Phase transitions for non-singular Bernoulli actions

TEY BERENDSCHOT©
Department of Mathematics, KU Leuven, Leuven, Belgium
(e-mail: tey.berendschot@kuleuven.be)

(Received 25 October 2022 and accepted in revised form 21 February 2023)

Abstract

Inspired by the phase transition results for non-singular Gaussian actions introduced in [AIM19], we prove several phase transition results for non-singular Bernoulli actions. For generalized Bernoulli actions arising from groups acting on trees, we are able to give a very precise description of their ergodic-theoretical properties in terms of the Poincaré exponent of the group.

Key words: non-singular Bernoulli action, phase transition, strong ergodicity, Krieger type 2020 Mathematics Subject Classification: 37A40 (Primary); 20E08 (Secondary)

1. Introduction

When G is a countable infinite group and $\left(X_{0}, \mu_{0}\right)$ is a non-trivial standard probability space, the probability measure-preserving (pmp) action

$$
G \curvearrowright\left(X_{0}, \mu_{0}\right)^{G}: \quad(g \cdot x)_{h}=x_{g^{-1} h}
$$

is called a Bernoulli action. Probability measure-preserving Bernoulli actions are among the best-studied objects in ergodic theory and they play an important role in operator algebras [Ioa10, Pop03, Pop06]. When we consider a family of probability measures $\left(\mu_{g}\right)_{g \in G}$ on the base space X_{0} that need not all be equal, the Bernoulli action

$$
\begin{equation*}
G \curvearrowright(X, \mu)=\prod_{g \in G}\left(X_{0}, \mu_{g}\right) \tag{1.1}
\end{equation*}
$$

is in general no longer measure-preserving. Instead, we are interested in the case where $G \curvearrowright(X, \mu)$ is non-singular, that is, the group G preserves the measure class of μ. By Kakutani's criterion for equivalence of infinite product measures the Bernoulli action (1.1) is non-singular if and only if $\mu_{h} \sim \mu_{g}$ for every $h, g \in G$ and

$$
\begin{equation*}
\sum_{h \in G} H^{2}\left(\mu_{h}, \mu_{g h}\right)<+\infty \quad \text { for every } g \in G \tag{1.2}
\end{equation*}
$$

Here $H^{2}\left(\mu_{h}, \mu_{g h}\right)$ denotes the Hellinger distance between μ_{h} and $\mu_{g h}$ (see (2.2)).

It is well known that a pmp Bernoulli action $G \curvearrowright\left(X_{0}, \mu_{0}\right)^{G}$ is mixing. In particular, it is ergodic and conservative. However, for non-singular Bernoulli actions, determining conservativeness and ergodicity is much more difficult (see, for instance, [BKV19, Dan18, Kos18, VW17]).

Besides non-singular Bernoulli actions, another interesting class of non-singular group actions comes from the Gaussian construction, as introduced in [AIM19]. If $\pi: G \rightarrow \mathcal{O}(\mathcal{H})$ is an orthogonal representation of a locally compact second countable (lcsc) group on a real Hilbert space \mathcal{H}, and if $c: G \rightarrow \mathcal{H}$ is a 1-cocycle for the representation π, then the assignment

$$
\begin{equation*}
\alpha_{g}(\xi)=\pi_{g}(\xi)+c(g) \tag{1.3}
\end{equation*}
$$

defines an affine isometric action $\alpha: G \curvearrowright \mathcal{H}$. To any affine isometric action $\alpha: G \curvearrowright \mathcal{H}$ Arano, Isono and Marrakchi associated a non-singular group action $\widehat{\alpha}: G \curvearrowright \widehat{\mathcal{H}}$, where $\widehat{\mathcal{H}}$ is the Gaussian probability space associated to \mathcal{H}. When $\alpha: G \curvearrowright \mathcal{H}$ is actually an orthogonal representation, this construction is well established and the resulting Gaussian action is pmp. As explained below [BV20, Theorem D], if G is a countable infinite group and $\pi: G \rightarrow \ell^{2}(G)$ is the left regular representation, the affine isometric representation (1.3) gives rise to a non-singular action that is conjugate with the Bernoulli action $G \curvearrowright \prod_{g \in G}\left(\mathbb{R}, \nu_{F(g)}\right)$, where $F: G \rightarrow \mathbb{R}$ is such that $c_{g}(h)=F\left(g^{-1} h\right)-F(h)$, and $\nu_{F(g)}$ denotes the Gaussian probability measure with mean $F(g)$ and variance 1.

By scaling the 1 -cocycle $c: G \rightarrow \mathcal{H}$ with a parameter $t \in[0,+\infty)$ we get a one-parameter family of non-singular actions $\widehat{\alpha}^{t}: G \curvearrowright \widehat{\mathcal{H}}^{t}$ associated to the affine isometric actions $\alpha^{t}: G \curvearrowright \mathcal{H}$, given by $\alpha_{g}^{t}(\xi)=\pi_{g}(\xi)+t c(g)$. Arano, Isono and Marrakchi showed that there exists a $t_{\text {diss }} \in[0,+\infty)$ such that $\widehat{\alpha}^{t}$ is dissipative up to compact stabilizers for every $t>t_{\text {diss }}$ and infinitely recurrent for every $t<t_{\text {diss }}$ (see §2 for terminology).

Inspired by the results obtained in [AIM19], we study a similar phase transition framework, but in the setting of non-singular Bernoulli actions. Such a phase transition framework for non-singular Bernoulli actions was already considered by Kosloff and Soo in [KS20]. They showed the following phase transition result for the family of non-singular Bernoulli actions of $G=\mathbb{Z}$ with base space $X_{0}=\{0,1\}$ that was introduced in [VW17, Corollary 6.3]. For every $t \in[0,+\infty)$ consider the family of measures $\left(\mu_{n}^{t}\right)_{n \in \mathbb{Z}}$ given by

$$
\mu_{n}^{t}(0)= \begin{cases}1 / 2 & \text { if } n \leq 4 t^{2} \\ 1 / 2+t / \sqrt{n} & \text { if } n>4 t^{2}\end{cases}
$$

Then $\mathbb{Z} \curvearrowright\left(X, \mu_{t}\right)=\prod_{n \in \mathbb{Z}}\left(\{0,1\}, \mu_{n}^{t}\right)$ is non-singular for every $t \in[0,+\infty)$. Kosloff and Soo showed that there exists a $t_{1} \in(1 / 6,+\infty)$ such that $\mathbb{Z} \curvearrowright\left(X, \mu_{t}\right)$ is conservative for every $t<t_{1}$ and dissipative for every $t>t_{1}$ [KS20, Theorem 3]. In [DKR20, Example D] the authors describe a family of non-singular Poisson suspensions for which a similar phase transition occurs. These examples arise from dissipative essentially free actions of \mathbb{Z}, and thus they are non-singular Bernoulli actions. We generalize the phase transition result from [KS20] to arbitrary non-singular Bernoulli actions as follows.

Suppose that G is a countable infinite group and let $\left(\mu_{g}\right)_{g \in G}$ be a family of equivalent probability measure on a standard Borel space X_{0}. Let v also be a probability measure on X_{0}. For every $t \in[0,1]$ we consider the family of equivalent probability measures $\left(\mu_{g}^{t}\right)_{g \in G}$ that are defined by

$$
\begin{equation*}
\mu_{g}^{t}=(1-t) v+t \mu_{g} . \tag{1.4}
\end{equation*}
$$

Our first main result is that in this setting there is a phase transition phenomenon.
Theorem A. Let G be a countable infinite group and assume that the Bernoulli action $G \curvearrowright\left(X, \mu_{1}\right)=\prod_{g \in G}\left(X_{0}, \mu_{g}\right)$ is non-singular. Let $v \sim \mu_{e}$ be a probability measure on X_{0} and for every $t \in[0,1]$ consider the family $\left(\mu_{g}^{t}\right)_{g \in G}$ of equivalent probability measures given by (1.4). Then the Bernoulli action

$$
G \curvearrowright\left(X, \mu_{t}\right)=\prod_{g \in G}\left(X_{0}, \mu_{g}^{t}\right)
$$

is non-singular for every $t \in[0,1]$ and there exists a $t_{1} \in[0,1]$ such that $G \curvearrowright\left(X, \mu_{t}\right)$ is weakly mixing for every $t<t_{1}$ and dissipative for every $t>t_{1}$.

Suppose that G is a non-amenable countable infinite group. Recall that for any standard probability space $\left(X_{0}, \mu_{0}\right)$, the pmp Bernoulli action $G \curvearrowright\left(X_{0}, \mu_{0}\right)^{G}$ is strongly ergodic. Consider again the family of probability measures $\left(\mu_{g}^{t}\right)_{g \in G}$ given by (1.4). In Theorem B below we prove that for t close enough to 0 , the resulting non-singular Bernoulli action is strongly ergodic. This is inspired by [AIM19, Theorem 7.20] and [MV20, Theorem 5.1], which state similar results for non-singular Gaussian actions.

ThEOREM B. Let G be a countable infinite non-amenable group and suppose that the Bernoulli action $G \curvearrowright\left(X, \mu_{1}\right)=\prod_{g \in G}\left(X_{0}, \mu_{g}\right)$ is non-singular. Let $v \sim \mu_{e}$ be a probability measure on X_{0} and for every $t \in[0,1]$ consider the family $\left(\mu_{g}^{t}\right)_{g \in G}$ of equivalent probability measures given by (1.4). Then there exists a $t_{0} \in(0,1]$ such that $G \curvearrowright\left(X, \mu_{t}\right)=\prod_{g \in G}\left(X_{0}, \mu_{g}^{t}\right)$ is strongly ergodic for every $t<t_{0}$.

Although we can prove a phase transition result in large generality, it remains very challenging to compute the critical value t_{1}. However, when $G \subset \operatorname{Aut}(T)$, for some locally finite tree T, following [AIM19, §10], we can construct generalized Bernoulli actions of which we can determine the conservativeness behaviour very precisely. To put this result into perspective, let us first explain briefly the construction from [AIM19, §10].

For a locally finite tree T, let $\Omega(T)$ denote the set of orientations on T. Let $p \in(0,1)$ and fix a root $\rho \in T$. Define a probability measure μ_{p} on $\Omega(T)$ by orienting an edge towards ρ with probability p and away from ρ with probability $1-p$. If $G \subset \operatorname{Aut}(T)$ is a subgroup, then we naturally obtain a non-singular action $G \curvearrowright\left(\Omega(T), \mu_{p}\right)$. Up to equivalence of measures, the measure μ_{p} does not depend on the choice of root $\rho \in T$. The Poincaré exponent of $G \subset \operatorname{Aut}(T)$ is defined as

$$
\begin{equation*}
\delta(G \curvearrowright T)=\inf \left\{s>0 \text { for which } \sum_{w \in G \cdot v} \exp (-s d(v, w))<+\infty\right\}, \tag{1.5}
\end{equation*}
$$

where $v \in V(T)$ is any vertex of T. In [AIM19, Theorem 10.4] Arano, Isono and Marrakchi showed that if $G \subset \operatorname{Aut}(T)$ is a closed non-elementary subgroup, the action $G \curvearrowright\left(\Omega(T), \mu_{p}\right)$ is dissipative up to compact stabilizers if $2 \sqrt{p(1-p)}<\exp (-\delta)$ and weakly mixing if $2 \sqrt{p(1-p)}>\exp (-\delta)$. This motivates the following similar construction.

Let $E(T) \subset V(T) \times V(T)$ denote the set of oriented edges, so that vertices v and w are adjacent if and only if $(v, w),(w, v) \in E(T)$. Suppose that X_{0} is a standard Borel space and that μ_{0}, μ_{1} are equivalent probability measures on X_{0}. Fix a root $\rho \in T$ and define a family of probability measures $\left(\mu_{e}\right)_{e \in E(T)}$ by

$$
\mu_{e}= \begin{cases}\mu_{0} & \text { if } e \text { is oriented towards } \rho \tag{1.6}\\ \mu_{1} & \text { if } e \text { is oriented away from } \rho\end{cases}
$$

Suppose that $G \subset \operatorname{Aut}(T)$ is a subgroup. Then the generalized Bernoulli action

$$
\begin{equation*}
G \curvearrowright \prod_{e \in E(T)}\left(X_{0}, \mu_{e}\right): \quad(g \cdot x)_{e}=x_{g^{-1} \cdot e} \tag{1.7}
\end{equation*}
$$

is non-singular and up to conjugacy it does not depend on the choice of root $\rho \in T$. In our next main result we generalize [AIM19, Theorem 10.4] to non-singular actions of the form (1.7).

Theorem C. Let T be a locally finite tree with root $\rho \in T$ and let $G \subset \operatorname{Aut}(T)$ be a non-elementary closed subgroup with Poincaré exponent $\delta=\delta(G \curvearrowright T)$. Let μ_{0} and μ_{1} be equivalent probability measures on a standard Borel space X_{0} and define a family of equivalent probability measures $\left(\mu_{e}\right)_{e \in E(T)}$ by (1.6). Then the generalized Bernoulli action (1.7) is dissipative up to compact stabilizers if $1-H^{2}\left(\mu_{0}, \mu_{1}\right)<\exp (-\delta / 2)$ and weakly mixing if $1-H^{2}\left(\mu_{0}, \mu_{1}\right)>\exp (-\delta / 2)$.

2. Preliminaries

2.1. Non-singular group actions. Let $(X, \mu),(Y, v)$ be standard measure spaces. A Borel map $\varphi: X \rightarrow Y$ is called non-singular if the pushforward measure $\varphi_{*} \mu$ is equivalent to ν. If in addition there exist conull Borel sets $X_{0} \subset X$ and $Y_{0} \subset Y$ such that $\varphi: X_{0} \rightarrow Y_{0}$ is a bijection we say that φ is a non-singular isomorphism. We write $\operatorname{Aut}(X, \mu)$ for the group of all non-singular automorphisms $\varphi: X \rightarrow X$, where we identify two elements if they agree almost everywhere. The group $\operatorname{Aut}(X, \mu)$ carries a canonical Polish topology.

A non-singular group action $G \curvearrowright(X, \mu)$ of an lesc group G on a standard measure space (X, μ) is a continuous group homomorphism $G \rightarrow \operatorname{Aut}(X, \mu)$. A non-singular group action $G \curvearrowright(X, \mu)$ is called essentially free if the stabilizer subgroup $G_{x}=\{g \in$ $G: g \cdot x=x\}$ is trivial for almost every (a.e.) $x \in X$. When G is countable this is the same as the condition that $\mu(\{x \in X: g \cdot x=x\})=0$ for every $g \in G \backslash\{e\}$. We say that $G \curvearrowright(X, \mu)$ is ergodic if every G-invariant Borel set $A \subset X$ satisfies $\mu(A)=0$ or $\mu(X \backslash A)=0$. A non-singular action $G \curvearrowright(X, \mu)$ is called weakly mixing if for any ergodic pmp action $G \curvearrowright(Y, \nu)$ the diagonal product action $G \curvearrowright X \times Y$ is ergodic. If G is not compact and $G \curvearrowright(X, \mu)$ is pmp, we say that $G \curvearrowright X$ is mixing if

$$
\lim _{g \rightarrow \infty} \mu(g \cdot A \cap B)=\mu(A) \mu(B) \quad \text { for every pair of Borel subsets } A, B \subset X
$$

Suppose that $G \curvearrowright(X, \mu)$ is a non-singular action and that μ is a probability measure. A sequence of Borel subsets $A_{n} \subset X$ is called almost invariant if

$$
\sup _{g \in K} \mu\left(g \cdot A_{n} \triangle A_{n}\right) \rightarrow 0 \quad \text { for every compact subset } K \subset G
$$

The action $G \curvearrowright(X, \mu)$ is called strongly ergodic if every almost invariant sequence $A_{n} \subset X$ is trivial, that is, $\mu\left(A_{n}\right)\left(1-\mu\left(A_{n}\right)\right) \rightarrow 0$. The strong ergodicity of $G \curvearrowright(X, \mu)$ only depends on the measure class of μ. When (Y, v) is a standard measure space and v is infinite, a non-singular action $G \curvearrowright(Y, \nu)$ is called strongly ergodic if $G \curvearrowright\left(Y, \nu^{\prime}\right)$ is strongly ergodic, where v^{\prime} is a probability measure that is equivalent to v.

Following [AIM19, Definition A.16], we say that a non-singular action $G \curvearrowright(X, \mu)$ is dissipative up to compact stabilizers if each ergodic component is of the form $G \curvearrowright G / K$, for a compact subgroup $K \subset G$. By [AIM19, Theorem A.29] a non-singular action $G \curvearrowright(X, \mu)$, with $\mu(X)=1$, is dissipative up to compact stabilizers if and only if

$$
\int_{G} \frac{d g \mu}{d \mu}(x) d \lambda(g)<+\infty \quad \text { for a.e. } x \in X
$$

where λ denotes the left invariant Haar measure on G. We say that $G \curvearrowright(X, \mu)$ is infinitely recurrent if for every non-negligible subset $A \subset X$ and every compact subset $K \subset G$ there exists $g \in G \backslash K$ such that $\mu(g \cdot A \cap A)>0$. By [AIM19, Proposition A.28] and Lemma 2.1 below, a non-singular action $G \curvearrowright(X, \mu)$, with $\mu(X)=1$, is infinitely recurrent if and only if

$$
\int_{G} \frac{d g \mu}{d \mu}(x) d \lambda(g)=+\infty \quad \text { for a.e. } x \in X
$$

A non-singular action $G \curvearrowright(X, \mu)$ is called dissipative if it is essentially free and dissipative up to compact stabilizers. In that case there exists a standard measure space $\left(X_{0}, \mu_{0}\right)$ such that $G \curvearrowright X$ is conjugate with the action $G \curvearrowright G \times X_{0}: g \cdot(h, x)=$ ($g h, x$). A non-singular action $G \curvearrowright(X, \mu)$ decomposes, uniquely up to a null set, as $G \curvearrowright D \sqcup C$, where $G \curvearrowright D$ is dissipative up to compact stabilizers and $G \curvearrowright C$ is infinitely recurrent. When G is a countable group and $G \curvearrowright(X, \mu)$ is essentially free, we say that $G \curvearrowright X$ is conservative if it is infinitely recurrent.

Lemma 2.1. Suppose that G is an lcsc group with left invariant Haar measure λ and that (X, μ) is a standard probability space. Assume that $G \curvearrowright(X, \mu)$ is a non-singular action that is infinitely recurrent. Then we have that

$$
\int_{G} \frac{d g \mu}{d \mu}(x) d \lambda(g)=+\infty \quad \text { for a.e. } x \in X
$$

Proof. Note that the set

$$
D=\left\{x \in X: \int_{G} \frac{d g \mu}{d \mu}(x) d \lambda(g)<+\infty\right\}
$$

is G-invariant. Therefore, it suffices to show that $G \curvearrowright X$ is not infinitely recurrent under the assumption that D has full measure.

Let $\pi:(X, \mu) \rightarrow(Y, \nu)$ be the projection onto the space of ergodic components of $G \curvearrowright X$. Then there exist a conull Borel subset $Y_{0} \subset Y$ and a Borel map $\theta: Y_{0} \rightarrow X$ such that $(\pi \circ \theta)(y)=y$ for every $y \in Y_{0}$.

Write $X_{y}=\pi^{-1}(\{y\})$. By [AIM19, Theorem A.29], for a.e. $y \in Y$ there exists a compact subgroup $K_{y} \subset G$ such that $G \curvearrowright X_{y}$ is conjugate with $G \curvearrowright G / K_{y}$. Let $G_{n} \subset G$ be an increasing sequence of compact subsets of G such that $\bigcup_{n \geq 1} \stackrel{\circ}{G}_{n}=G$. For every $x \in X$, write $G_{x}=\{g \in G: g \cdot x=x\}$ for the stabilizer subgroup of x. Using an argument as in [MRV11, Lemma 10], one shows that for each $n \geq 1$ the set $\left\{x \in X: G_{x} \subset G_{n}\right\}$ is Borel. Thus, for every $n \geq 1$ the set

$$
U_{n}=\left\{y \in Y_{0}: K_{y} \subset G_{n}\right\}=\left\{y \in Y_{0}: G_{\theta(y)} \subset G_{n}\right\}
$$

is a Borel subset of Y and we have that $v\left(\bigcup_{n \geq 1} U_{n}\right)=1$. Therefore, the sets

$$
A_{n}=\left\{g \cdot \theta(y): g \in G_{n}, y \in U_{n}\right\}
$$

are analytic and exhaust X up to a set of measure zero. So there exist an $n_{0} \in \mathbb{N}$ and a non-negligible Borel set $B \subset A_{n_{0}}$. Suppose that $h \in G$ is such that $h \cdot B \cap B \neq \emptyset$. Then there exist $y \in U_{n_{0}}$ and $g_{1}, g_{2} \in G_{n_{0}}$ such that $h g_{1} \cdot \theta(y)=g_{2} \cdot \theta(y)$, and we get that $h \in G_{n_{0}} K_{y} G_{n_{0}}^{-1} \subset G_{n_{0}} G_{n_{0}} G_{n_{0}}^{-1}$. In other words, for $h \in G$ outside the compact set $G_{n_{0}} G_{n_{0}} G_{n_{0}}^{-1}$ we have that $\mu(h \cdot B \cap B)=0$, so that $G \curvearrowright X$ is not infinitely recurrent.

We will frequently use the following result of Schmidt and Walters. Suppose that $G \curvearrowright(X, \mu)$ is a non-singular action that is infinitely recurrent and suppose that $G \curvearrowright(Y, v)$ is pmp and mixing. Then by [SW81, Theorem 2.3] we have that

$$
L^{\infty}(X \times Y)^{G}=L^{\infty}(X)^{G} \bar{\otimes} 1
$$

where $G \curvearrowright X \times Y$ acts diagonally. Although [SW81, Theorem 2.3] demands proper ergodicity of the action $G \curvearrowright(X, \mu)$, the infinite recurrence assumption is sufficient as remarked in [AIM19, Remark 7.4].
2.2. The Maharam extension and crossed products. Let (X, μ) be a standard measure space. For any non-singular automorphism $\varphi \in \operatorname{Aut}(X, \mu)$, we define its Maharam extension by

$$
\widetilde{\varphi}: X \times \mathbb{R} \rightarrow X \times \mathbb{R}: \quad \widetilde{\varphi}(x, t)=\left(\varphi(x), t+\log \left(d \varphi^{-1} \mu / d \mu\right)(x)\right)
$$

Then $\widetilde{\varphi}$ preserves the infinite measure $\mu \times \exp (-t) d t$. The assignment $\varphi \mapsto \widetilde{\varphi}$ is a continuous group homomorphism from $\operatorname{Aut}(X)$ to $\operatorname{Aut}(X \times \mathbb{R})$. Thus, for each non-singular group action $G \curvearrowright(X, \mu)$, by composing with this map, we obtain a non-singular group action $G \curvearrowright X \times \mathbb{R}$, which we call the Maharam extension of $G \curvearrowright X$. If $G \curvearrowright X$ is a non-singular group action, the translation action $\mathbb{R} \curvearrowright X \times \mathbb{R}$ in the second component commutes with the Maharam extension $G \curvearrowright X \times \mathbb{R}$. Therefore, we get a well-defined action $\mathbb{R} \curvearrowright L^{\infty}(X \times \mathbb{R})^{G}$, which is the Krieger flow associated to the action $G \curvearrowright X$. The Krieger flow is given by $\mathbb{R} \curvearrowright \mathbb{R}$ if and only if there exists a G-invariant σ-finite measure ν on X that is equivalent to μ.

Suppose that $M \subset B(\mathcal{H})$ is a von Neumann algebra represented on the Hilbert space \mathcal{H} and that $\alpha: G \curvearrowright M$ is a continuous action on M of an lcsc group G. Then the crossed product von Neumann algebra $M \rtimes_{\alpha} G \subset B\left(L^{2}(G, \mathcal{H})\right)$ is the von Neumann algebra generated by the operators $\{\pi(x)\}_{x \in M}$ and $\left\{u_{h}\right\}_{h \in G}$ acting on $\xi \in L^{2}(G, \mathcal{H})$ as

$$
(\pi(x) \xi)(g)=\alpha_{g^{-1}}(x) \xi(g), \quad\left(u_{h} \xi\right)(g)=\xi\left(h^{-1} g\right)
$$

In particular, if $G \curvearrowright(X, \mu)$ is a non-singular group action, the crossed product $L^{\infty}(X) \rtimes$ $G \subset B\left(L^{2}(G \times X)\right)$ is the von Neumann algebra generated by the operators

$$
(\pi(H) \xi)(g, x)=H(g \cdot x) \xi(g, x), \quad\left(u_{h} \xi\right)(g, x)=\xi\left(h^{-1} g, x\right)
$$

for $H \in L^{\infty}(X)$ and $h \in G$. If $G \curvearrowright X$ is non-singular essentially free and ergodic, then $L^{\infty}(X) \rtimes G$ is a factor. Moreover, when G is a unimodular group, the Krieger flow of $G \curvearrowright X$ equals the flow of weights of the crossed product von Neumann algebra $L^{\infty}(X) \rtimes G$. For non-unimodular groups this is not necessarily true, motivating the following definition.

Definition 2.2. Let G be an lcsc group with modular function $\Delta: G \rightarrow \mathbb{R}_{>0}$. Let λ denote the Lebesgue measure on \mathbb{R}. Suppose that $\alpha: G \curvearrowright(X, \mu)$ is a non-singular action. We define the modular Maharam extension of $G \curvearrowright X$ as the non-singular action

$$
\beta: G \curvearrowright(X \times \mathbb{R}, \mu \times \lambda): \quad g \cdot(x, t)=\left(g \cdot x, t+\log (\Delta(g))+\log \left(d g^{-1} \mu / d \mu\right)(x)\right) .
$$

Let $L^{\infty}(X \times \mathbb{R})^{\beta}$ denote the subalgebra of β-invariant elements. We define the flow of weights associated to $G \curvearrowright X$ as the translation action $\mathbb{R} \curvearrowright L^{\infty}(X \times \mathbb{R})^{\beta}:(t \cdot H)(x, s)=$ $H(x, s-t)$.

As we explain below, the flow of weights associated to an essentially free ergodic non-singular action $G \curvearrowright X$ equals the flow of weights of the crossed product factor $L^{\infty}(X) \rtimes G$, justifying the terminology. See also [Sa74, Proposition 4.1].

Let $\alpha: G \curvearrowright X$ be an essentially free ergodic non-singular group action with modular Maharam extension $\beta: G \curvearrowright X \times \mathbb{R}$. By [Sa74, Proposition 1.1] there is a canonical normal semifinite faithful weight φ on $L^{\infty}(X) \rtimes_{\alpha} G$ such that the modular automorphism group σ^{φ} is given by

$$
\sigma_{t}^{\varphi}(\pi(H))=\pi(H), \quad \sigma_{t}^{\varphi}\left(u_{g}\right)=\Delta(g)^{i t} u_{g} \pi\left(\left(d g^{-1} \mu / d \mu\right)^{i t}\right),
$$

where $\Delta: G \rightarrow \mathbb{R}_{>0}$ denotes the modular function of G.
For an element $\xi \in L^{2}\left(\mathbb{R}, L^{2}(G \times X)\right)$ and $(g, x) \in G \times X$, write $\xi_{g, x}$ for the map given by $\xi_{g, x}(s)=\xi(s, g, x)$. Then by Fubini's theorem $\xi_{g, x} \in L^{2}(\mathbb{R})$ for a.e. $(g, x) \in G \times X$. Let $U: L^{2}\left(\mathbb{R}, L^{2}(G \times X)\right) \rightarrow L^{2}\left(G, L^{2}(X \times \mathbb{R})\right)$ be the unitary given on $\xi \in L^{2}\left(\mathbb{R}, L^{2}(G \times X)\right)$ by

$$
(U \xi)(g, x, t)=\mathcal{F}^{-1}\left(\xi_{g, x}\right)\left(t+\log (\Delta(g))+\log \left(d g^{-1} \mu / d \mu\right)(x)\right)
$$

where $\mathcal{F}^{-1}: L^{2}(\mathbb{R}) \rightarrow L^{2}(\mathbb{R})$ denotes the inverse Fourier transform. One can check that conjugation by U induces an isomorphism

$$
\Psi:\left(L^{\infty}(X) \rtimes_{\alpha} G\right) \rtimes_{\sigma^{\varphi}} \mathbb{R} \rightarrow L^{\infty}(X \times \mathbb{R}) \rtimes_{\beta} G
$$

Let $\kappa: L^{\infty}(X \times \mathbb{R}) \rightarrow L^{\infty}(X \times \mathbb{R}) \rtimes_{\beta} G$ be the inclusion map and let $\gamma: \mathbb{R} \curvearrowright L^{\infty}(X \times$ $\mathbb{R}) \rtimes_{\beta} G$ be the action given by

$$
\gamma_{t}(\kappa(H))(x, s)=\kappa(H)(x, s-t), \quad \gamma_{t}\left(u_{g}\right)=u_{g} .
$$

Then one can verify that Ψ conjugates the dual action $\widehat{\sigma^{\varphi}}: \mathbb{R} \curvearrowright\left(L^{\infty}(X) \rtimes_{\alpha} G\right) \rtimes_{\sigma^{\varphi}} \mathbb{R}$ and γ. Therefore, we can identify the flow of weights $\mathbb{R} \curvearrowright \mathcal{Z}\left(\left(L^{\infty}(X) \rtimes_{\alpha} G\right) \rtimes_{\sigma^{\varphi}} \mathbb{R}\right)$ with $\mathbb{R} \curvearrowright \mathcal{Z}\left(L^{\infty}(X \times \mathbb{R}) \rtimes_{\beta} G\right) \cong L^{\infty}(X \times \mathbb{R})^{\beta}$: the flow of weights associated to $G \curvearrowright X$.

Remark 2.3. It will be useful to speak about the Krieger type of a non-singular ergodic action $G \curvearrowright X$. In light of the discussion above, we will only use this terminology for countable groups G, so that no confusion arises with the type of the crossed product von Neumann algebra $L^{\infty}(X) \rtimes G$. So assume that G is countable and that $G \curvearrowright(X, \mu)$ is a non-singular ergodic action. Then the Krieger flow is ergodic and we distinguish several cases. If v is atomic, we say that $G \curvearrowright X$ is of type I. If v is non-atomic and finite, we say that $G \curvearrowright X$ is of type II_{1}. If v is non-atomic and infinite, we say that $G \curvearrowright X$ is of type II_{∞}. If the Krieger flow is given by $\mathbb{R} \curvearrowright \mathbb{R} / \log (\lambda) \mathbb{Z}$ with $\lambda \in(0,1)$, we say that $G \curvearrowright X$ is of type III_{λ}. If the Krieger flow is the trivial flow $\mathbb{R} \curvearrowright\{*\}$, we say that $G \curvearrowright X$ is of type III_{1}. If the Krieger flow is properly ergodic (that is, every orbit has measure zero), we say that $G \curvearrowright X$ is of type III_{0}.
2.3. Non-singular Bernoulli actions. Suppose that G is a countable infinite group and that $\left(\mu_{g}\right)_{g \in G}$ is a family of equivalent probability measures on a standard Borel space X_{0}. The action

$$
\begin{equation*}
G \curvearrowright(X, \mu)=\prod_{h \in G}\left(X_{0}, \mu_{h}\right): \quad(g \cdot x)_{h}=x_{g^{-1} h} \tag{2.1}
\end{equation*}
$$

is called the Bernoulli action. For two probability measures v, η on a standard Borel space Y, the Hellinger distance $H^{2}(v, \eta)$ is defined by

$$
\begin{equation*}
H^{2}(v, \eta)=\frac{1}{2} \int_{Y}(\sqrt{d \nu / d \zeta}-\sqrt{d \eta / d \zeta})^{2} d \zeta \tag{2.2}
\end{equation*}
$$

where ζ is any probability measure on Y such that $v, \eta \prec \zeta$. By Kakutani's criterion for equivalence of infinite product measures [Kak48] the Bernoulli action (2.1) is non-singular if and only if

$$
\sum_{h \in G} H^{2}\left(\mu_{h}, \mu_{g h}\right)<+\infty \quad \text { for every } g \in G
$$

If (X, μ) is non-atomic and the Bernoulli action (2.1) is non-singular, then it is essentially free by [BKV19, Lemma 2.2].

Suppose that I is a countable infinite set and that $\left(\mu_{i}\right)_{i \in I}$ is a family of equivalent probability measures on a standard Borel space X_{0}. If G is an lcsc group that acts on I, the action

$$
\begin{equation*}
G \curvearrowright(X, \mu)=\prod_{i \in I}\left(X_{0}, \mu_{i}\right): \quad(g \cdot x)_{i}=x_{g^{-1 \cdot i}} \tag{2.3}
\end{equation*}
$$

is called the generalized Bernoulli action and it is non-singular if and only if $\sum_{i \in I} H^{2}\left(\mu_{i}, \mu_{g \cdot i}\right)<+\infty$ for every $g \in G$. When v is a probability measure on X_{0} such that $\mu_{i}=v$ for every $i \in I$, the generalized Bernoulli action (2.3) is pmp and it is mixing if and only if the stabilizer subgroup $G_{i}=\{g \in G: g \cdot i=i\}$ is compact for every $i \in I$. In particular, if G is countable infinite, the pmp Bernoulli action $G \curvearrowright\left(X_{0}, \mu_{0}\right)^{G}$ is mixing.
2.4. Groups acting on trees. Let $T=(V(T), E(T))$ be a locally finite tree, so that the edge set $E(T)$ is a symmetric subset of $V(T) \times V(T)$ with the property that vertices $v, w \in V(T)$ are adjacent if and only if $(v, w),(w, v) \in E(T)$. When T is clear from the context, we will write E instead of $E(T)$. Also we will often write T instead of $V(T)$ for the vertex set. For any two vertices $v, w \in T$ let $[v, w]$ denote the smallest subtree of T that contains v and w. The distance between vertices $v, w \in T$ is defined as $d(v, w)=|V([v, w])|-1$. Fixing a root $\rho \in T$, we define the boundary ∂T of T as the collection of all infinite line segments starting at ρ. We equip ∂T with a metric d_{ρ} as follows. If $\omega, \omega^{\prime} \in \partial T$, let $v \in T$ be the unique vertex such that $d(\rho, v)=$ $\sup _{v \in \omega \cap \omega^{\prime}} d(\rho, v)$ and define

$$
d_{\rho}\left(\omega, \omega^{\prime}\right)=\exp (-d(\rho, v))
$$

Then, up to homeomorphism, the space ($\partial T, d_{\rho}$) does not depend on the chosen root $\rho \in T$. Furthermore, the Hausdorff dimension $\operatorname{dim}_{H} \partial T$ of $\left(\partial T, d_{\rho}\right)$ is also independent of the choice of $\rho \in T$.

Let $\operatorname{Aut}(T)$ denote the group of automorphisms of T. By [Tit70, Proposition 3.2], if $g \in \operatorname{Aut}(T)$, then either:

- g fixes a vertex or interchanges a pair of vertices (in this case we say that g is elliptic);
- or there exists a bi-infinite line segment $L \subset T$, called the axis of g, such that g acts on L by non-trivial translation (in this case we say that g is hyperbolic).
We equip $\operatorname{Aut}(T)$ with the topology of pointwise convergence. A subgroup $G \subset \operatorname{Aut}(T)$ is closed with respect to this topology if and only if for every $v \in T$ the stabilizer subgroup $G_{v}=\{g \in G: g \cdot v=v\}$ is compact. An action of an lesc group G on T is a continuous homomorphism $G \rightarrow \operatorname{Aut}(T)$. We say that the action $G \curvearrowright T$ is cocompact if there is a finite set $F \subset E(T)$ such that $G \cdot F=E(T)$. A subgroup $G \subset \operatorname{Aut}(T)$ is called non-elementary if it does not fix any point in $T \cup \partial T$ and does not interchange any pair of points in $T \cup \partial T$. Equivalently, $G \subset \operatorname{Aut}(T)$ is non-elementary if there exist hyperbolic elements $h, g \in G$ with axes L_{h} and L_{g} such that $L_{h} \cap L_{g}$ is finite. If $G \subset \operatorname{Aut}(T)$ is a non-elementary closed subgroup, there exists a unique minimal G-invariant subtree $S \subset T$ and G is compactly generated if and only if $G \curvearrowright S$ is cocompact (see [CM11, §2]). Recall from (1.5) the definition of the Poincaré exponent $\delta(G \curvearrowright T)$ of a subgroup $G \subset \operatorname{Aut}(T)$. If $G \subset \operatorname{Aut}(T)$ is a closed subgroup such that $G \curvearrowright T$ is cocompact, then we have that $\delta(G \curvearrowright T)=\operatorname{dim}_{H} \partial T$.

3. Phase transitions of non-singular Bernoulli actions: proof of Theorems A and B

Let G be a countable infinite group and let $\left(\mu_{g}\right)_{g \in G}$ be a family of equivalent probability measures on a standard Borel space X_{0}. Let v also be a probability measure on X_{0}. For $t \in[0,1]$ we define the family of probability measures

$$
\begin{equation*}
\mu_{g}^{t}=(1-t) v+t \mu_{g}, \quad g \in G \tag{3.1}
\end{equation*}
$$

We write μ_{t} for the infinite product measure $\mu_{t}=\prod_{g \in G} \mu_{g}^{t}$ on $X=\prod_{g \in G} X_{0}$. We prove Theorem 3.1 below, which is slightly more general than Theorem A.

THEOREM 3.1. Let G be a countable infinite group and let $\left(\mu_{g}\right)_{g \in G}$ be a family of equivalent probability measures on a standard probability space X_{0}, which is not supported on a single atom. Assume that the Bernoulli action $G \curvearrowright \prod_{g \in G}\left(X_{0}, \mu_{g}\right)$ is non-singular. Let v also be a probability measure on X_{0}. Then for every $t \in[0,1]$ the Bernoulli action

$$
\begin{equation*}
G \curvearrowright\left(X, \mu_{t}\right)=\prod_{g \in G}\left(X_{0},(1-t) v+t \mu_{g}\right) \tag{3.2}
\end{equation*}
$$

is non-singular. Assume, in addition, that one of the following conditions holds.
(1) $v \sim \mu_{e}$.
(2) $\quad v \prec \mu_{e}$ and $\sup _{g \in G}\left|\log d \mu_{g} / d \mu_{e}(x)\right|<+\infty$ for a.e $x \in X_{0}$.

Then there exists a $t_{1} \in[0,1]$ such that $G \curvearrowright\left(X, \mu_{t}\right)$ is dissipative for every $t>t_{1}$ and weakly mixing for every $t<t_{1}$.

Remark 3.2. One might hope to prove a completely general phase transition result that only requires $v<\mu_{e}$, and not the additional assumption that $\sup _{g \in G}\left|\log d \mu_{g} / d \mu_{e}(x)\right|<+\infty$ for a.e. $x \in X_{0}$. However, the following example shows that this is not possible.

Let G be any countable infinite group and let $G \curvearrowright \prod_{g \in G}\left(C_{0}, \eta_{g}\right)$ be a conservative non-singular Bernoulli action. Note that Theorem 3.1 implies that

$$
G \curvearrowright \prod_{g \in G}\left(C_{0},(1-t) \eta_{e}+t \eta_{g}\right)
$$

is conservative for every $t<1$. Let C_{1} be a standard Borel space and let $\left(\mu_{g}\right)_{g \in G}$ be a family of equivalent probability measures on $X_{0}=C_{0} \sqcup C_{1}$ such that $0<\sum_{g \in G} \mu_{g}\left(C_{1}\right)<+\infty$ and such that $\left.\mu_{g}\right|_{C_{0}}=\mu_{g}\left(C_{0}\right) \eta_{g}$. Then the Bernoulli action $G \curvearrowright(X, \mu)=\prod_{g \in G}\left(X_{0}, \mu_{g}\right)$ is non-singular with non-negligible conservative part $C_{0}^{G} \subset G$ and dissipative part $X \backslash C_{0}^{G}$. Taking $v=\eta_{e} \prec \mu_{e}$, for each $t<1$ the Bernoulli action $G \curvearrowright\left(X, \mu_{t}\right)=$ $\prod_{g \in G}\left(X_{0},(1-t) \eta_{e}+t \mu_{g}\right)$ is constructed in the same way, by starting with the conservative Bernoulli action $G \curvearrowright \prod_{g \in G}\left(C_{0},(1-t) \eta_{e}+t \eta_{g}\right)$. So for every $t \in(0,1)$ the Bernoulli action $G \curvearrowright\left(X, \mu_{t}\right)$ has non-negligible conservative part and non-negligible dissipative part.

We can also prove a version of Theorem B in the more general setting of Theorem 3.1.
THEOREM 3.3. Let G be a countable infinite non-amenable group. Make the same assumptions as in Theorem 3.1 and consider the non-singular Bernoulli actions $G \curvearrowright\left(X, \mu_{t}\right)$ given by (3.2). Assume, moreover, that:
(1) $v \sim \mu_{e}$, or
(2) $\quad \nu<\mu_{e}$ and $\sup _{g \in G}\left|\log d \mu_{g} / d \mu_{e}(x)\right|<+\infty$ for a.e. $x \in X_{0}$.

Then there exists a $t_{0}>0$ such that $G \curvearrowright\left(X, \mu_{t}\right)$ is strongly ergodic for every $t<t_{0}$.

Proof of Theorem 3.1. Assume that $G \curvearrowright\left(X, \mu_{1}\right)=\prod_{g \in G}\left(X_{0}, \mu_{g}\right)$ is non-singular. For every $t \in[0,1]$ we have that

$$
\sum_{h \in G} H^{2}\left(\mu_{h}^{t}, \mu_{g h}^{t}\right) \leq t \sum_{h \in G} H^{2}\left(\mu_{h}, \mu_{g h}\right) \quad \text { for every } g \in G,
$$

so that $G \curvearrowright\left(X, \mu_{t}\right)$ is non-singular for every $t \in[0,1]$. The rest of the proof we divide into two steps.

CLAIM 1. If $G \curvearrowright\left(X, \mu_{t}\right)$ is conservative, then $G \curvearrowright\left(X, \mu_{s}\right)$ is weakly mixing for every $s<t$.

Proof of Claim 1. Note that for every $g \in G$ we have that

$$
\left(\mu_{g}^{s}\right)^{r}=(1-r) v+r \mu_{g}^{s}=(1-r) v+r(1-s) v+r s \mu_{g}=\mu_{g}^{s r},
$$

so that $\left(\mu_{s}\right)_{r}=\mu_{s r}$. Therefore, it suffices to prove that $G \curvearrowright\left(X, \mu_{s}\right)$ is weakly mixing for every $s<1$, assuming that $G \curvearrowright\left(X, \mu_{1}\right)$ is conservative.

The claim is trivially true for $s=0$. So assume that $G \curvearrowright\left(X, \mu_{1}\right)$ is conservative and fix $s \in(0,1)$. Let $G \curvearrowright(Y, \eta)$ be an ergodic pmp action. Define $Y_{0}=X_{0} \times X_{0} \times\{0,1\}$ and define the probability measures λ on $\{0,1\}$ by $\lambda(0)=s$. Define the map $\theta: Y_{0} \rightarrow X_{0}$ by

$$
\theta\left(x, x^{\prime}, j\right)= \begin{cases}x & \text { if } j=0 \tag{3.3}\\ x^{\prime} & \text { if } j=1\end{cases}
$$

Then for every $g \in G$ we have that $\theta_{*}\left(\mu_{g} \times v \times \lambda\right)=\mu_{g}^{s}$. Write $Z=\{0,1\}^{G}$ and equip Z with the probability measure λ^{G}. We identify the Bernoulli action $G \curvearrowright Y_{0}^{G}$ with the diagonal action $G \curvearrowright X \times X \times Z$. By applying θ in each coordinate we obtain a G-equivariant factor map

$$
\begin{equation*}
\Psi: X \times X \times Z \rightarrow X: \quad \Psi\left(x, x^{\prime}, z\right)_{h}=\theta\left(x_{h}, x_{h}^{\prime}, z_{h}\right) . \tag{3.4}
\end{equation*}
$$

Then the map $\operatorname{id}_{Y} \times \Psi: Y \times X \times X \times Z \rightarrow Y \times X$ is G-equivariant and we have that $\left(\operatorname{id}_{Y} \times \Psi\right)_{*}\left(\eta \times \mu_{1} \times \mu_{0} \times \lambda^{G}\right)=\eta \times \mu_{s}$. The construction above is similar to [KS20, §4].

Take $F \in L^{\infty}\left(Y \times X, \eta \times \mu_{s}\right)^{G}$. Note that the diagonal action $G \curvearrowright\left(Y \times X, \eta \times \mu_{1}\right)$ is conservative, since $G \curvearrowright(Y, \eta)$ is pmp. The action $G \curvearrowright\left(X \times Z, \mu_{0} \times \lambda^{G}\right)$ can be identified with a pmp Bernoulli action with base space ($X_{0} \times\{0,1\}, v \times \lambda$), so that it is mixing. By [SW81, Theorem 2.3] we have that

$$
L^{\infty}\left(Y \times X \times X \times Z, \eta \times \mu_{1} \times \mu_{0} \times \lambda^{G}\right)^{G}=L^{\infty}\left(Y \times X, \eta \times \mu_{1}\right)^{G} \bar{\otimes} 1 \bar{\otimes} 1
$$

which implies that the assignment $\left(y, x, x^{\prime}, z\right) \mapsto F\left(y, \Psi\left(x, x^{\prime}, z\right)\right)$ is essentially independent of x^{\prime} and z. Choosing a finite set of coordinates $\mathcal{F} \subset G$ and changing, for $g \in \mathcal{F}$, the value z_{g} between 0 and 1 , we see that F is essentially independent of the x_{g}-coordinates for $g \in \mathcal{F}$. As this is true for any finite set $\mathcal{F} \subset G$, we have that $F \in L^{\infty}(Y)^{G} \bar{\otimes} 1$. The action $G \curvearrowright(Y, \eta)$ is ergodic and therefore F is essentially constant. We conclude that $G \curvearrowright\left(X, \mu_{s}\right)$ is weakly mixing.

CLAIM 2. If $v \sim \mu_{e}$ and if $G \curvearrowright\left(X, \mu_{t}\right)$ is not dissipative, then $G \curvearrowright\left(X, \mu_{s}\right)$ is conservative for every $s<t$.

Proof of Claim 2. Again it suffices to assume that $G \curvearrowright\left(X, \mu_{1}\right)$ is not dissipative and to show that $G \curvearrowright\left(X, \mu_{s}\right)$ is conservative for every $s<1$.

When $s=0$, the statement is trivial, so assume that $G \curvearrowright\left(X, \mu_{1}\right)$ is not dissipative and fix $s \in(0,1)$. Let $C \subset X$ denote the non-negligible conservative part of $G \curvearrowright\left(X, \mu_{1}\right)$. As in the proof of Claim 1, write $Z=\{0,1\}^{G}$ and let λ be the probability measure on $\{0,1\}$ given by $\lambda(0)=s$. Writing $\Psi: X \times X \times Z \rightarrow X$ for the G-equivariant map (3.4). We claim that $\Psi_{*}\left(\left.\left(\mu_{1} \times \mu_{0} \times \lambda^{G}\right)\right|_{C \times X \times Z}\right) \sim \mu_{s}$, so that $G \curvearrowright\left(X, \mu_{s}\right)$ is a factor of a conservative non-singular action, and therefore must be conservative itself.

As $\Psi_{*}\left(\mu_{1} \times \mu_{0} \times \lambda^{G}\right)=\mu_{s}$, we have that $\Psi_{*}\left(\left.\left(\mu_{1} \times \mu_{0} \times \lambda^{G}\right)\right|_{C \times X \times Z}\right) \prec \mu_{s}$. Let $\mathcal{U} \subset X$ be the Borel set, uniquely determined up to a set of measure zero, such that $\left.\Psi_{*}\left(\left.\left(\mu_{1} \times \mu_{0} \times \lambda^{G}\right)\right|_{C \times X \times Z}\right) \sim \mu_{s}\right|_{\mathcal{U}}$. We have to show that $\mu_{s}(X \backslash \mathcal{U})=0$. Fix a finite subset $\mathcal{F} \subset G$. For every $t \in[0,1]$ define

$$
\begin{aligned}
& \left(X_{1}, \gamma_{1}^{t}\right)=\prod_{g \in \mathcal{F}}\left(X_{0},(1-t) v+t \mu_{g}\right), \\
& \left(X_{2}, \gamma_{2}^{t}\right)=\prod_{g \in G \backslash \mathcal{F}}\left(X_{0},(1-t) v+t \mu_{g}\right) .
\end{aligned}
$$

We shall write $\gamma_{1}=\gamma_{1}^{1}, \gamma_{2}=\gamma_{2}^{1}$. Also define

$$
\begin{aligned}
& \left(Y_{1}, \zeta_{1}\right)=\prod_{g \in \mathcal{F}}\left(X_{0} \times X_{0} \times\{0,1\}, \mu_{g} \times v \times \lambda\right) \\
& \left(Y_{2}, \zeta_{2}\right)=\prod_{g \in G \backslash \mathcal{F}}\left(X_{0} \times X_{0} \times\{0,1\}, \mu_{g} \times v \times \lambda\right)
\end{aligned}
$$

By applying the map (3.3) in every coordinate, we get factor maps $\Psi_{j}: Y_{j} \rightarrow X_{j}$ that satisfy $\left(\Psi_{j}\right)_{*}\left(\zeta_{j}\right)=\gamma_{j}^{s}$ for $j=1$, 2. Identify $X_{1} \times Y_{2} \cong X \times\left(X_{0} \times\{0,1\}\right)^{G \backslash \mathcal{F}}$ and define the subset $C^{\prime} \subset X_{1} \times Y_{2}$ by $C^{\prime}=C \times\left(X_{0} \times\{0,1\}\right)^{G \backslash \mathcal{F}}$. Let $\mathcal{U}^{\prime} \subset X$ be Borel such that

$$
\left.\left(\operatorname{id}_{X_{1}} \times \Psi_{2}\right)_{*}\left(\left.\left(\gamma_{1} \times \zeta_{2}\right)\right|_{C^{\prime}}\right) \sim\left(\gamma_{1} \times \gamma_{2}^{s}\right)\right|_{\mathcal{U}^{\prime}} .
$$

Identify $Y_{1} \times X_{2} \cong X \times\left(X_{0} \times\{0,1\}\right)^{\mathcal{F}}$ and define $V \subset Y_{1} \times X_{2}$ by $V=\mathcal{U}^{\prime} \times\left(X_{0} \times\right.$ $\{0,1\})^{\mathcal{F}}$. Then we have that

$$
\begin{aligned}
\left(\Psi_{1} \times \operatorname{id}_{X_{2}}\right)_{*}\left(\left.\left(\zeta_{1} \times \gamma_{2}^{s}\right)\right|_{V}\right) & \sim\left(\Psi_{1} \times \operatorname{id}_{X_{2}}\right)_{*}\left(\operatorname{id}_{Y_{1}} \times \Psi_{2}\right)_{*}\left(\left.\left(\gamma_{1} \times \zeta_{1}\right)\right|_{C^{\prime}} \times v^{\mathcal{F}} \times \lambda^{\mathcal{F}}\right) \\
& =\Psi_{*}\left(\left.\left(\zeta_{1} \times \zeta_{2}\right)\right|_{C \times X \times Z}\right) \sim \mu_{s} \mid \mathcal{U}
\end{aligned}
$$

Let $\pi: X_{1} \times X_{2} \rightarrow X_{2}$ and $\pi^{\prime}: Y_{1} \times X_{2} \rightarrow X_{2}$ denote the coordinate projections. Note that by construction we have that

$$
\begin{equation*}
\pi_{*}^{\prime}\left(\left.\left(\zeta_{1} \times \gamma_{2}^{s}\right)\right|_{V}\right) \sim \pi_{*}\left(\left.\left(\gamma_{1} \times \gamma_{2}^{s}\right)\right|_{\mathcal{U}^{\prime}}\right) \sim \pi_{*}\left(\mu_{s} \mid \mathcal{U}\right) \tag{3.5}
\end{equation*}
$$

Let $W \subset X_{2}$ be Borel such that $\left.\pi_{*}\left(\mu_{s} \mid \mathcal{U}\right) \sim \gamma_{2}^{s}\right|_{W}$. For every $y \in X_{2}$ define the Borel sets

$$
\mathcal{U}_{y}=\left\{x \in X_{1}:(x, y) \in \mathcal{U}\right\} \quad \text { and } \quad \mathcal{U}_{y}^{\prime}=\left\{x \in X_{1}:(x, y) \in \mathcal{U}^{\prime}\right\} .
$$

As $\left.\pi_{*}\left(\left.\left(\gamma_{1} \times \gamma_{2}^{s}\right)\right|_{\mathcal{U}^{\prime}}\right) \sim \gamma_{2}^{s}\right|_{W}$, we have that

$$
\gamma_{1}\left(\mathcal{U}_{y}^{\prime}\right)>0 \quad \text { for } \gamma_{2}^{s} \text {-a.e. } y \in W .
$$

The disintegration of $\left.\left(\gamma_{1} \times \gamma_{2}^{s}\right)\right|_{\mathcal{U}^{\prime}}$ along π is given by $\left(\gamma_{1} \mid \mathcal{U}_{y}^{\prime}\right)_{y \in W}$. Therefore, the disintegration of $\left.\left(\zeta_{1} \times \gamma_{2}^{s}\right)\right|_{V}$ along π^{\prime} is given by $\left(\gamma_{1} \mid \mathcal{U}_{y}^{\prime} \times v^{\mathcal{F}} \times \lambda^{\mathcal{F}}\right)_{y \in W}$. We conclude that the disintegration of $\left(\Psi_{1} \times \operatorname{id}_{X_{2}}\right)_{*}\left(\left.\left(\zeta_{1} \times \gamma_{2}^{s}\right)\right|_{V}\right)$ along π is given by $\left(\left(\Psi_{1}\right)_{*}\left(\left.\gamma_{1}\right|_{\mathcal{U}_{y}^{\prime}} \times\right.\right.$ $\left.\left.\nu^{\mathcal{F}} \times \lambda^{\mathcal{F}}\right)\right)_{y \in W}$. The disintegration of $\mu_{s} \mid \mathcal{U}$ along π is given by $\left(\gamma_{2}^{s} \mid \mathcal{U}_{y}\right)_{y \in W}$. Since $\mu_{s} \mid \mathcal{U} \sim\left(\Psi_{1} \times \operatorname{id}_{X_{2}}\right)_{*}\left(\left.\left(\zeta_{1} \times \gamma_{2}^{s}\right)\right|_{V}\right)$, we conclude that

$$
\left(\Psi_{1}\right)_{*}\left(\gamma_{1} \mid \mathcal{U}_{y}^{\prime} \times v^{\mathcal{F}} \times \lambda^{\mathcal{F}}\right) \sim \gamma_{1}^{s} \mid \mathcal{U}_{y} \quad \text { for } \gamma_{2}^{s} \text {-a.e. } y \in W .
$$

As $\gamma_{1}\left(\mathcal{U}_{y}^{\prime}\right)>0$ for γ_{2}^{s}-a.e. $y \in W$, and using that $v \sim \mu_{e}$, we see that

$$
\begin{aligned}
\gamma_{1}^{s} \sim v^{\mathcal{F}} & \sim\left(\Psi_{1}\right)_{*}\left(\left.\left(\gamma_{1} \times v^{\mathcal{F}} \times \lambda^{\mathcal{F}}\right)\right|_{\mathcal{U}_{y}^{\prime} \times X_{0}^{\mathcal{F}} \times\{1\}^{\mathcal{F}}}\right) \\
& \prec\left(\Psi_{1}\right)_{*}\left(\gamma_{1} \mid \mathcal{U}_{y}^{\prime} \times v^{\mathcal{F}} \times \lambda^{\mathcal{F}}\right) .
\end{aligned}
$$

for γ_{2}^{s}-a.e. $y \in W$. It is clear that also $\left(\Psi_{1}\right)_{*}\left(\gamma_{1} \mid \mathcal{U}_{y}^{\prime} \times v^{\mathcal{F}} \times \lambda^{\mathcal{F}}\right) \prec \gamma_{1}^{s}$, so that $\gamma_{1}^{s} \mid \mathcal{U}_{y} \sim \gamma_{1}^{s}$ for γ_{2}^{s}-a.e. $y \in W$. Therefore, we have that $\gamma_{1}^{s}\left(X_{1} \backslash \mathcal{U}_{y}\right)=0$ for γ_{2}^{s}-a.e. $y \in W$, so that

$$
\mu_{s}\left(\mathcal{U} \Delta\left(X_{0}^{\mathcal{F}} \times W\right)\right)=0
$$

Since this is true for every finite subset $\mathcal{F} \subset G$, we conclude that $\mu_{s}(X \backslash \mathcal{U})=0$.
The conclusion of the proof now follows by combining both claims. Assume that $G \curvearrowright\left(X, \mu_{t}\right)$ is not dissipative and fix $s<t$. Choose r such that $s<r<t$.
$v \sim \mu_{e}$. By Claim 2 we have that $G \curvearrowright\left(X, \mu_{r}\right)$ is conservative. Then by Claim 1 we see that $G \curvearrowright\left(X, \mu_{s}\right)$ is weakly mixing.
$v \prec \mu_{e}$. As $v \prec \mu_{e}$, the measures μ_{e}^{t} and μ_{e} are equivalent. We have that

$$
\frac{d \mu_{g}^{t}}{d \mu_{e}^{t}}=\left((1-t) \frac{d \nu}{d \mu_{e}}+t \frac{d \mu_{g}}{d \mu_{e}}\right) \frac{d \mu_{e}}{d \mu_{e}^{t}} .
$$

So if $\sup _{g \in G}\left|\log d \mu_{g} / d \mu_{e}(x)\right|<+\infty$ for a.e $x \in X_{0}$, we also have that

$$
\sup _{g \in G}\left|\log d \mu_{g}^{t} / d \mu_{e}^{t}(x)\right|<+\infty \quad \text { for a.e. } x \in X_{0} .
$$

It follows from [BV20, Proposition 4.3] that $G \curvearrowright\left(X, \mu_{t}\right)$ is conservative. Then by Claim 1 we have that $G \curvearrowright\left(X, \mu_{s}\right)$ is weakly mixing.

Remark 3.4. Let I be a countably infinite set and suppose that we are given a family of equivalent probability measures $\left(\mu_{i}\right)_{i \in I}$ on a standard Borel space X_{0}. Let ν be a probability measure on X_{0} that is equivalent to all the μ_{i}. If G is an lcsc group that acts
on I such that for each $i \in I$ the stabilizer subgroup $G_{i}=\{g \in G: g \cdot i=i\}$ is compact, then the pmp generalized Bernoulli action

$$
G \curvearrowright \prod_{i \in I}\left(X_{0}, \nu\right), \quad(g \cdot x)_{i}=x_{g^{-1 . i}}
$$

is mixing. For $t \in[0,1]$ write

$$
\left(X, \mu_{t}\right)=\prod_{i \in I}\left(X_{0},(1-t) v+t \mu_{i}\right)
$$

and assume that the generalized Bernoulli action $G \curvearrowright\left(X, \mu_{1}\right)$ is non-singular.
Since [SW81, Theorem 2.3] still applies to infinitely recurrent actions of lcse groups (see [AIM19, Remark 7.4]), it is straightforward to adapt the proof of Claim 1 in the proof of Theorem 3.1 to prove that if $G \curvearrowright\left(X, \mu_{t}\right)$ is infinitely recurrent, then $G \curvearrowright\left(X, \mu_{s}\right)$ is weakly mixing for every $s<t$. Similarly, we can adapt the proof of Claim 2, using that a factor of an infinitely recurrent action is again infinitely recurrent. Together, this leads to the following phase transition result in the lcsc setting.

Assume that $G_{i}=\{g \in G: g \cdot i=i\}$ is compact for every $i \in I$ and that $v \sim \mu_{e}$. Then there exists a $t_{1} \in[0,1]$ such that $G \curvearrowright\left(X, \mu_{t}\right)$ is dissipative up to compact stabilizers for every $t>t_{1}$ and weakly mixing for every $t<t_{1}$.

Recall the following definition from [BKV19, Definition 4.2]. When G is a countable infinite group and $G \curvearrowright(X, \mu)$ is a non-singular action on a standard probability space, a sequence $\left(\eta_{n}\right)$ of probability measures on G is called strongly recurrent for the action $G \curvearrowright(X, \mu)$ if

$$
\sum_{h \in G} \eta_{n}^{2}(h) \int_{X} \frac{d \mu(x)}{\sum_{k \in G} \eta_{n}\left(h k^{-1}\right) d k^{-1} \mu / d \mu(x)} \xrightarrow{n \rightarrow+\infty} 0 .
$$

We say that $G \curvearrowright(X, \mu)$ is strongly conservative if there exists a sequence $\left(\eta_{n}\right)$ of probability measures on G that is strongly recurrent for $G \curvearrowright(X, \mu)$.

Lemma 3.5. Let $G \curvearrowright(X, \mu)$ and $G \curvearrowright(Y, v)$ be non-singular actions of a countable infinite group G on standard probability spaces (X, μ) and (Y, ν). Suppose that $\psi:(X, \mu) \rightarrow(Y, \nu)$ is a measure-preserving G-equivariant factor map and that η_{n} is a sequence of probability measures on G that is strongly recurrent for the action $G \curvearrowright(X, \mu)$. Then η_{n} is strongly recurrent for the action $G \curvearrowright(Y, \nu)$.

Proof. Let $E: L^{0}(X,[0,+\infty)) \rightarrow L^{0}(Y,[0,+\infty))$ denote the conditional expectation map that is uniquely determined by

$$
\int_{Y} E(F) H d v=\int_{X} F(H \circ \psi) d \mu
$$

for all positive measurable functions $F: X \rightarrow[0,+\infty)$ and $H: Y \rightarrow[0,+\infty)$. Since

$$
\frac{d k^{-1} v}{d v}=\frac{d \psi_{*}\left(k^{-1} \mu\right)}{d \psi_{*} \mu}=E\left(\frac{d k^{-1} \mu}{d \mu}\right)
$$

for every $k \in G$, we have that

$$
\begin{equation*}
\sum_{k \in G} \eta_{n}\left(h k^{-1}\right) \frac{d k^{-1} v}{d v}(y)=E\left(\sum_{k \in G} \eta_{n}\left(h k^{-1}\right) \frac{d k^{-1} \mu}{d \mu}\right)(y) \quad \text { for a.e. } y \in Y \tag{3.6}
\end{equation*}
$$

By Jensen's inequality for conditional expectations, applied to the convex function $t \mapsto 1 / t$, we also have that

$$
\begin{equation*}
\frac{1}{E\left(\sum_{k \in G} \eta_{n}\left(h k^{-1}\right) d k^{-1} \mu / d \mu\right)(y)} \leq E\left(\frac{1}{\sum_{k \in G} \eta_{n}\left(h k^{-1}\right) d k^{-1} \mu / d \mu}\right)(y) \text { for a.e. } y \in Y \text {. } \tag{3.7}
\end{equation*}
$$

Combining (3.6) and (3.7), we see that

$$
\begin{aligned}
& \sum_{h \in G} \eta_{n}^{2}(h) \int_{Y} \frac{d v(y)}{\sum_{k \in G} \eta_{n}\left(h k^{-1}\right) d k^{-1} v / d \nu(y)} \\
& \quad \leq \sum_{h \in G} \eta_{n}^{2}(h) \int_{Y} E\left(\frac{1}{\sum_{k \in G} \eta_{n}\left(h k^{-1}\right) d k^{-1} \mu / d \mu}\right)(y) d v(y) \\
& \quad=\sum_{h \in G} \eta_{n}^{2}(h) \int_{X} \frac{d \mu(x)}{\sum_{k \in G} \eta_{n}\left(h k^{-1}\right) d k^{-1} \mu / d \mu(x)},
\end{aligned}
$$

which converges to 0 as η_{n} is strongly recurrent for $G \curvearrowright(X, \mu)$.
We say that a non-singular group action $G \curvearrowright(X, \mu)$ has an invariant mean if there exists a G-invariant linear functional $\varphi \in L^{\infty}(X)^{*}$. We say that $G \curvearrowright(X, \mu)$ is amenable (in the sense of Zimmer) if there exists a G-equivariant conditional expectation $E: L^{\infty}(G \times X) \rightarrow L^{\infty}(X)$, where the action $G \curvearrowright G \times X$ is given by $g \cdot(h, x)=$ $(g h, g \cdot x)$.

Proposition 3.6. Let G be a countable infinite group and let $\left(\mu_{g}\right)_{g \in G}$ be a family of equivalent probability measures on a standard Borel space X_{0} that is not supported on a single atom. Let v be a probability measure on X_{0} and for each $t \in[0,1]$ consider the Bernoulli action (3.2). Assume that $G \curvearrowright\left(X, \mu_{1}\right)$ is non-singular.
(1) If $G \curvearrowright\left(X, \mu_{t}\right)$ has an invariant mean, then $G \curvearrowright\left(X, \mu_{s}\right)$ has an invariant mean for every $s<t$.
(2) If $G \curvearrowright\left(X, \mu_{t}\right)$ is amenable, then $G \curvearrowright\left(X, \mu_{s}\right)$ is amenable for every $s>t$.
(3) If $G \curvearrowright\left(X, \mu_{t}\right)$ is strongly conservative, then $G \curvearrowright\left(X, \mu_{s}\right)$ is strongly conservative for every $s<t$.

Proof. (1) We may assume that $t=1$. So suppose that $G \curvearrowright\left(X, \mu_{1}\right)$ has an invariant mean and fix $s<1$. Let λ be the probability measure on $\{0,1\}$ that is given by $\lambda(0)=s$. Then by [AIM19, Proposition A.9] the diagonal action $G \curvearrowright\left(X \times X \times\{0,1\}^{G}\right.$, $\left.\mu_{1} \times \mu_{0} \times \lambda^{G}\right)$ has an invariant mean. Since $G \curvearrowright\left(X, \mu_{s}\right)$ is a factor of this diagonal action, it admits a G-invariant mean as well.
(2) It suffices to show that $G \curvearrowright\left(X, \mu_{1}\right)$ is amenable whenever there exists a $t \in(0,1)$ such that $G \curvearrowright\left(X, \mu_{t}\right)$ is amenable. Write λ for the probability measure on $\{0,1\}$ given by $\lambda(0)=t$. Then $G \curvearrowright\left(X, \mu_{t}\right)$ is a factor of the diagonal action $G \curvearrowright(X \times X \times$
$\{0,1\}^{G}, \mu_{1} \times \mu_{0} \times \lambda^{G}$), so by [Zim78, Theorem 2.4] also the latter action is amenable. Since $G \curvearrowright\left(X \times\{0,1\}^{G}, \mu_{0} \times \lambda^{G}\right)$ is pmp, we have that $G \curvearrowright\left(X, \mu_{1}\right)$ is amenable.
(3) We may again assume that $t=1$. Suppose that $\left(\eta_{n}\right)$ is a strongly recurrent sequence of probability measures on G for the action $G \curvearrowright\left(X, \mu_{1}\right)$. Fix $s<1$ and let λ be the probability measure on $\{0,1\}$ defined by $\lambda(0)=s$. As the diagonal action $G \curvearrowright\left(X \times\{0,1\}^{G}, \mu_{0} \times \lambda^{G}\right)$ is pmp, the sequence η_{n} is also strongly recurrent for the diagonal action $G \curvearrowright\left(X \times X \times\{0,1\}, \mu_{1} \times \mu_{0} \times \lambda^{G}\right)$. Since $G \curvearrowright\left(X, \mu_{t}\right)$ is a factor of $G \curvearrowright\left(X \times X \times\{0,1\}^{G}, \mu_{1} \times \mu_{0} \times \lambda^{G}\right)$, it follows from Lemma 3.5 that the sequence η_{n} is strongly recurrent for $G \curvearrowright\left(X, \mu_{t}\right)$.

We finally prove Theorem 3.3. The proof relies heavily upon the techniques developed in [MV20, §5].

Proof of Theorem 3.3. For every $t \in(0,1]$ write ρ^{t} for the Koopman representation

$$
\rho^{t}: G \curvearrowright L^{2}\left(X, \mu_{t}\right): \quad\left(\rho_{g}^{t}(\xi)\right)(x)=\left(\frac{d g \mu_{t}}{d \mu_{t}}(x)\right)^{1 / 2} \xi\left(g^{-1} \cdot x\right) .
$$

Fix $s \in(0,1)$ and let $C>0$ be such that $\log (1-x) \geq-C x$ for every $x \in[0, s)$. Then for every $t<s$ and every $g \in G$ we have that

$$
\begin{aligned}
\log \left(\left\langle\rho_{g}^{t}(1), 1\right\rangle\right) & =\sum_{h \in G} \log \left(1-H^{2}\left(\mu_{g h}^{t}, \mu_{h}^{t}\right)\right) \\
& \geq \sum_{h \in G} \log \left(1-t H^{2}\left(\mu_{g h}, \mu_{h}\right)\right) \\
& \geq-C t \sum_{h \in G} H^{2}\left(\mu_{g h}, \mu_{h}\right) .
\end{aligned}
$$

Because $G \curvearrowright\left(X, \mu_{1}\right)$ is non-singular we get that

$$
\begin{equation*}
\left\langle\rho_{g}^{t}(1), 1\right\rangle \rightarrow 1 \quad \text { as } t \rightarrow 0, \text { for every } g \in G \tag{3.8}
\end{equation*}
$$

We claim that there exists a $t^{\prime}>0$ such that $G \curvearrowright\left(X, \mu_{t}\right)$ is non-amenable for every $t<t^{\prime}$. Suppose, to the contrary, that t_{n} is a sequence that converges to zero such that $G \curvearrowright\left(X, \mu_{t_{n}}\right)$ is amenable for every $n \in \mathbb{N}$. Then it follows from [Nev03, Theorem 3.7] that $\rho^{t_{n}}$ is weakly contained in the left regular representation λ_{G} for every $n \in \mathbb{N}$. Write 1_{G} for the trivial representation of G. It follows from (3.8) that $\bigoplus_{n \in \mathbb{N}} \rho^{t_{n}}$ has almost invariant vectors, so that

$$
1_{G} \prec \bigoplus_{n \in \mathbb{N}} \rho^{t_{n}} \prec \infty \lambda_{G} \prec \lambda_{G}
$$

which is in contradiction to the non-amenability of G. By Theorem 3.1 there exists a $t_{1} \in[0,1]$ such that $G \curvearrowright\left(X, \mu_{t}\right)$ is weakly mixing for every $t<t_{1}$. Since every dissipative action is amenable (see, for example, [AIM19, Theorem A.29]) it follows that $t_{1} \geq t^{\prime}>0$.

Write $Z_{0}=[0,1)$ and let λ denote the Lebesgue probability measure on Z_{0}. Let ρ^{0} denote the reduced Koopman representation

$$
\rho^{0}: G \curvearrowright L^{2}\left(X \times Z_{0}^{G}, \mu_{0} \times \lambda^{G}\right) \ominus \mathbb{C} 1: \quad\left(\rho_{g}^{0}(\xi)\right)(x)=\xi\left(g^{-1} \cdot x\right)
$$

As G is non-amenable, ρ^{0} has stable spectral gap. Suppose that for every $s>0$ we can find $0<s^{\prime}<s$ such that $\rho^{s^{\prime}}$ is weakly contained in $\rho^{s^{\prime}} \otimes \rho^{0}$. Then there exists a sequence s_{n} that converges to zero, such that $\rho^{s_{n}}$ is weakly contained in $\rho^{s_{n}} \otimes \rho^{0}$ for every $n \in \mathbb{N}$. This implies that $\bigoplus_{n \in \mathbb{N}} \rho^{s_{n}}$ is weakly contained in $\left(\bigoplus_{n \in \mathbb{N}} \rho^{s_{n}}\right) \otimes \rho^{0}$. But by (3.8), the representation $\bigoplus_{n \in \mathbb{N}} \rho^{s_{n}}$ has almost invariant vectors, so that $\left(\bigoplus_{n \in \mathbb{N}} \rho^{s_{n}}\right) \otimes \rho^{0}$ weakly contains the trivial representation. This is in contradiction to ρ^{0} having stable spectral gap. We conclude that there exists an $s>0$ such that ρ^{t} is not weakly contained in $\rho^{t} \otimes \rho^{0}$ for every $t<s$.

We prove that $G \curvearrowright\left(X, \mu_{t}\right)$ is strongly ergodic for every $t<\min \left\{t^{\prime}, s\right\}$, in which case we can apply [MV20, Lemma 5.2] to the non-singular action $G \curvearrowright\left(X, \mu_{t}\right)$ and the pmp action $G \curvearrowright\left(X \times Z_{0}^{G}, \mu_{0} \times \lambda^{G}\right)$ by our choice of t^{\prime} and s. After rescaling, we may assume that $G \curvearrowright\left(X, \mu_{1}\right)$ is ergodic and that ρ^{t} is not weakly contained in $\rho^{t} \otimes \rho^{0}$ for every $t \in(0,1)$.

Let $t \in(0,1)$ be arbitrary and define the map

$$
\Psi: X \times X \times Z_{0}^{G} \rightarrow X: \quad \Psi(x, y, z)_{h}= \begin{cases}x_{h} & \text { if } z_{h} \leq t \\ y_{h} & \text { if } z_{h}>t\end{cases}
$$

Then Ψ is G-equivariant and we have that $\Psi\left(\mu_{1} \times \mu_{0} \times \lambda^{G}\right)=\mu_{t}$. Suppose that $G \curvearrowright\left(X, \mu_{t}\right)$ is not strongly ergodic. Then we can find a bounded almost invariant sequence $f_{n} \in L^{\infty}\left(X, \mu_{t}\right)$ such that $\left\|f_{n}\right\|_{2}=1$ and $\mu_{t}\left(f_{n}\right)=0$ for every $n \in \mathbb{N}$. Therefore, $\Psi_{*}\left(f_{n}\right)$ is a bounded almost invariant sequence for $G \curvearrowright\left(X \times X \times Z_{0}^{G}, \mu_{1} \times\right.$ $\left.\mu_{0} \times \lambda^{G}\right)$. Let $E: L^{\infty}\left(X \times X \times Z_{0}^{G}\right) \rightarrow L^{\infty}(X)$ be the conditional expectation that is uniquely determined by $\mu_{1} \circ E=\mu_{1} \times \mu_{0} \times \lambda^{G}$. By [MV20, Lemma 5.2] we have that $\lim _{n \rightarrow \infty}\left\|\left(E \circ \Psi_{*}\right)\left(f_{n}\right)-\Psi_{*}\left(f_{n}\right)\right\|_{2}=0$. As Ψ is measure-preserving we get, in particular, that

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|\left(E \circ \Psi_{*}\right)\left(f_{n}\right)\right\|_{2}=1 \tag{3.9}
\end{equation*}
$$

Note that if $\mu_{t}(f)=0$ for some $f \in L^{2}\left(X, \mu_{t}\right)$, we have that $\mu_{1}\left(\left(E \circ \Psi_{*}\right)(f)\right)=0$. So we can view $E \circ \Psi_{*}$ as a bounded operator

$$
E \circ \Psi_{*}: L^{2}\left(X, \mu_{t}\right) \ominus \mathbb{C} 1 \rightarrow L^{2}\left(X, \mu_{1}\right) \ominus \mathbb{C} 1
$$

CLAIM. The bounded operator $E \circ \Psi_{*}: L^{2}\left(X, \mu_{t}\right) \ominus \mathbb{C} 1 \rightarrow L^{2}\left(X, \mu_{1}\right) \ominus \mathbb{C} 1$ has norm strictly less than 1 .

The claim is in direct contradiction to (3.9), so we conclude that $G \curvearrowright\left(X, \mu_{t}\right)$ is strongly ergodic.

Proof of claim. For every $g \in G$, let φ_{g} be the map

$$
\varphi_{g}: L^{2}\left(X_{0}, \mu_{g}^{t}\right) \rightarrow L^{2}\left(X_{0}, \mu_{g}\right): \quad \varphi_{g}(F)=t F+(1-t) \nu(F) \cdot 1
$$

Then $E \circ \Psi_{*}: L^{2}\left(X_{0}, \mu_{t}\right) \rightarrow L^{2}\left(X, \mu_{1}\right)$ is given by the infinite product $\bigotimes_{g \in G} \varphi_{g}$. For every $g \in G$ we have that

$$
\|F\|_{2, \mu_{g}}=\left\|\left(d \mu_{g}^{t} / d \mu_{g}\right)^{-1 / 2} F\right\|_{2, \mu_{g}^{t}} \leq t^{-1 / 2}\|F\|_{2, \mu_{g}^{t}},
$$

so that the inclusion map $\iota_{g}: L^{2}\left(X_{0}, \mu_{g}^{t}\right) \hookrightarrow L^{2}\left(X_{0}, \mu_{g}\right)$ satisfies $\left\|\iota_{g}\right\| \leq t^{-1 / 2}$ for every $g \in G$. We have that

$$
\varphi_{g}(F)=t\left(F-\mu_{g}(F) \cdot 1\right)+\mu_{t}(F) \cdot 1 \quad \text { for every } F \in L^{2}\left(X_{0}, \mu_{g}^{t}\right)
$$

So if we write P_{g}^{t} for the projection map onto $L^{2}\left(X_{0}, \mu_{g}^{t}\right) \ominus \mathbb{C} 1$, and P_{g} for the projection map onto $L^{2}\left(X_{0}, \mu_{g}\right) \ominus \mathbb{C} 1$, we have that

$$
\begin{equation*}
\varphi_{g} \circ P_{g}^{t}=t\left(P_{g} \circ \iota_{g}\right) \quad \text { for every } g \in G \tag{3.10}
\end{equation*}
$$

For a non-empty finite subset $\mathcal{F} \subset G$ let $V(\mathcal{F})$ be the linear subspace of $L^{2}\left(X, \mu_{t}\right) \ominus \mathbb{C} 1$ spanned by

$$
\left(\bigotimes_{g \in \mathcal{F}} L^{2}\left(X_{0}, \mu_{g}^{t}\right) \ominus \mathbb{C} 1\right) \otimes \bigotimes_{g \in G \backslash \mathcal{F}} 1
$$

Then, using (3.10), we see that

$$
\left\|\left(E \circ \Psi_{*}\right)(f)\right\|_{2} \leq t^{|\mathcal{F}| / 2}\|f\|_{2} \quad \text { for every } f \in V(\mathcal{F})
$$

Since $\bigoplus_{\mathcal{F} \neq \emptyset} V(\mathcal{F})$ is dense inside $L^{2}\left(X, \mu_{t}\right) \ominus \mathbb{C} 1$, we have that

$$
\left\|\left.\left(E \circ \Psi_{*}\right)\right|_{L^{2}\left(X, \mu_{t}\right) \ominus \mathbb{C} 1}\right\| \leq t^{1 / 2}<1 .
$$

This also concludes the proof of Theorem 3.3.
4. Non-singular Bernoulli actions arising from groups acting on trees: proof of Theorem C
Let T be a locally finite tree and choose a root $\rho \in T$. Let μ_{0} and μ_{1} be equivalent probability measures on a standard Borel space X_{0}. Following [AIM19, §10], we define a family of equivalent probability measures $\left(\mu_{e}\right)_{e \in E}$ by

$$
\mu_{e}= \begin{cases}\mu_{0} & \text { if } e \text { is oriented towards } \rho \tag{4.1}\\ \mu_{1} & \text { if } e \text { is oriented away from } \rho\end{cases}
$$

Let $G \subset \operatorname{Aut}(T)$ be a subgroup. When $g \in G$ and $e \in E$, the edges e and $g \cdot e$ are simultaneously oriented towards, or away from ρ, unless $e \in E([\rho, g \cdot \rho])$. As $E([\rho, g$. $\rho]$) is finite for every $g \in G$, the generalized Bernoulli action

$$
\begin{equation*}
G \curvearrowright(X, \mu)=\prod_{e \in E}\left(X_{0}, \mu_{e}\right): \quad(g \cdot x)_{e}=x_{g^{-1} \cdot e} \tag{4.2}
\end{equation*}
$$

is non-singular. If we start with a different root $\rho^{\prime} \in T$, let $\left(\mu_{e}^{\prime}\right)_{e \in E}$ denote the corresponding family of probability measures on X_{0}. Then we have that $\mu_{e}=\mu_{e}^{\prime}$ for all but finitely many $e \in E$, so that the measures $\prod_{e \in E} \mu_{e}$ and $\prod_{e \in E} \mu_{e}^{\prime}$ are equivalent. Therefore, up to conjugacy, the action (4.2) is independent of the choice of root $\rho \in T$.

Lemma 4.1. Let T be a locally finite tree such that each vertex $v \in V(T)$ has degree at least 2. Suppose that $G \subset \operatorname{Aut}(T)$ is a countable subgroup. Let μ_{0} and μ_{1} be equivalent probability measures on a standard Borel space X_{0} and fix a root $\rho \in T$. Then the action $\alpha: G \curvearrowright(X, \mu)$ given by (4.2) is essentially free.

Proof. Take $g \in G \backslash\{e\}$. It suffices to show that $\mu(\{x \in X: g \cdot x=x\})=0$. If g is elliptic, there exist disjoint infinite subtrees $T_{1}, T_{2} \subset T$ such that $g \cdot T_{1}=T_{2}$. Note that

$$
\left(X_{1}, \mu_{1}\right)=\prod_{e \in E\left(T_{1}\right)}\left(X_{0}, \mu_{e}\right) \quad \text { and } \quad\left(X_{2}, \mu_{2}\right)=\prod_{e \in E\left(T_{2}\right)}\left(X_{0}, \mu_{e}\right)
$$

are non-atomic and that g induces a non-singular isomorphism $\varphi:\left(X_{1}, \mu_{1}\right) \rightarrow\left(X_{2}, \mu_{2}\right)$: $\varphi(x)_{e}=x_{g^{-1} \cdot e}$. We get that

$$
\mu_{1} \times \mu_{2}\left(\left\{(x, \varphi(x)): x \in X_{1}\right\}\right)=0 .
$$

A fortiori $\mu(\{x \in X: g \cdot x=x\})=0$. If g is hyperbolic, let $L_{g} \subset T$ denote its axis on which it acts by non-trivial translation. Then $\prod_{e \in E\left(L_{g}\right)}\left(X_{0}, \mu_{e}\right)$ is non-atomic and by [BKV19, Lemma 2.2] the action $g^{\mathbb{Z}} \curvearrowright \prod_{e \in E\left(L_{g}\right)}\left(X_{0}, \mu_{e}\right)$ is essentially free. This implies that also $\mu(\{x \in X: g \cdot x=x\})=0$.

We prove Theorem 4.2 below, which implies Theorem C and also describes the stable type when the action is weakly mixing.

Theorem 4.2. Let T be a locally finite tree with root $\rho \in T$. Let $G \subset \operatorname{Aut}(T)$ be a closed non-elementary subgroup with Poincaré exponent $\delta=\delta(G \curvearrowright T)$ given by (1.5). Let μ_{0} and μ_{1} be non-trivial equivalent probability measures on a standard Borel space X_{0}. Consider the generalized non-singular Bernoulli action $\alpha: G \curvearrowright(X, \mu)$ given by (4.2). Then α is:

- weakly mixing if $1-H^{2}\left(\mu_{0}, \mu_{1}\right)>\exp (-\delta / 2)$;
- dissipative up to compact stabilizers if $1-H^{2}\left(\mu_{0}, \mu_{1}\right)<\exp (-\delta / 2)$.

Let $G \curvearrowright(Y, \nu)$ be an ergodic pmp action and let $\Lambda \subset \mathbb{R}$ be the smallest closed subgroup that contains the essential range of the map

$$
X_{0} \times X_{0} \rightarrow \mathbb{R}: \quad\left(x, x^{\prime}\right) \mapsto \log \left(d \mu_{0} / d \mu_{1}\right)(x)-\log \left(d \mu_{0} / d \mu_{1}\right)\left(x^{\prime}\right)
$$

Let $\Delta: G \rightarrow \mathbb{R}_{>0}$ denote the modular function and let Σ be the smallest subgroup generated by Λ and $\log (\Delta(G))$.

Suppose that $1-H^{2}\left(\mu_{0}, \mu_{1}\right)>\exp (-\delta / 2)$. Then the Krieger flow and the flow of weights of $\beta: G \curvearrowright X \times Y$ are determined by Λ and Σ as follows.
(1) If Λ (respectively, Σ) is trivial, then the Krieger flow (respectively, flow of weights) is given by $\mathbb{R} \curvearrowright \mathbb{R}$.
(2) If Λ (respectively, Σ) is dense, then the Krieger flow (respectively, flow of weights) is trivial.
(3) If Λ (respectively, Σ) equals $a \mathbb{Z}$, with $a>0$, then the Krieger flow (respectively, flow of weights) is given by $\mathbb{R} \curvearrowright \mathbb{R} / a \mathbb{Z}$.

In general, we do not know the behaviour of the action (4.2) in the critical situation $1-H^{2}\left(\mu_{0}, \mu_{1}\right)=\exp (-\delta / 2)$. However, if T is a regular tree and $G \curvearrowright T$ has full Poincaré exponent, we prove in Proposition 4.3 below that the action is dissipative up to compact stabilizers. This is similar to [AIM19, Theorems 8.4 and 9.10].

Proposition 4.3. Let T be a q-regular tree with root $\rho \in T$ and let $G \subset \operatorname{Aut}(T)$ be a closed subgroup with Poincaré exponent $\delta=\delta(G \curvearrowright T)=\log (q-1)$. Let μ_{0} and μ_{1} be equivalent probability measures on a standard Borel space X_{0}.

If $1-H^{2}\left(\mu_{0}, \mu_{1}\right)=(q-1)^{-1 / 2}$, then the action (4.2) is dissipative up to compact stabilizers.

Interesting examples of actions of the form (4.2) arise when $G \subset \operatorname{Aut}(T)$ is the free group on a finite set of generators acting on its Cayley tree. In that case, following [AIM19, §6] and [MV20, Remark 5.3], we can also give a sufficient criterion for strong ergodicity.

Proposition 4.4. Let the free group \mathbb{F}_{d} on $d \geq 2$ generators act on its Cayley tree T. Let μ_{0} and μ_{1} be equivalent probability measures on a standard Borel space X_{0}. Then the action (4.2) dissipative if $1-H^{2}\left(\mu_{0}, \mu_{1}\right) \leq(2 d-1)^{-1 / 2}$ and weakly mixing and non-amenable if $1-H^{2}\left(\mu_{0}, \mu_{1}\right)>(2 d-1)^{-1 / 2}$. Furthermore, the action (4.2) is strongly ergodic when $1-H^{2}\left(\mu_{0}, \mu_{1}\right)>(2 d-1)^{-1 / 4}$.

The proof of Theorem 4.2 below is similar to that of [LP92, Theorem 4] and [AIM19, Theorems 10.3 and 10.4]

Proof of Theorem 4.2. Define a family $\left(X_{e}\right)_{e \in E}$ of independent random variables on $(X, \mu)=\prod_{e \in E}\left(X_{0}, \mu_{e}\right)$ by

$$
X_{e}(x)= \begin{cases}\log \left(d \mu_{1} / d \mu_{0}\right)\left(x_{e}\right) & \text { if } e \text { is oriented towards } \rho \tag{4.3}\\ \log \left(d \mu_{0} / d \mu_{1}\right)\left(x_{e}\right) & \text { if } e \text { is oriented away from } \rho\end{cases}
$$

For $v \in T$ we write

$$
S_{v}=\sum_{e \in E([\rho, v])} X_{e} .
$$

Then we have that

$$
\frac{d g \mu}{d \mu}=\exp \left(S_{g \cdot \rho}\right) \quad \text { for every } g \in G
$$

Since $G \subset \operatorname{Aut}(T)$ is a closed subgroup, for each $v \in T$ the stabilizer subgroup $G_{v}=\{g \in$ $G: g \cdot v=v\}$ is a compact open subgroup of G.

Suppose that $1-H^{2}\left(\mu_{0}, \mu_{1}\right)<\exp (-\delta / 2)$. Then we have that

$$
\int_{X} \sum_{v \in G \cdot \rho} \exp \left(S_{v}(x) / 2\right) d \mu(x)=\sum_{v \in G \cdot \rho}\left(1-H^{2}\left(\mu_{0}, \mu_{1}\right)\right)^{2 d(\rho, v)}<+\infty
$$

by definition of the Poincaré exponent. Therefore, we have that $\sum_{v \in G \cdot \rho} \exp \left(S_{v}(x) / 2\right)<$ $+\infty$ for a.e. $x \in X$. Let λ denote the left invariant Haar measure on G and define $L=\lambda\left(G_{\rho}\right)$, where $G_{\rho}=\{g \in G: g \cdot \rho=\rho\}$. Then we have that

$$
\int_{G} \frac{d g \mu}{d \mu}(x) d \lambda(g)=L \sum_{v \in G \cdot \rho} \exp \left(S_{v}(x)\right)<+\infty \quad \text { for a.e. } x \in X
$$

We conclude that $G \curvearrowright(X, \mu)$ is dissipative up to compact stabilizers.
Now assume that $1-H^{2}\left(\mu_{0}, \mu_{1}\right)>\exp (-\delta / 2)$. We start by proving that $G \curvearrowright(X, \mu)$ is infinitely recurrent. By [AIM19, Theorem 8.17] we can find a non-elementary closed compactly generated subgroup $G^{\prime} \subset G$ such that $1-H^{2}\left(\mu_{0}, \mu_{1}\right)>\exp \left(-\delta\left(G^{\prime}\right) / 2\right)$. Let $T^{\prime} \subset T$ be the unique minimal G^{\prime}-invariant subtree. Then G^{\prime} acts cocompactly on T^{\prime} and we have that $\delta\left(G^{\prime}\right)=\operatorname{dim}_{H} \partial T^{\prime}$. Let X and Y be independent random variables with distributions $\left(\log d \mu_{1} / d \mu_{0}\right)_{*} \mu_{0}$ and $\left(\log d \mu_{0} / d \mu_{1}\right)_{*} \mu_{1}$, respectively. Set $Z=X+Y$ and write

$$
\varphi(t)=\mathbb{E}(\exp (t Z))
$$

The assignment $t \mapsto \varphi(t)$ is convex, $\varphi(t)=\varphi(1-t)$ for every t and $\varphi(1 / 2)=$ $\left(1-H^{2}\left(\mu_{0}, \mu_{1}\right)\right)^{2}$. We conclude that

$$
\inf _{t \geq 0} \varphi(t)=\left(1-H^{2}\left(\mu_{0}, \mu_{1}\right)\right)^{2}
$$

Write R_{k} for the sum of k independent copies of Z. By the Chernoff-Cramér theorem, as stated in [LP92], there exists an $M \in \mathbb{N}$ such that

$$
\begin{equation*}
\mathbb{P}\left(R_{M} \geq 0\right)>\exp \left(-M \delta\left(G^{\prime}\right)\right) \tag{4.4}
\end{equation*}
$$

Below we define a new unoriented tree S. This means that the edge set of S consists of subsets $\{v, w\} \subset V(S)$. Fix a vertex $\rho^{\prime} \in T^{\prime}$ and define the unoriented tree S as follows.

- $\quad S$ has vertices $v \in T^{\prime}$ so that $d_{T^{\prime}}\left(\rho^{\prime}, v\right)$ is divisible by M.
- There is an edge $\{v, w\} \in E(S)$ between two vertices $v, w \in S$ if $d_{T^{\prime}}(v, w)=M$ and $\left[\rho^{\prime}, v\right]_{T^{\prime}} \subset\left[\rho^{\prime}, w\right]_{T^{\prime}}$.
Here the notation $\left[\rho^{\prime}, v\right]_{T^{\prime}}$ means that we consider the line segment $\left[\rho^{\prime}, v\right]$ as a subtree of T^{\prime}. We have that $\operatorname{dim}_{H} \partial S=M \operatorname{dim}_{H} \partial T^{\prime}=M \delta\left(G^{\prime}\right)$. Form a random subgraph $S(x)$ of S by deleting those edges $\{v, w\} \in E(S)$ where

$$
\sum_{e \in E\left([v, w]_{T^{\prime}}\right)} X_{e}\left(x_{e}\right)<0
$$

This is an edge percolation on S, where each edge remains with probability $p=\mathbb{P}\left(R_{M} \geq 0\right)$. So by (4.4) we have that $p \exp \left(\operatorname{dim}_{H} S\right)>1$. Furthermore, if $\{v, w\}$ and $\left\{v^{\prime}, w^{\prime}\right\}$ are edges of S so that $E\left([v, w]_{T^{\prime}}\right) \cap E\left(\left[v^{\prime}, w^{\prime}\right]_{T^{\prime}}\right)=\emptyset$, their presence in $S(x)$ constitutes independent events. So the percolation process is a quasi-Bernoulli percolation as introduced in [Lyo89]. Taking $w \in\left(1, p \exp \left(\operatorname{dim}_{H} S\right)\right)$ and setting $w_{n}=w^{-n}$, it follows from [Lyo89, Theorem 3.1] that percolation occurs almost surely, that is, $S(x)$ contains an infinite connected component for a.e. $x \in X$. Writing

$$
S_{v}^{\prime}(x)=\sum_{e \in E\left(\left[\rho^{\prime}, v\right]_{T^{\prime}}\right)} X_{e}\left(x_{e}\right)
$$

this means that for a.e. $x \in(X, \mu)$ we can find a constant $a_{x}>-\infty$ such that $S_{v}^{\prime}(x)>a_{x}$ for infinitely many $v \in T^{\prime}$. As T^{\prime} / G^{\prime} is finite, there exists a vertex $w \in T^{\prime}$ such that

$$
\begin{equation*}
\sum_{v \in G^{\prime} \cdot w} \exp \left(S_{v}^{\prime}(x)\right)=+\infty \quad \text { with positive probability. } \tag{4.5}
\end{equation*}
$$

Therefore, by Kolmogorov's zero-one law, we have that $\sum_{v \in G^{\prime} \cdot w} \exp \left(S_{v}^{\prime}(x)\right)=+\infty$ almost surely. Since a change of root results in a conjugate action, we may assume that $\rho=w$. Then (4.5) implies that $\sum_{v \in G \cdot \rho} \exp \left(S_{v}(x)\right)=+\infty$ for a.e. $x \in X$. Writing again L for the Haar measure of the stabilizer subgroup $G_{\rho}=\{g \in G: g \cdot \rho=\rho\}$, we see that

$$
\int_{G} \frac{d g \mu}{d \mu} d \lambda(g)=L \sum_{v \in G \cdot \rho} \exp \left(S_{v}\right)=+\infty \quad \text { almost surely. }
$$

We conclude that $G \curvearrowright(X, \mu)$ is infinitely recurrent. We prove that $G \curvearrowright(X, \mu)$ is weakly mixing using a phase transition result from the previous section. Define the measurable map

$$
\psi: X_{0} \rightarrow(0,1]: \quad \psi(x)=\min \left\{d \mu_{1} / d \mu_{0}(x), 1\right\}
$$

Let v be the probability measure on X_{0} determined by

$$
\frac{d v}{d \mu_{0}}(x)=\rho^{-1} \psi(x) \quad \text { where } \rho=\int_{X_{0}} \psi(x) d \mu_{0}(x)
$$

Then we have that $v \sim \mu_{0}$ and for every $s>1-\rho$ the probability measures

$$
\begin{gathered}
\eta_{0}^{s}=s^{-1}\left(\mu_{0}-(1-s) v\right), \\
\eta_{1}^{s}=s^{-1}\left(\mu_{1}-(1-s) v\right)
\end{gathered}
$$

are well defined. We consider the non-singular actions $G \curvearrowright\left(X, \eta_{s}\right)=\prod_{e \in E}\left(X_{0}, \eta_{e}^{s}\right)$, where

$$
\eta_{e}^{s}= \begin{cases}\eta_{0}^{s} & \text { if } e \text { is oriented towards } \rho \\ \eta_{1}^{s} & \text { if } e \text { is oriented away from } \rho\end{cases}
$$

By the dominated convergence theorem we have that $H^{2}\left(\eta_{0}^{s}, \eta_{1}^{s}\right) \rightarrow H^{2}\left(\mu_{0}, \mu_{1}\right)$ as $s \rightarrow 1$. So we can choose s close enough to 1 , but not equal to 1 , such that $1-H^{2}\left(\eta_{0}^{s}, \eta_{1}^{s}\right)>$ $\exp (-\delta / 2)$. By the first part of the proof we have that $G \curvearrowright\left(X, \eta_{s}\right)$ is infinitely recurrent. Note that

$$
\mu_{j}=(1-s) v+s \eta_{j}^{s} \quad \text { for } j=0,1
$$

Since we assumed that $G \subset \operatorname{Aut}(T)$ is closed, all the stabilizer subgroups $G_{v}=\{g \in G$: $g \cdot v=v\}$ are compact. By Remark 3.4 we conclude that $G \curvearrowright(X, \mu)$ is weakly mixing.

Let $G \curvearrowright(Y, \nu)$ be an ergodic pmp action. To determine the Krieger flow and the flow of weights of $\beta: G \curvearrowright X \times Y$ we use a similar approach to [AIM19, Theorem 10.4] and [VW17, Proposition 7.3]. First we determine the Krieger flow and then we deal with the flow of weights.

As before, let $G^{\prime} \subset G$ be a non-elementary compactly generated subgroup such that $1-H^{2}\left(\mu_{0}, \mu_{1}\right)>\exp \left(-\delta\left(G^{\prime}\right) / 2\right)$. By [AIM19, Theorem 8.7] we may assume that G / G^{\prime} is not compact. Let $T^{\prime} \subset T$ be the minimal G^{\prime}-invariant subtree. Let $v \in T^{\prime}$ be as in Lemma 4.5 below so that

$$
\begin{equation*}
\bigcap_{g \in G}\left(E\left(g T^{\prime}\right) \cup E\left(\left[v, g^{-1} \cdot v\right]\right)\right)=\emptyset \tag{4.6}
\end{equation*}
$$

Since changing the root yields a conjugate action, we may assume that $\rho=v$. Let $\left(Z_{0}, \zeta_{0}\right)$ be a standard probability space such that there exist measurable maps $\theta_{0}, \theta_{1}: Z_{0} \rightarrow X_{0}$ that satisfy $\left(\theta_{0}\right)_{*} \zeta_{0}=\mu_{0}$ and $\left(\theta_{1}\right)_{*} \zeta_{0}=\mu_{1}$. Write

$$
\begin{aligned}
(Z, \zeta) & =\prod_{e \in E(T) \backslash E\left(T^{\prime}\right)}\left(Z_{0}, \zeta_{0}\right), \\
\left(X_{1}, \rho_{1}\right) & =\prod_{e \in E(T) \backslash E\left(T^{\prime}\right)}\left(X_{0}, \mu_{e}\right), \\
\left(X_{2}, \rho_{2}\right) & =\prod_{e \in E\left(T^{\prime}\right)}\left(X_{0}, \mu_{e}\right) .
\end{aligned}
$$

By the first part of the proof we have that $G^{\prime} \curvearrowright\left(X_{2}, \rho_{2}\right)$ is infinitely recurrent. Define the pmp map

$$
\Psi:(Z, \zeta) \rightarrow\left(X_{1}, \rho_{1}\right): \quad(\Psi(z))_{e}= \begin{cases}\theta_{0}\left(z_{e}\right) & \text { if } e \text { is oriented towards } \rho \\ \theta_{1}\left(z_{e}\right) & \text { if } e \text { is oriented away from } \rho\end{cases}
$$

Consider

$$
U=\{e \in E(T): e \text { is oriented towards } \rho\}
$$

Since $g U \Delta U=E(T)([\rho, g \cdot \rho]) \subset E\left(T^{\prime}\right)$ for any $g \in G^{\prime}$, the set $\left(E(T) \backslash E\left(T^{\prime}\right)\right) \cap U$ is G^{\prime}-invariant. Therefore, Ψ is a G^{\prime}-equivariant factor map. Consider the Maharam extensions

$$
G^{\prime} \curvearrowright Z \times X_{2} \times Y \times \mathbb{R} \quad \text { and } \quad G \curvearrowright X \times Y \times \mathbb{R}
$$

of the diagonal actions $G^{\prime} \curvearrowright Z \times X_{2} \times Y$ and $G^{\prime} \curvearrowright X \times Y \times \mathbb{R}$, respectively. Identifying $(X, \mu)=\left(X_{1}, \rho_{1}\right) \times\left(X_{2}, \rho_{2}\right)$, we obtain a G^{\prime}-equivariant factor map

$$
\Phi: Z \times X_{2} \times Y \times \mathbb{R} \rightarrow X_{1} \times X_{2} \times Y \times \mathbb{R}: \quad \Phi(z, x, y, t)=(\Psi(z), x, y, t)
$$

Take $F \in L^{\infty}(X \times Y \times \mathbb{R})^{G}$. By [AIM19, Proposition A.33] the Maharam extension $G^{\prime} \curvearrowright X_{2} \times Y \times \mathbb{R}$ is infinitely recurrent. Since $G^{\prime} \curvearrowright Z$ is a mixing pmp generalized Bernoulli action we have that $F \circ \Phi \in L^{\infty}\left(Z \times X_{2} \times Y \times \mathbb{R}\right)^{G} \subset 1 \bar{\otimes} L^{\infty}\left(X_{2} \times Y \times\right.$ $\mathbb{R})^{G}$ by [SW81, Theorem 2.3]. Therefore, F is essentially independent of the $E(T) \backslash$ $E\left(T^{\prime}\right)$-coordinates. Thus, for any $g \in G$ the assignment

$$
(x, y, t) \mapsto F(g \cdot x, y, t)=F\left(x, y, t-\log \left(d g^{-1} \mu / d \mu\right)(x)\right)
$$

is essentially independent of the $E(T) \backslash E\left(g T^{\prime}\right)$-coordinates. Since $\log \left(d g^{-1} \mu / d \mu\right)$ only depends on the $E\left(\left[\rho, g^{-1} \cdot \rho\right]\right)$-coordinates, we deduce that F is essentially independent of
the $E(T) \backslash\left(E\left(g T^{\prime}\right) \cup E\left(\left[\rho, g^{-1} \cdot \rho\right]\right)\right)$-coordinates, for every $g \in G$. Therefore, by (4.6), we have that $F \in 1 \bar{\otimes} L^{\infty}(Y \times \mathbb{R})$.

So we have proven that any G-invariant function $F \in L^{\infty}(X \times Y \times \mathbb{R})$ is of the form $F(x, y, t)=H(y, t)$, for some $H \in L^{\infty}(Y \times \mathbb{R})$ that satisfies

$$
H(y, t)=H\left(g \cdot y, t+\log \left(d g^{-1} \mu / d \mu\right)(x)\right) \quad \text { for a.e. }(x, y, t) \in X \times Y \times \mathbb{R} .
$$

Since 0 is in the essential range of the maps $\log (d g \mu / d \mu)$, for every $g \in G$, we see that $H(g \cdot y, t)=H(y, t)$ for a.e. $(y, t) \in Y \times \mathbb{R}$. By ergodicity of $G \curvearrowright Y$, we conclude that H is of the form $H(y, t)=P(t)$, for some $P \in L^{\infty}(\mathbb{R})$ that satisfies

$$
\begin{equation*}
P(t)=P\left(t+\log \left(d g^{-1} \mu / d \mu\right)(x)\right) \quad \text { for a.e. }(x, t) \in X \times \mathbb{R}, \text { for every } g \in G \tag{4.7}
\end{equation*}
$$

Let $\Gamma \subset \mathbb{R}$ be the subgroup generated by the essential ranges of the maps $\log (d g \mu / d \mu)$, for $g \in G$. If $\Gamma=\{0\}$ we can identify $L^{\infty}(X \times Y \times \mathbb{R})^{G} \cong L^{\infty}(\mathbb{R})$. If $\Gamma \subset \mathbb{R}$ is dense, then it follows that P is essentially constant so that the Maharam extension $G \curvearrowright X \times Y \times$ \mathbb{R} is ergodic, that is, the Krieger flow of $G \curvearrowright X \times Y$ is trivial. If $\Gamma=a \mathbb{Z}$, with $a>0$, we conclude by (4.7) that we can identify $L^{\infty}(X \times Y \times \mathbb{R})^{G} \cong L^{\infty}(\mathbb{R} / a \mathbb{Z})$, so that the Krieger flow of $G \curvearrowright X \times Y$ is given by $\mathbb{R} \curvearrowright \mathbb{R} / a \mathbb{Z}$. Finally, note that the closure of Γ equals the closure of the subgroup generated by the essential range of the map

$$
X_{0} \times X_{0} \rightarrow \mathbb{R}: \quad\left(x, x^{\prime}\right) \mapsto \log \left(d \mu_{0} / d \mu_{1}\right)(x)-\log \left(d \mu_{0} / d \mu_{1}\right)\left(x^{\prime}\right)
$$

So we have calculated the Krieger flow in every case, concluding the proof of the theorem in the case where G is unimodular.

When G is not unimodular, let $G_{0}=\operatorname{ker} \Delta$ be the kernel of the modular function. Let $G \curvearrowright X \times Y \times \mathbb{R}$ be the modular Maharam extension and let $\alpha: G_{0} \curvearrowright X \times Y \times \mathbb{R}$ be its restriction to the subgroup G_{0}. Then we have that

$$
L^{\infty}(X \times Y \times \mathbb{R})^{G} \subset L^{\infty}(X \times Y \times \mathbb{R})^{\alpha}
$$

By [AIM19, Theorem 8.16] we have that $\delta\left(G_{0}\right)=\delta$, and we can apply the argument above to conclude that $L^{\infty}(X \times Y \times \mathbb{R})^{\alpha} \subset 1 \bar{\otimes} 1 \bar{\otimes} L^{\infty}(\mathbb{R})$. So for every $F \in L^{\infty}(X \times Y \times$ $\mathbb{R})^{G}$ there exists a $P \in L^{\infty}(\mathbb{R})$ such that

$$
\begin{equation*}
P(t)=P\left(t+\log \left(d g^{-1} \mu / d \mu\right)(x)+\log (\Delta(g))\right) \text { for a.e. }(x, t) \in X \times \mathbb{R}, \text { for every } g \in G . \tag{4.8}
\end{equation*}
$$

Let Π be the subgroup of \mathbb{R} generated by the essential range of the maps

$$
x \mapsto \log \left(d g^{-1} \mu / d \mu\right)(x)+\log (\Delta(g)) \quad \text { with } g \in G
$$

As 0 is contained in the essential range of $\log \left(d g^{-1} \mu / d \mu\right)$, for every $g \in G$, we get that $\log (\Delta(G)) \subset \Pi$. Therefore, Π also contains the subgroup $\Gamma \subset \mathbb{R}$ defined above. Thus, the closure of Π equals the closure of Σ, where $\Sigma \subset \mathbb{R}$ is the subgroup as in the statement of the theorem. From (4.8) we conclude that we may identify $L^{\infty}(X \times Y \times \mathbb{R})^{G} \cong L^{\infty}(\mathbb{R})^{\Sigma}$, so that the flow of weights of $G \curvearrowright X \times Y$ is as stated in the theorem.

Lemma 4.5. Let T be a locally finite tree and let $G \subset \operatorname{Aut}(T)$ be a closed subgroup. Suppose that $H \subset G$ is a closed compactly generated subgroup that contains a hyperbolic element and assume that G / H is not compact. Let $S \subset T$ be the unique minimal H-invariant subtree. Then there exists a vertex $v \in S$ such that

$$
\begin{equation*}
\bigcap_{g \in G}\left(g S \cup\left[v, g^{-1} \cdot v\right]\right)=\{v\} . \tag{4.9}
\end{equation*}
$$

Proof. Let $k \in H$ be a hyperbolic element and let $L \subset T$ be its axis, on which k acts by a non-trivial translation. Then $L \subset S$, as one can show for instance as in the proof of [CM11, Proposition 3.8]. Pick any vertex $v \in L$. We claim that this vertex will satisfy (4.9). Take any $w \in V(T) \backslash\{v\}$. As G / H is not compact, one can show as in [AIM19, Theorem 9.7] that there exists a $g \in G$ such that $g \cdot w \notin S$. Since k acts by translation on L, there exists an $n \in \mathbb{N}$ large enough such that

$$
[v, k \cdot v] \subset\left[v, k^{n} g \cdot v\right] \quad \text { and } \quad\left[v, k^{-1} \cdot v\right] \subset\left[v, k^{-n} g \cdot v\right],
$$

so that in particular we have that $w \notin\left[v, k^{n} g \cdot v\right] \cap\left[v, k^{-n} g \cdot v\right]=\{v\}$. Since S is H-invariant, we also have that $k^{n} g \cdot w \notin S$ and $k^{-n} g \cdot w \notin S$ and we conclude that

$$
w \notin\left(\left(k^{n} g\right)^{-1} S \cup\left[v, k^{n} g \cdot v\right]\right) \cap\left(\left(k^{-n} g\right)^{-1} S \cup\left[v, k^{-n} g \cdot v\right]\right) .
$$

Proof of Proposition 4.3. Define the family $\left(X_{e}\right)_{e \in E}$ of independent random variables on (X, μ) by (4.3) and write

$$
S_{v}=\sum_{e \in E([\rho, v])} X_{e} .
$$

Claim. There exists a $\delta>0$ such that

$$
\mu\left(\left\{x \in X: S_{v}(x) \leq-\delta \quad \text { for every } v \in T \backslash\{\rho\}\right\}\right)>0
$$

Proof of claim. Note that $\mathbb{E}\left(\exp \left(X_{e} / 2\right)\right)=1-H^{2}\left(\mu_{0}, \mu_{1}\right)$ for every $e \in E$. Define a family of random variables $\left(W_{n}\right)_{n \geq 0}$ on (X, μ) by

$$
W_{n}=\sum_{\substack{v \in T \\ d(v, \rho)=n}} \exp \left(S_{v} / 2\right)
$$

Using that $1-H^{2}\left(\mu_{0}, \mu_{1}\right)=(q-1)^{-1 / 2}$, one computes that

$$
\mathbb{E}\left(W_{n+1} \mid S_{v}, d(v, \rho) \leq n\right)=W_{n} \quad \text { for every } n \geq 1
$$

So the sequence $\left(W_{n}\right)_{n \geq 0}$ is a martingale, and since it is positive it converges almost surely to a finite limit when $n \rightarrow+\infty$. Write $\Sigma_{n}=\{v \in T: d(v, \rho)=n\}$. As $W_{n} \geq \max _{v \in \Sigma_{n}} \exp \left(S_{v} / 2\right)$ we conclude that there exists a positive constant $C<+\infty$ such that

$$
\mathbb{P}\left(S_{v} \leq C \text { for every } v \in T\right)>0
$$

For any vertex $w \in T$, write $T_{w}=\{v \in T:[\rho, w] \subset[\rho, v]\}$: the set of children of w, including w itself. Using the symmetry of the tree and changing the root from ρ to $w \in T$, we also have that

$$
\begin{equation*}
\mathbb{P}\left(S_{v}-S_{w} \leq C \text { for every } v \in T_{w}\right)>0 \quad \text { for every } w \in T \tag{4.10}
\end{equation*}
$$

Set $\nu_{0}=\left(\log d \mu_{1} / d \mu_{0}\right)_{*} \mu_{0}$ and $\nu_{1}=\left(\log d \mu_{0} / d \mu_{1}\right)_{*} \mu_{1}$. Because $1-H^{2}\left(\mu_{0}, \mu_{1}\right) \neq 0$ we have that $\mu_{0} \neq \mu_{1}$, so that there exists a $\delta>0$ such that

$$
v_{0} * v_{1}((-\infty,-\delta))>0
$$

Here $\nu_{0} * \nu_{1}$ denotes the convolution product of ν_{0} with ν_{1}. Therefore, there exists $N \in \mathbb{N}$ large enough such that

$$
\begin{equation*}
\mathbb{P}\left(S_{w} \leq-C-\delta \text { for every } w \in \Sigma_{N} \text { and } S_{w^{\prime}} \leq-\delta \text { for every } w^{\prime} \in \Sigma_{n} \text { with } n \leq N\right)>0 \tag{4.11}
\end{equation*}
$$

Since for any $w \in \Sigma_{N}$ and $w^{\prime} \in \Sigma_{n}$ with $n \leq N$, we have that $S_{v}-S_{w}$ is independent of $S_{w^{\prime}}$ for every $v \in T_{w}$, and since Σ_{N} is a finite set, it follows from (4.10) and (4.11) that

$$
\mathbb{P}\left(S_{v} \leq-\delta \quad \text { for every } v \in T \backslash\{\rho\}\right)>0
$$

This concludes the proof of the claim.
Let $\delta>0$ be as in the claim and define

$$
\mathcal{U}=\left\{x \in X: S_{v}(x) \leq-\delta \text { for every } v \in T \backslash\{\rho\}\right\},
$$

so that $\mu(\mathcal{U})>0$. Let G_{ρ} be the stabilizer subgroup of ρ. Note that for every $g, h \in G$ we have that $S_{h \cdot \rho}(x)=S_{g \cdot \rho}\left(h^{-1} \cdot x\right)+S_{h \cdot \rho}(x)$ for a.e. $x \in X$, so that for $h \in G$ we have that

$$
h \cdot \mathcal{U} \subset\left\{x \in X: S_{h g \cdot \rho}(x) \leq-\delta+S_{h \cdot \rho}(x) \text { for every } g \notin G_{\rho}\right\} .
$$

It follows that if $h \notin G_{\rho}$, we have that

$$
\mathcal{U} \cap h \cdot \mathcal{U} \subset\left\{x \in X: S_{h \cdot \rho}(x) \leq-\delta \text { and } S_{h \cdot \rho}(x) \geq \delta\right\}=\emptyset .
$$

Since $G \subset \operatorname{Aut}(T)$ is closed, we have that G_{ρ} is compact. So the action $G \curvearrowright(X, \mu)$ is not infinitely recurrent. Let λ denote the left invariant Haar measure on G. By an adaptation of the proof of [BV20, Proposition 4.3], the set
$D=\left\{x \in X: \int_{G} \frac{d g \mu}{d \mu}(x) d \lambda(g)<+\infty\right\}=\left\{x \in X: \int_{G} \exp \left(S_{g . \rho}(x)\right) d \lambda(g)<+\infty\right\}$
satisfies $\mu(D) \in\{0,1\}$. Since $G \curvearrowright(X, \mu)$ is not infinitely recurrent, it follows from [AIM19, Proposition A.28] that $\mu(D)>0$, so that we must have that $\mu(D)=1$. By [AIM19, Theorem A.29] the action $G \curvearrowright(X, \mu)$ is dissipative up to compact stabilizers.

We use a similar approach to [MV20, §6] in the proof of Proposition 4.4.
Proof of Proposition 4.4. It follows from Theorem 4.2 and Proposition 4.3 that the action $G \curvearrowright(X, \mu)$, given by (4.2), is dissipative when $1-H^{2}\left(\mu_{0}, \mu_{1}\right) \leq(2 d-1)^{-1 / 2}$ and weakly mixing when $1-H^{2}\left(\mu_{0}, \mu_{1}\right)>(2 d-1)^{-1 / 2}$. So it remains to show that $G \curvearrowright(X, \mu)$ is non-amenable when $1-H^{2}\left(\mu_{0}, \mu_{1}\right)>(2 d-1)^{-1 / 2}$ and strongly ergodic when $1-H^{2}\left(\mu_{0}, \mu_{1}\right)>(2 d-1)^{-1 / 4}$.

Assume first that $1-H^{2}\left(\mu_{0}, \mu_{1}\right)>(2 d-1)^{-1 / 2}$. By taking the kernel of a surjective homomorphism $\mathbb{F}_{d} \rightarrow \mathbb{Z}$ we find a normal subgroup $H_{1} \subset \mathbb{F}_{d}$ that is free on infinitely many generators. By [RT13, Théorème 0.1] we have that $\delta\left(H_{1}\right)=(2 d-1)^{-1 / 2}$. Then, using [Sul79, Corollary 6], we can find a finitely generated free subgroup $H_{2} \subset H_{1}$ such that $H_{1}=H_{2} * H_{3}$ for some free subgroup $H_{3} \subset H_{1}$ and such that $1-H^{2}\left(\mu_{0}, \mu_{1}\right)>$ $\exp \left(-\delta\left(H_{2}\right) / 2\right)$. Let $\psi: H_{1} \rightarrow H_{3}$ be the surjective group homomorphism uniquely determined by

$$
\psi(h)= \begin{cases}e & \text { if } h \in H_{2} \\ h & \text { if } h \in H_{3}\end{cases}
$$

We set $N=\operatorname{ker} \psi$, so that $H_{2} \subset N$ and we get that $1-H^{2}\left(\mu_{0}, \mu_{1}\right)>\exp (-\delta(N) / 2)$. Therefore, $N \curvearrowright(X, \mu)$ is ergodic by Theorem 4.2. Also we have that $H_{1} / N \cong H_{3}$, which is a free group on infinitely many generators. Therefore, $H_{1} \curvearrowright(X, \mu)$ is non-amenable by [MV20, Lemma 6.4]. A posteriori also $\mathbb{F}_{d} \curvearrowright(X, \mu)$ is non-amenable.

Let π be the Koopman representation of the action $\mathbb{F}_{d} \curvearrowright(X, \mu)$:

$$
\pi: G \curvearrowright L^{2}(X, \mu): \quad\left(\pi_{g}(\xi)\right)(x)=\left(\frac{d g \mu}{d \mu}(x)\right)^{1 / 2} \xi\left(g^{-1} \cdot x\right)
$$

Claim. If $1-H^{2}\left(\mu_{0}, \mu_{1}\right)>(2 d-1)^{-1 / 4}$, then π is not weakly contained in the left regular representation.

Proof of claim. Let η denote the canonical symmetric measure on the generator set of \mathbb{F}_{d} and define

$$
P=\sum_{g \in \mathbb{F}_{d}} \eta(g) \pi_{g}
$$

The η-spectral radius of $\alpha: \mathbb{F}_{d} \curvearrowright(X, \mu)$, which we denote by $\rho_{\eta}(\alpha)$, is by definition the norm of P, as a bounded operator on $L^{2}(X, \mu)$. By [AIM19, Proposition A.11] we have that

$$
\begin{aligned}
\rho_{\eta}(\alpha) & =\lim _{n \rightarrow \infty}\left\langle P^{n}(1), 1\right\rangle^{1 / n} \\
& =\lim _{n \rightarrow \infty}\left(\sum_{g \in \mathbb{F}_{d}} \eta^{* n}(g)\left(1-H^{2}\left(\mu_{0}, \mu_{1}\right)\right)^{2|g|}\right)^{1 / n}
\end{aligned}
$$

where $|g|$ denotes the word length of a group element $g \in \mathbb{F}_{d}$. By [AIM19, Theorem 6.10] we then have that

$$
\rho_{\eta}(\alpha)=\frac{\left(1-H^{2}\left(\mu_{0}, \mu_{1}\right)\right)^{2}}{2 d}\left((2 d-1)+\left(1-H^{2}\left(\mu_{0}, \mu_{1}\right)\right)^{-4}\right)
$$

if $1-H^{2}\left(\mu_{0}, \mu_{1}\right)>(2 d-1)^{-1 / 4}$, and

$$
\rho_{\eta}(\alpha)=\frac{\sqrt{2 d-1}}{d}
$$

if $1-H^{2}\left(\mu_{0}, \mu_{1}\right) \leq(2 d-1)^{-1 / 4}$. Therefore, if $1-H^{2}\left(\mu_{0}, \mu_{1}\right)>(2 d-1)^{-1 / 4}$, we have that $\rho_{\eta}(\alpha)>\rho_{\eta}\left(\mathbb{F}_{d}\right)$, where $\rho_{\eta}\left(\mathbb{F}_{d}\right)$ denotes the η-spectral radius of the left regular
representation. This implies that α is not weakly contained in the left regular representation (see, for instance, [AD03, §3.2]).

Now assume that $1-H^{2}\left(\mu_{0}, \mu_{1}\right)>(2 d-1)^{-1 / 4}$. As in the proof of Theorem 4.2 there exist probability measures v, η_{0} and η_{1} on X_{0} that are equivalent to μ_{0} and a number $s \in(0,1)$ such that

$$
\mu_{j}=(1-s) v+s \eta_{j} \quad \text { for } j=0,1,
$$

and such that $1-H^{2}\left(\eta_{0}, \eta_{1}\right)>(2 d-1)^{-1 / 4}$. Consider the non-singular action

$$
\mathbb{F}_{d} \curvearrowright(X, \eta)=\prod_{e \in E(T)}\left(X_{0}, \eta_{e}\right) \quad \text { where } \eta_{e}= \begin{cases}\eta_{0} & \text { if } e \text { is oriented towards } \rho \\ \eta_{1} & \text { if } e \text { is oriented away from } \rho .\end{cases}
$$

By Theorem 4.2 the action $\mathbb{F}_{d} \curvearrowright(X, \eta)$ is ergodic. Write ρ for the Koopman representation associated to $\mathbb{F}_{d} \curvearrowright(X, \eta)$. By the claim, ρ is not weakly contained in the left regular representation. Let λ be the probability measure on $\{0,1\}$ given by $\lambda(0)=s$. Let ρ^{0} be the reduced Koopman representation of the pmp generalized Bernoulli action $\mathbb{F}_{d} \curvearrowright\left(X \times\{0,1\}^{E(T)}, \nu^{E(T)} \times \lambda^{E(T)}\right)$. Then ρ^{0} is contained in a multiple of the left regular representation. Therefore, as ρ is not weakly contained in the left regular representation, ρ is not weakly contained in $\rho \otimes \rho^{0}$.

Define the map

$$
\Psi: X \times X \times\{0,1\}^{E(T)} \rightarrow X: \quad \Psi(x, y, z)_{e}= \begin{cases}x_{e} & \text { if } z_{e}=0 \\ y_{e} & \text { if } z_{e}=1\end{cases}
$$

Then Ψ is \mathbb{F}_{d}-equivariant and we have that $\Psi_{*}\left(\eta \times v^{E(T)} \times \lambda^{E(T)}\right)=\mu$. Suppose that $\mathbb{F}_{d} \curvearrowright(X, \mu)$ is not strongly ergodic. Then there exists a bounded almost invariant sequence $f_{n} \in L^{\infty}(X, \mu)$ such that $\left\|f_{n}\right\|_{2}=1$ and $\mu\left(f_{n}\right)=0$ for every $n \in \mathbb{N}$. Therefore, $\Psi_{*}\left(f_{n}\right)$ is a bounded almost invariant sequence for the diagonal action $\mathbb{F}_{d} \curvearrowright\left(X \times X \times\{0,1\}^{E(T)}, \eta \times v^{E(T)} \times \lambda^{E(T)}\right)$. Let $E: L^{\infty}\left(X \times X \times\{0,1\}^{E(T)}\right) \rightarrow$ $L^{\infty}(X)$ be the conditional expectation that is uniquely determined by $\mu \circ E=$ $\eta \times v^{E(T)} \times \lambda^{E(T)}$. By [MV20, Lemma 5.2] we have that $\lim _{n \rightarrow \infty} \|\left(E \circ \Psi_{*}\right)\left(f_{n}\right)-$ $\Psi_{*}\left(f_{n}\right) \|_{2}=0$, and in particular we get that

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|\left(E \circ \Psi_{*}\right)\left(f_{n}\right)\right\|_{2}=1 \tag{4.12}
\end{equation*}
$$

But just as in the proof of Theorem 3.3 we have that

$$
\left\|\left.\left(E \circ \Psi_{*}\right)\right|_{L^{2}(X, \mu) \ominus \mathbb{C} 1}\right\|<1
$$

which is in contradiction with (4.12). We conclude that $\mathbb{F}_{d} \curvearrowright(X, \mu)$ is strongly ergodic.

Proposition 4.6 below complements Theorem 4.2 by considering groups $G \subset \operatorname{Aut}(T)$ that are not closed. This is similar to [AIM19, Theorem 10.5].

Proposition 4.6. Let T be a locally finite tree with root $\rho \in T$. Let $G \subset \operatorname{Aut}(T)$ be an lcsc group such that the inclusion map $G \rightarrow \operatorname{Aut}(T)$ is continuous and such that
$G \subset \operatorname{Aut}(T)$ is not closed. Write $\delta=\delta(G \curvearrowright T)$ for the Poincaré exponent given by (1.5). Let μ_{0} and μ_{1} be non-trivial equivalent probability measures on a standard Borel space X_{0}. Consider the generalized non-singular Bernoulli action $\alpha: G \curvearrowright(X, \mu)$ given by (4.2). Let $H \subset \operatorname{Aut}(T)$ be the closure of G. Then the following assertions hold.

- If $1-H^{2}\left(\mu_{0}, \mu_{1}\right)>\exp (-\delta / 2)$, then α is ergodic and its Krieger flow is determined by the essential range of the map

$$
\begin{equation*}
X_{0} \times X_{0} \rightarrow \mathbb{R}: \quad\left(x, x^{\prime}\right) \mapsto \log \left(d \mu_{0} / d \mu_{1}\right)(x)-\log \left(d \mu_{0} / d \mu_{1}\right)\left(x^{\prime}\right) \tag{4.13}
\end{equation*}
$$

as in Theorem 4.2.

- If $1-H^{2}\left(\mu_{0}, \mu_{1}\right)<\exp (-\delta / 2)$, then each ergodic component of α is of the form $G \curvearrowright H / K$, where K is a compact subgroup of H. In particular, there exists a G-invariant σ-finite measure on X that is equivalent to μ.

Proof. Let $H \subset \operatorname{Aut}(T)$ be the closure of G. Then $\delta(H)=\delta$ and we can apply Theorem 4.2 to the non-singular action $H \curvearrowright(X, \mu)$.

If $1-H^{2}\left(\mu_{0}, \mu_{1}\right)>\exp (-\delta / 2)$, then $H \curvearrowright X$ is ergodic. As $G \subset H$ is dense, we have that

$$
L^{\infty}(X)^{G}=L^{\infty}(X)^{H}=\mathbb{C} 1,
$$

so that $G \curvearrowright X$ is ergodic. Let $H \curvearrowright X \times \mathbb{R}$ be the Maharam extension associated to $H \curvearrowright X$. Again, as $G \subset H$ is dense, we have that

$$
L^{\infty}(X \times \mathbb{R})^{G}=L^{\infty}(X \times \mathbb{R})^{H} .
$$

Note that the subgroup generated by the essential ranges of the maps $\log \left(d g^{-1} \mu / d \mu\right)$, with $g \in G$, is the same as the subgroup generated by the essential ranges of the maps $\log \left(d h^{-1} \mu / d \mu\right)$, with $h \in H$. Then one determines the Krieger flow of $G \curvearrowright X$ as in the proof of Theorem 4.2.

If $1-H^{2}\left(\mu_{0}, \mu_{1}\right)<\exp (-\delta / 2)$, the action $H \curvearrowright(X, \mu)$ is dissipative up to compact stabilizers. By [AIM19, Theorem A.29] each ergodic component is of the form $H \curvearrowright H / K$ for a compact subgroup $K \subset H$. Therefore, each ergodic component of $G \curvearrowright(X, \mu)$ is of the form $G \curvearrowright H / K$, for some compact subgroup $K \subset H$.

Acknowledgements. T.B. thanks Stefaan Vaes for his valuable feedback during the process of writing this paper. T.B. is supported by a PhD fellowship fundamental research of the Research Foundation Flanders.

References

[AD03] C. Anantharaman-Delaroche. On spectral characterizations of amenability. Israel J. Math. 137 (2003), 1-33.
[AIM19] Y. Arano, Y. Isono and A. Marrakchi. Ergodic theory of affine isometric actions on Hilbert spaces. Geom. Funct. Anal. 31(5) (2021), 1013-1094.
[BKV19] M. Björklund, Z. Kosloff and S. Vaes. Ergodicity and type of nonsingular Bernoulli actions. Invent. Math. 224(2) (2021), 573-625.
[BV20] T. Berendschot and S. Vaes. Nonsingular Bernoulli actions of arbitrary Krieger type. Anal. PDE 15(5) (2022), 1313-1373.
[CM11] P.-E. Caprace and T. de Medts. Simple locally compact groups acting on trees and their germs of automorphisms. Transform. Groups 16(2) (2011), 375-411.
[Dan18] A. I. Danilenko. Weak mixing for nonsingular Bernoulli actions of countable amenable groups. Proc. Amer. Math. Soc. 147 (2019), 4439-4450.
[DKR20] A. I. Danilenko, Z. Kosloff and E. Roy. Generic nonsingular Poisson suspension is of type III_{1}. Ergod. Th. \& Dynam. Sys. 42(4) (2022), 1415-1445.
[Ioa10] A. Ioana. W^{*}-superrigidity for Bernoulli actions of property (T) groups. J. Amer. Math. Soc. 24(4) (2011), 1175-1226.
[Kak48] S. Kakutani. On equivalence of infinite product measures. Ann. of Math. (2) 49 (1948), 214-224.
[Kos18] Z. Kosloff. Proving ergodicity via divergence of ergodic sums. Studia Math. 248 (2019), 191-215.
[KS20] Z. Kosloff and T. Soo. Some factors of nonsingular Bernoulli shifts. Studia Math. 262(1) (2022), 23-43.
[LP92] R. Lyons and R. Pemantle. Random walk in a random environment and first-passage percolation on trees. Ann. Probab. 20(1) (1992), 125-136.
[Lyo89] R. Lyons. The Ising model and percolation on trees and tree-like graphs. Comm. Math. Phys. 125 (1989), 337-353.
[MRV11] N. Meesschaert, S. Raum and S. Vaes. Stable orbit equivalence of Bernoulli actions of free groups and isomorphism of some of their factor actions. Expo. Math. 31(3) (2013), 274-294.
[MV20] A. Marrakchi and S. Vaes. Nonsingular Gaussian actions: beyond the mixing case. Adv. Math. 297 (2022), Paper no. 108190.
[Nev03] A. Nevo. The spectral theory of amenable actions and invariants of discrete groups. Geom. Dedicata 100 (2003), 187-218.
[Pop03] S. Popa. Strong rigidity of II_{1} factors arising from malleable actions of w-rigid groups, I. Invent. Math. 165 (2006), 369-408.
[Pop06] S. Popa. On the superrigidity of malleable actions with spectral gap. J. Amer. Math. Soc. 21 (2008), 981-1000.
[RT13] T. Roblin and S. Tapie. Exposants critiques et moyennabilité. Géométrie ergodique (Monographs of L'Enseignement Mathématique, 43). Ed. F. Dal'Bo-Milonet. L'Enseignement mathématique, Geneva, 2013, pp. 61-92.
[Sa74] J.-L. Sauvageot. Sur le type du produit croisé d'une algèbre de von Neumann par un groupe localement compact. Bull. Soc. Math. France 105 (1997), 349-368.
[Sul79] D. Sullivan. The density at infinity of a discrete group of hyperbolic motions. Publ. Math. Inst. Hautes Etudes Sci. 50 (1979), 171-202.
[SW81] K. Schmidt and P. Walters. Mildly mixing actions of locally compact groups. Proc. Lond. Math. Soc. (3) 45(3) (1982), 506-518.
[Tit70] J. Tits. Sur le groupe des automorphismes d'un arbre. Essays on Topology and Related Topics. Eds. A. Haefliger and R. Narasimhan. Springer, Berlin, 1970, pp. 188-211.
[VW17] S. Vaes and J. Wahl. Bernoulli actions of type IIII_{1} and L^{2}-cohomology. Geom. Funct. Anal. 28 (2018), 518-562.
[Zim78] R. J. Zimmer. Amenable ergodic group actions and an application to Poisson boundaries of random walks. J. Funct. Anal. 27 (1978), 350-372.

