://doi.org/10.4153/CMB-1989-068-1 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-1989-068-1

