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Abstract
As the co-enzyme of pyruvate dehydrogenase and α-ketoglutarate dehydrogenase, thiamine plays a critical role in carbohydrate metabolism in
dairy cows. Apart from feedstuff, microbial thiamine synthesis in the rumen is the main source for dairy cows. However, the amount of ruminal
thiamine synthesis, which is influenced by dietary N levels and forage to concentrate ratio, varies greatly. Notably, when dairy cows are
overfed high-grain diets, subacute ruminal acidosis (SARA) occurs and results in thiamine deficiency. Thiamine deficiency is characterised by
decreased ruminal and blood thiamine concentrations and an increased blood thiamine pyrophosphate effect to >45%. Thiamine deficiency
caused by SARA is mainly related to the increased thiamine requirement during high grain feeding, decreased bacterial thiamine synthesis in
the rumen, increased thiamine degradation by thiaminase, and decreased thiamine absorption by transporters. Interestingly, thiamine
deficiency can be reversed by exogenous thiamine supplementation in the diet. Besides, thiamine supplementation has beneficial effects in
dairy cows, such as increased milk and component production and attenuated SARA by improving rumen fermentation, balancing bacterial
community and alleviating inflammatory response in the ruminal epithelium. However, there is no conclusive dietary thiamine
recommendation for dairy cows, and the impacts of thiamine supplementation on protozoa, solid-attached bacteria, rumen wall-adherent
bacteria and nutrient metabolism in dairy cows are still unclear. This knowledge is critical to understand thiamine status and function in dairy
cows. Overall, the present review described the current state of knowledge on thiamine nutrition in dairy cows and the major problems that
must be addressed in future research.
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Thiamine (C12H16N4OS), also known as vitamin B1, is a water-
soluble substance. Thiamine has considerable metabolic impor-
tance due to its role as a cofactor in carbohydrate and energy
metabolism in organisms(1). Almost 90% of ruminal thiamine is
synthesised by microorganisms, with the rest coming from
feedstuff(2). In National Research Council recommendations(3),
the ruminal synthesis of thiamine was estimated to be 143mg/d
for a 650-kg cow producing 35 kg of 4% fat-corrected milk/d;
this amount seems to meet the requirement of dairy cows, which
was assumed to be approximately 21–47mg/d(4). Therefore,
there is no dietary thiamine recommendation in the National
Research Council(3). However, the estimated thiamine synthesis
of lactating cows in the National Research Council(3) were
extrapolated from steer data of Miller et al.(5) and Zinn et al.(6).
To investigate the validity of the extrapolated approach in the
National Research Council(3), Schwab et al.(7) measured ruminal
apparent synthesis (AS) of thiamine in dairy cows (51mg/d), and

calculated National Research Council(3) estimation of thiamine
AS (127mg/d) by adjusting to the measured DM intake of dairy
cows, and they found that thiamine synthesis was over-
estimated in the National Research Council(3). Furthermore,
thiamine deficiencies have been found in steers when diets are
high in sulphate(8) or when diets cause a sudden drop in
ruminal pH(6). Indeed, numerous studies have shown positive
responses in dairy cows to thiamine supplementation, such as
increased milk and milk component production(9,10) and atte-
nuated subacute ruminal acidosis (SARA)(11–13). To update our
knowledge of thiamine in dairy cows and to ascertain the
effects of thiamine on dairy cow performance and metabolism,
the current literature is reviewed herein covering thiamine
synthesis in the rumen, the amount of thiamine arriving at the
duodenum, the effects of thiamine supplementation on milk
performance and the mode of action of thiamine on rumen
fermentation, especially regarding SARA attenuation.

Abbreviations: AS, apparent synthesis; LPS, lipopolysaccharide; SARA, subacute ruminal acidosis; TPP, thiamine pyrophosphate.
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Biochemical functions and application of thiamine
in ruminants

Thiamine is an essential nutrient for dairy cows and other
mammals. By serving as a cofactor of enzymes, including
transketolase, α-ketoglutarate dehydrogenase, pyruvate dehy-
drogenase, and branched chain α-keto acid dehydrogenase,
thiamine plays a critical role in carbohydrate metabolism(12).
Independent of its role as a co-enzyme, thiamine also has specific
roles in neuronal communication, immune system activation,
signalling and maintenance processes in cells and tissues(12).
Severe thiamine deficiency in cattle leads to various clinical
effects, from anorexia to polioencephalomalacia(13), while the
clinical polioencephalomalacia is not the main point of this
review and will not be discussed in detail. For rumen bacteria,
thiamine is indispensable for the growth of the rumen bacteria
Ruminococcus albus(14) and Ruminococcus flavefasciens(15),
serves as a cofactor of phosphoenolpyruvate decarboxylase in
Bacteroides fragilis(16) and participates in the production of
acetyl-CoA via pyruvate-ferredoxin oxidoreductase in Mega-
sphaera, Selenomonas ruminantium, Butyrivibrio fibrisolvens
and Ruminococcus(17).
Due to the key functions of thiamine in dairy cows and

rumen bacteria, a thorough understanding of thiamine status in
dairy cows is crucial, and there has been more focus on sup-
plying thiamine in ruminant diets. For example, Shaver & Bal(9)

found that the milk and component production tended to be
increased by thiamine supplementation (300mg/d) when dairy
cows fed diets high in non-fibre carbohydrate. Similarly, Kholif
et al.(10) also found that feeding lactating cows a daily ration
supplemented with 340mg of thiamine increased milk yield,
milk fat and protein yields. The improvement in milk perfor-
mance may be related to an increase in precursors of milk
components due to thiamine supplementation, since Solouma
et al.(18) demonstrated that adding 40mg/d thiamine to the diet
of sheep significantly increased the blood concentrations of
albumin, globulin and glucose. However, there are dis-
crepancies surrounding the effects of thiamine on ruminant’s
metabolism. Rowghani et al.(19) found that thiamine supple-
mentation (0, 4 and 6mg/kg DM) in lambs fed a high con-
centrate diet had no effect on blood glucose level. Silzell

et al.(20) reported that supplemental thiamine did not improve
zantibody response and cell-mediated immune response. The
inconsistent results concerning the effect of thiamine on rumi-
nant metabolism may be related to differences in thiamine
supplementation levels, dietary nutritional composition and
physiological stage.

Microbial synthesis, degradation and absorption of
thiamine in the gastrointestinal tract of ruminants

The requirement for thiamine in ruminants is mainly met by
microbial synthesis, with a small portion coming from feedstuffs
degradation. The thiamine content is higher in cereal feeds than
in forage feedstuffs (Table 1). Similarly, Tafaj et al.(25) reported a
higher thiamine content in concentrate than in hay (3·78 v.
0·4mg/kg DM), and different concentrate:hay ratios influenced
dietary thiamine intake. However, ruminal thiamine con-
centration was negatively correlated with dietary thiamine
intake and was assumed to be more closely related to the
concentrate level than to dietary thiamine content because of
the effect of concentrate on rumen conditions(25). The actual
ruminal thiamine synthesis by microbes is extremely difficult to
measure as the rumen is a dynamic system in which thiamine
synthesis, degradation and absorption occur simultaneously
during passage along the digestive tract(5,7,23,26,27). Therefore,
ruminal thiamine AS is calculated by subtracting daily orts-
corrected thiamine intake from the amount reaching the duo-
denum. This calculation does not reflect actual thiamine
synthesis, as it ignores ruminal degradation, microbial use, or
potential absorption across the rumen wall. The thiamine AS
has been measured in some studies and data are provided in
Table 2. Schwab et al.(7) reported that the average ruminal
thiamine AS in lactating dairy cows is 50·6mg/d, which is
similar to the value of 51·7mg/d reported by Breves et al.(2) and
>26·0mg/d reported by Santschi et al.(29). In the recent studies
by Beaudet et al.(23), Castagnino et al.(27) and Seck et al.(28), the
ruminal thiamine AS was negative (from −39·8 to 0·8mg/d),
which they hypothesised was due to thiamine destruction by
thiaminase enzymes or degradation by the ruminal microflora.
Based on the above studies, we can conclude that dietary

Table 1. Summary of thiamine concentrations of several feeds

Feedstuff
Range of thiamine

(mg/kg DM) References

Alfalfa meal 3·4–3·9 National Research Council(21)

Alfalfa hay 0·36–2·92 Castagnino et al.(22), Schwab et al.(7), Beaudet et al.(23)

Grass hay 0·89–1·49 Schwab et al.(7), Beaudet et al.(23)

Maize silage 0·57–1·37 Schwab et al.(7), Beaudet et al.(23)

Maize, ground 2·1–3·84 Schwab et al.(7), National Research Council(21), Castagnino et al.(22)

Barley, ground 3·9–4·5 Schwab et al.(7), National Research Council(21)

Oat grain 5·2–6·5 National Research Council(21), McDowell(24)

Sorghum grain 3·0–3·9 National Research Council(21), McDowell(24)

Wheat grain 4·5–5·5 National Research Council(21), McDowell(24)

Wheat bran 8·0 National Research Council(21), McDowell(24)

Soyabean hulls 1·73–1·8 Schwab et al.(7), Beaudet et al.(23)

Beet pulp 0·4–0·95 Schwab et al.(7), Beaudet et al.(23), National Research Council(21)

Soyabean meal 1·96–4·5 Beaudet et al.(23), National Research Council(21), Castagnino et al.(22)

Cottonseed meal 6·4–7·0 National Research Council(21), McDowell(24)

Distiller’s dried solubles 2·9–6·9 National Research Council(21), McDowell(24)
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factors such as feed type and nutrient composition influences
thiamine synthesis. Castagnino et al.(27) reported that long cut
alfafa silage reduced thiamine AS which proved that feed type
affects thiamine synthesis in the rumen. In addition, Buziassy &
Tribe(30) found that the thiamine concentration in rumen fluid
was significantly reduced when dietary protein levels
decreased. Breves et al.(2) showed that ruminal actual thiamine
synthesis and the amount of thiamine flowing to the duodenum
decreased when 26% of dietary N was deducted from the diet,
and the amount of ruminal thiamine synthesis positively cor-
related with duodenal microbial N flow (R 0·76), indicating that
dietary N levels and microbial metabolism in the rumen affect
thiamine synthesis.
In addition to dietary N, dietary carbohydrate sources and

levels also affect ruminal thiamine synthesis. Schwab et al.(7)

discovered that increasing non-fibre carbohydrates from 30 to
40% tended to decrease daily ruminal thiamine AS in cows fed
a 35% forage diet, and the opposite effect occurred for cows fed
a 60% forage diet. Castagnino et al.(27) reported that thiamine
AS was negatively correlated with the amounts of organic
matter and ruminally digested starch. Tafaj et al.(25) also found
that ruminal thiamine content was higher under conditions of
40 and 25% concentrate in the diet than under conditions of
50 and 60% concentrate, despite higher thiamine content in
concentrate than in forage feedstuff. Thus, Tafaj et al.(25)

assumed that the ruminal thiamine concentration was more
closely related to the concentrate level, that is the intake of
energy and digestible organic matter, than to the dietary thia-
mine content. The effect of dietary carbohydrates on thiamine
concentration may be due to its influence on rumen fermen-
tation and the microbial community. Castagnino et al.(27) and
Seck et al.(28) reported a positive correlation between ruminal
pH and thiamine AS. The impact of pH on thiamine status may
be related to the increasing thiaminase production at low
ruminal pH, since pH values below 5·8(31) are optimal for
thiaminase-producing bacteria (C. sporogenes and a few species
of Bacillus; Brent & Bartley(32)), as a result, thiamine degrada-
tion by microbial thiaminase increased. Besides, thiamine
synthesis by Bacteroidetes, Fibrobacter and Pyramidobacter
decreased under low ruminal pH condition(33), which also
contribute to their positive correlation between ruminal pH and
thiamine AS. However, Schwab et al.(7) reported a negative
correlation between thiamine AS and ruminal pH values,
whereas Beaudet et al.(23) didn’t find any relationship between
these two parameters. This discrepancy may be related to the
different extent of pH decrease under different dietary condi-
tions: in the study of Castagnino et al.(27), the average ruminal
pH values for dairy cows fed alfalfa silage and grass silage are
6·26 and 5·84, respectively; Seck et al.(28) reported that pH
values of dairy cows fed high forage and low forage are 6·0 and
5·86, respectively; whereas the ruminal pH values in the study
by Schwab et al.(7) were approximately above 6·0, thus there
was less thiaminase available to degrade thiamine.
Ruminal thiamine exists in a free or bound form or contained

in rumen microorganisms. Currently, the proportion of thiamine
absorbed in the rumen and intestine is difficult to determine and
is unclear. The disappearance rate was used to indicate thia-
mine fate in the gastrointestinal tract in the study by Santschi

et al.(29), who found that 67·8% of thiamine disappears before
the duodenum and that there is almost no disappearance of
postruminally infused thiamine before the duodenum, sug-
gesting extensive ruminal destruction or utilisation of thiamine.
Zinn et al.(6) reported the ruminal disappearance rate of thia-
mine is 47·7%. The fate of thiamine that disappears from the
rumen is unclear, and it is unknown whether thiamine
absorption can occur in the rumen. Through permeability
measurements on sheep rumen mucosa at several thiamine
concentrations (0·1–12·8 μg/ml), Hoeller et al.(34) found that the
rumen wall mucosa has a low permeability to thiamine. Simi-
larly, Smith & Marston(35) demonstrated that thiamine is not
absorbed in appreciable amounts through the rumen wall.
However, Rérat et al.(36) and McDowell(37) reported that the
rumen wall is just not permeable to bound thiamine or thiamine
contained in rumen microorganisms, but ruminants can absorb
free thiamine from the rumen wall by an active transport
mechanism. Regarding intestinal thiamine absorption, the
intestinal disappearance of thiamine is 75%(29), and 90–96% of
thiamine that reaches the duodenum in sheep is in a microbial
fraction(38), indicating the high absorption of microbially pro-
duced thiamine in the intestine. Free thiamine can be degraded
by ruminal microbes or absorbed through the rumen wall, while
the absorption of bound thiamine or thiamine in ruminal
microorganisms mainly occurs in the intestine and plays an
important role in supplying this nutrient to host ruminants.

Subacute ruminal acidosis induction altered thiamine
status in ruminants

As mentioned above, increasing dietary non-fibre carbohydrate
levels can decrease the daily AS of thiamine in the rumen(7) and
may cause thiamine deficiency. SARA caused by overfeeding a
high-grain diet is known to reduce ruminal pH and microbial
activity(39) and may, therefore, affect thiamine production. The
relationship between thiamine status and SARA has attracted
increasing attention. Recently, researchers(11,40,41) have reported
that thiamine deficiency occurs when sheep or cattle have sub-
acute or acute ruminal acidosis. To better understand how SARA
induction interacts with thiamine status, the methods for diagnosing
thiamine deficiency and the impact and possible mechanisms of
SARA on ruminal and blood thiamine concentrations are reviewed
in the following section and summarised in Fig. 1.

Thiamine deficiency diagnosis

The erythrocyte thiamine pyrophosphate (TPP) effect is a
criteria for assessing thiamine status, and thiamine deficiency
can be diagnosed when TPP effect is >45%(42). Recent litera-
tures demonstrated that blood TPP effect increased along with
rumen acidosis induction, for example, Dabak & Gul(40) found
that the mean TPP effect was 25·5% in normal sheep and 59·4%
in sheep with chronic ruminal acidosis; Karapinar et al.(41) also
demonstrated that the TPP effect was significantly higher in
feedlot cattle fed a high concentrate diet (47·2%) than in control
cattle (19·5%).

Other criteria of thiamine deficiency include increased lactate
and pyruvate concentrations in the blood due to the impaired
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co-enzyme function of thiamine in enzymatic decarboxylation
reactions(43). Dabak & Gul(40) found that increased L-lactate and
pyruvate concentrations in sheep with chronic ruminal acidosis
were probably related to thiamine deficiency. In addition, blood
thiamine concentrations are suggested as an indicator of thia-
mine status. Hill et al.(44) proposed a reference range of 19·90–
49·09 μg/l for cattle, and concentrations below 13·27 μg/l are
considered indicative of deficiency. Gooneratne et al.(45) found
that the average blood thiamine concentration was 49·2
(SD 14·9) μg/l in dairy steers, and Olkowski et al.(46) reported
this concentration to be 24·85 (SD 10·1) μg/l in beef cattle.

Subacute ruminal acidosis alters thiamine status in
ruminal fluid

Our previous study(11) demonstrated that high-grain-induced SARA
alters the thiamine status in ruminal fluid, the thiamine concentra-
tion in SARA cows (2·97μg/l) was lower than that in control cows
(7·88μg/l). This decrease in thiamine concentrations in rumen fluid
is mainly caused by an increased thiamine requirement, decreased
bacterial thiamine synthesis and increased thiamine degradation in
the rumen compared with a high forage diet, and these three
possible reasons are explained separately below.
First, when SARA is induced by a high-grain diet, many

dietary carbohydrates are fermented and converted into large
amounts of pyruvate. Then, pyruvate is converted to lactate by
lactate dehydrogenase(47) or degraded to acetyl-CoA and for-
mate by pyruvate formate-lyase(48). TPP is the cofactor of pyr-
uvate formate-lyase(49), therefore, more thiamine is required
and used for the decarboxylation of pyruvate, which thus
contributes to decreasing the thiamine content in the rumen.
Once thiamine deficiency occurs, the conversion of pyruvate to
acetyl-CoA is blocked, and the flow of pyruvate to lactate is
enhanced, which will aggravate SARA in dairy cows.

Second, the thiamine requirement in ruminants is mainly met
by bacterial synthesis in the rumen(5). Magnusdottir et al.(50)

noted that thiamine synthesis is most prevalent in Bacteroidetes
and Fusobacteria among thiamine-synthesising bacteria.
Silverman & Werkman(51) reported that certain propionate-
producing bacteria make thiamine or its intermediates, and
Bacteroidetes is the main genus that produces propionate from
carbohydrates by the succinate pathway(52). Pan et al.(33) found
that the ruminal thiamine content was positively correlated with
the genera Bacteroidetes, Fibrobacter and Pyramidobacter and
deduced that these genera play important roles in thiamine
biosynthesis. However, the abundance of Pyramidobacter(33),
Bacteroidetes(53,54) and Fibrobacter(55) in the rumen was
reduced by SARA induction. As a result, total bacterial thiamine
synthesis in the rumen decreases, which may contribute to the
altered thiamine status in ruminal fluid.

In addition, thiamine deficiency can occur due to increased
thiamine degradation by thiaminase in the rumen(56). Harmeyer &
Kollenkirchen(57) reported that approximately 90% of thiamine in
the rumen is present in particle-free rumen fluid as free thiamine
and is readily accessible to extracellular microbial thiaminase(58).
A decrease in ruminal pH caused by high-grain diets was thought
to increase thiaminase production(56). C. sporogenes and a few
species of Bacillus are the main culprits of ruminal thiaminase(32);
these species have optimum pH values of 5·2 and 5·6, respec-
tively(31). The growth of C. sporogenes and Bacillus increased
when SARA (ruminal pH below 5·8) was induced by high-grain
feeding, resulting in increased thiaminase production and con-
sequent thiamine degradation(59,60). Enhanced thiaminase activity
in acidotic ruminal fluid has been reported previously(56,59). The
above studies indicate that thiamine degradation in the context of
SARA also contributes to the altered ruminal thiamine status and
that both the synthesis and degradation of thiamine should be
considered when explaining the ruminal thiamine status.

Rumen

High-grain diet

Glucose

Acetoacetyl-CoA Oxaloacetic acid Acetyl-CoA

Butyrate AcetatePropionate

Portal vein H+ H+

Pyruvate Lactate Thiamine LPS

pH

TPP requirement

NDF Bacterial degradation
Bacteroidetes
Fibrobacter
Pyramidobacter

Bacillus
Clostridium sporogenes

Starch

Fig. 1. The potential mechanisms by which high-grain-induced subacute ruminal acidosis alters thiamine status in the rumen and blood of dairy cows. When dairy cows are
fed a high-grain diet, more starch and less neutral-detergent fibre (NDF) reach the rumen. Then, carbohydrates are decomposed to volatile fatty acids (VFA) through pyruvate
by bacterial degradation. During this process, pyruvate accumulates, and more thiamine (in the form of the cofactor thiamine pyrophosphate (TPP)) is needed for the
conversion of pyruvate to acetyl-CoA. As a result, thiamine concentrations decrease, and more pyruvate flows to lactate and propionate, resulting in decreased pH.
In addition, the abundance of thiamine-synthesising bacteria, including Bacteroidetes, Fibrobacter and Pyramidobacter, decrease, whereas those of thiamine-degrading
bacteria, such as Bacillus and C. sporogenes, increase under high-grain feeding; these changes also contribute to decreased thiamine concentrations in the rumen.
Decreased ruminal thiamine content and hampered thiamine transport in response to low ruminal pH and lipopolysaccharide (LPS) accumulation act together to alter
thiamine status in the blood. Red text, increase; blue text, decrease.
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Subacute ruminal acidosis alters the thiamine status
in blood

Ruminal bacteria first synthesise thiamine, which is then
absorbed and transported via the portal vein to the liver by
active transport and simple diffusion(61). Pan et al.(62) investi-
gated the effect of high-grain feeding on blood thiamine status
and found that the blood thiamine concentration in high-grain-
fed cows (11·66 μg/l) decreased below 13·27 μg/l, indicating
that high-grain feeding results in thiamine deficiency and alters
the blood thiamine status in dairy cows. The blood thiamine
content was positively correlated to rumen thiamine con-
centration(62), so insufficient bacterial thiamine synthesis in
the context of SARA partially accounts for the low blood thia-
mine level(40). On the other hand, ruminants can absorb free
thiamine from the rumen by an active transport mechanism(37)

involving transporter-1 and -2 (THTR1 and THTR2)(63). THTR1
and THTR2 are pH sensitive(64), and their expression can be
decreased by lipopolysaccharide (LPS) and pro-inflammatory
cytokines(63). During SARA challenge, the ruminal pH declines
and LPS production increases in response to high-grain over-
feeding, which down-regulates THTR2 expression and conse-
quently represses thiamine transport, thereby contributing to low
thiamine concentrations in the blood(62).
Taken together, SARA induction affects ruminal thiamine

status by increasing the thiamine requirement, decreasing bac-
terial thiamine synthesis, and increasing thiamine degradation
in the rumen. The decreasing ruminal thiamine concentrations

and reducing thiamine absorption and transport contributed to
the altered thiamine status in blood.

Thiamine supplementation helps to attenuate subacute
ruminal acidosis

It is well known that SARA induced by overfeeding a high-grain
diet decreases the ruminal pH, alters the rumen microbial
population, and increases the concentration of LPS in rumen
fluid(54,65). Specifically, SARA challenge leads to a reduction in the
abundance of cellulolytic bacteria(55), an increase in the propor-
tion of starch-fermenting and lactic acid-producing bacteria(66),
and enhanced lysis of gram-negative bacteria associated with
increased ruminal LPS(54). The alterations in ruminal LPS and pH
could act synergistically to disrupt barrier function(67), once the
epithelium has been breached, mucosa-associated lymphoid
tissue cells respond by triggering local inflammation via the LPS/
toll-like receptor 4 (TLR4) signalling pathway, leading to the
excessive production of pro-inflammatory cytokines(68,69). More-
over, an impaired gastrointestinal epithelium facilitates the
translocation of LPS from the digestive tract into circulation, causing
metabolic alterations and systemic inflammation in host cattle(70),
which greatly impacts the production and health of dairy cows.

Currently, there is an increasing focus on SARA prevention.
Interestingly, our recent studies have shown that dietary thiamine
supplementation (180mg/kg DM intake) may be a new strategy for
SARA prevention. As illustrated in Fig. 2, thiamine supplementation
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Fig. 2. The potential mechanisms by which thiamine supplementation attenuates high-grain-induced subacute ruminal acidosis in dairy cows. Thiamine
supplementation can balance the bacterial community by increasing the abundance of cellulolytic bacteria, including Bacteroides, Ruminococcus 1, Pyramidobacter,
Succinivibrio, and Ruminobacter. Such increases enhance fibre degradation and ruminal acetate production; then, increased concentrations of acetate are transported
to the mammary gland to increase milk fat synthesis. On the other hand, thiamine supplementation suppresses the ruminal epithelium inflammatory response by
decreasing ruminal lipopolysaccharide (LPS) production and repressing NFκB protein activation. TPP, thiamine pyrophosphate; LBP, LPS-binding protein.
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attenuates SARA mainly by improving rumen fermentation(11),
balancing the ruminal bacterial community(33,71) and exerting anti-
inflammatory effects(62) in dairy cows. Specifically, Pan et al.(33)

showed that thiamine administration promotes the growth of the
bacterial community associated with the degradation of fibre
(Ruminococcus 1, Pyramidobacter and Succinivibrio)(72) and
polysaccharides (Bacteroides)(73), and decreases the abundance of
bacteria positively related to ruminal lactate content (Succiniclas-
ticum and Ruminococcaceae NK4A214). As a result, ruminal
fermentation and lactate degradation improved, and ruminal pH
increased(11). Meanwhile, ruminal acetate content in SARA cows
supplemented with thiamine increased with a higher abundance of
fibre-digesting bacteria, and acetate was then transported to the
mammary gland to produce more milk fat(62). On the other hand,
during a SARA challenge, the death and lysis of gram-negative
rumen bacteria, especially Bacteroidetes spp., are the main sources
of free LPS in the rumen(53). Then, free LPS triggers the release of
pro-inflammatory cytokines by activating the TLR4/NFκB sig-
nalling pathway(74). In the study by Pan et al.(62), the proportion
of Bacteroides increased, with a subsequent decrease in free
LPS, upon infusion of thiamine in SARA cows. The decreased
LPS content and inhibited NFκB activation by exogenous thia-
mine act together to reduce the production of pro-inflammatory
cytokines, and thereby attenuate local inflammation in the
rumen epithelium. The anti-inflammatory effects of thiamine
have also been demonstrated in rats(75) and humans(76).

Conclusions and future research

Notwithstanding the knowledge gaps described above, the vital
function of thiamine in dairy cows is obvious, including its par-
ticipation in carbohydrate metabolism in the rumen and
host ruminants, regulation of rumen fermentation conditions, and
stimulation of milk performance. However, several issues must be
addressed to thoroughly understand the thiamine nutritional sta-
tus in dairy cows. The following are some of the limitations of the
current knowledge that need to be resolved:

(1) There is no conclusive dietary recommendation of thiamine
in dairy cows. To establish a recommendation, the
minimum requirement of thiamine must be estimated.
During this process, the amount of thiamine from dietary
sources that escapes degradation in the rumen and the
amount of thiamine synthesised in the rumen must be
ascertained. Unfortunately, knowledge of the factors
controlling the amount of thiamine escaping the rumen
and thus available for absorption by dairy cows is limited.
Therefore, the major challenge in determining the thiamine
requirement in dairy cows is predicting thiamine supply
dynamically according to different dietary chemical com-
positions. Hence, more studies are needed to reveal how
diet composition (e.g. type of forage, starch concentration
and protein concentration) affects the fate of thiamine in
the rumen and the amount available for cows at different
physiological stages. In addition, the simultaneous deter-
mination of ruminal, duodenal, blood and milk biomarkers
of thiamine would be useful to understand the fate of
thiamine in dairy cows.

(2) Although Pan et al.(33) deduced the possible genera
associated with thiamine synthesis based on the positive
correlation between thiamine content and the abundance of
a particular genera, whether these genera actually partici-
pate in thiamine synthesis is still inconclusive. Hence, more
experiments, such as the isolation and culture of related
bacteria in vitro, are necessary to verify their thiamine
synthesis ability. In addition, the rumen is inhabited by a
multitude of microorganisms, including bacteria, protozoa,
and yeast. Ruminal bacteria on the rumen epithelium, in the
liquid or solid fraction, are different because of their distinct
ecological niche and metabolic function. Thiamine supple-
mentation has a positive impact on the liquid-associated
bacterial community, but whether solid-attached bacteria
are affected by thiamine supplementation and whether the
anti-inflammatory effect of thiamine is related to its
regulation of rumen wall-adherent bacteria are unknown.
Moreover, protozoa represent 50% of the total microbial
mass in the rumen and may play crucial roles in thiamine
metabolism; therefore, more research on the relationship
between ruminal protozoa and thiamine is necessary to
understand thiamine metabolism in the rumen.

(3) Most studies on the response of dairy cows to thiamine
supplementation have been confined to rumen fermenta-
tion and milk performance. In non-ruminant research, the
activity of non-thiamine-dependent enzymes, such as
succinate dehydrogenase, succinate thiokinase and malate
dehydrogenase in the TCA cycle, has been shown to be
altered by thiamine deficiency. Therefore, it is necessary to
explore the systematic changes in carbohydrate metabo-
lites under conditions of different thiamine status in dairy
cows using metabolomics, which will improve the under-
standing of thiamine function in dairy cows and identify a
more sensitive biomarker for thiamine status. In addition to
its role in carbohydrate and energy metabolism, the effects
of thiamine on cell regulation, immune function, and
oxidative damage should be evaluated. The discovery of
unknown functions and cattle responses to thiamine will
help to improve cow health and productivity and enhance
the nutritional value of milk and other dairy products.
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