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Abstract. Inspired by the phase transition results for non-singular Gaussian actions
introduced in [AIM19], we prove several phase transition results for non-singular Bernoulli
actions. For generalized Bernoulli actions arising from groups acting on trees, we are able
to give a very precise description of their ergodic-theoretical properties in terms of the
Poincaré exponent of the group.
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1. Introduction
When G is a countable infinite group and (Xo, (o) is a non-trivial standard probability
space, the probability measure-preserving (pmp) action

G Xo,pno)?: (8- = Xo-1p,
is called a Bernoulli action. Probability measure-preserving Bernoulli actions are among
the best-studied objects in ergodic theory and they play an important role in operator

algebras [Ioal0, Pop03, Pop06]. When we consider a family of probability measures
(1g)geG on the base space X that need not all be equal, the Bernoulli action

G~ (X ) = [[(Xo. 12g) (L1)
geG
is in general no longer measure-preserving. Instead, we are interested in the case where
G ~ (X, u) is non-singular, that is, the group G preserves the measure class of . By
Kakutani’s criterion for equivalence of infinite product measures the Bernoulli action (1.1)
is non-singular if and only if u, ~ u, for every i, g € G and

Z Hz(/ul, Mgh) < +oo forevery g € G. (1.2)
heG

Here H?(uup, tgn) denotes the Hellinger distance between py and gy (see (2.2)).
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https://doi.org/10.1017/etds.2023.24 Published online by Cambridge University Press Updates.


http://creativecommons.org/licenses/by/4.0
http://dx.doi.org/10.1017/etds.2023.24
https://orcid.org/0000-0003-2256-1338
mailto:tey.berendschot@kuleuven.be
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/etds.2023.24&domain=pdf
https://doi.org/10.1017/etds.2023.24

354 T. Berendschot

It is well known that a pmp Bernoulli action G ~ (X, uo)© is mixing. In particular,
it is ergodic and conservative. However, for non-singular Bernoulli actions, determining
conservativeness and ergodicity is much more difficult (see, for instance, [BKV19, Dan18,
Kos18, VW17]).

Besides non-singular Bernoulli actions, another interesting class of non-singular
group actions comes from the Gaussian construction, as introduced in [AIM19]. If
w: G — O(H) is an orthogonal representation of a locally compact second countable
(Iesc) group on a real Hilbert space H, and if c: G — H is a l-cocycle for the
representation 7, then the assignment

ag(§) = mg(§) +c(g) (1.3)

defines an affine isometric action oc: G ~ H. To any affine isometric action : G ~ H
Arano, Isono and Marrakchi associated a non-singular group action @: G H, where
# is the Gaussian probability space associated to 7. When «: G ~ H is actually an
orthogonal representation, this construction is well established and the resulting Gaussian
action is pmp. As explained below [BV20, Theorem D], if G is a countable infinite group
and m: G — £2(G) is the left regular representation, the affine isometric representation
(1.3) gives rise to a non-singular action that is conjugate with the Bernoulli action
G~ ]_[gGG(R, VF(g))» Where F: G — R is such that cg(h) = F(g~'h) — F(h), and
VF(g) denotes the Gaussian probability measure with mean F(g) and variance 1.

By scaling the 1-cocycle c: G — H with a parameter ¢ € [0, +00) we get a
one-parameter family of non-singular actions @': G ~ H' associated to the affine
isometric actions oa': G ~ H, given by oe;(é) =mg(&) +tc(g). Arano, Isono and
Marrakchi showed that there exists a #qiss € [0, +00) such that @’ is dissipative up to
compact stabilizers for every ¢ > tgiss and infinitely recurrent for every ¢ < 455 (see §2 for
terminology).

Inspired by the results obtained in [AIM19], we study a similar phase transition
framework, but in the setting of non-singular Bernoulli actions. Such a phase transition
framework for non-singular Bernoulli actions was already considered by Kosloff and Soo
in [KS20]. They showed the following phase transition result for the family of non-singular
Bernoulli actions of G = Z with base space Xo = {0, 1} that was introduced in [VW17,
Corollary 6.3]. For every ¢ € [0, +00) consider the family of measures (u!,), <z given by

, 1/2 ifn < 4¢2,
1, (0) = , 5
1/2+1t//n  ifn > 4%

Then Z ~ (X, us) = [,z ({0, 1}, nf,) is non-singular for every € [0, +00). Kosloff
and Soo showed that there exists a #; € (1/6, 400) such that Z ~ (X, ;) is conservative
for every ¢t < t1 and dissipative for every t > t; [KS20, Theorem 3]. In [DKR20, Example
D] the authors describe a family of non-singular Poisson suspensions for which a similar
phase transition occurs. These examples arise from dissipative essentially free actions of Z,
and thus they are non-singular Bernoulli actions. We generalize the phase transition result
from [KS20] to arbitrary non-singular Bernoulli actions as follows.
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Suppose that G is a countable infinite group and let (ug)gec be a family of equivalent
probability measure on a standard Borel space X. Let v also be a probability measure on
Xo.Foreveryt € [0, 1] we consider the family of equivalent probability measures (/,Lfg) ¢cG
that are defined by

py = (1 =1)v + 1. (1.4)

Our first main result is that in this setting there is a phase transition phenomenon.

THEOREM A. Let G be a countable infinite group and assume that the Bernoulli action
G (X, )= ]_[geG(Xo, Wg) is non-singular. Let v ~ . be a probability measure on
Xo and for everyt € [0, 1] consider the family (u;)geg of equivalent probability measures
given by (1.4). Then the Bernoulli action

G~ (X, ) =[] (Xo, 1l)
geG

is non-singular for every t € [0, 1] and there exists a t; € [0, 1] such that G ~ (X, ;) is
weakly mixing for every t < t| and dissipative for every t > t].

Suppose that G is a non-amenable countable infinite group. Recall that for any standard
probability space (Xo, o), the pmp Bernoulli action G ~ (Xg, 10)© is strongly ergodic.
Consider again the family of probability measures (,ué) ¢eG given by (1.4). In Theorem B
below we prove that for ¢ close enough to 0, the resulting non-singular Bernoulli action is
strongly ergodic. This is inspired by [AIM19, Theorem 7.20] and [M'V20, Theorem 5.1],
which state similar results for non-singular Gaussian actions.

THEOREM B. Let G be a countable infinite non-amenable group and suppose that
the Bernoulli action G ~ (X, 1) = ]_[gGG(XO, Wg) is non-singular. Let v ~ . be a
probability measure on Xo and for every t € [0, 1] consider the family (,ufg)geg of
equivalent probability measures given by (1.4). Then there exists a ty € (0, 1] such that
G (X, u)= ]_[geG(Xo, yfg) is strongly ergodic for every t < ty.

Although we can prove a phase transition result in large generality, it remains very
challenging to compute the critical value ¢;. However, when G C Aut(7'), for some locally
finite tree 7, following [AIM19, §10], we can construct generalized Bernoulli actions of
which we can determine the conservativeness behaviour very precisely. To put this result
into perspective, let us first explain briefly the construction from [AIM19, §10].

For a locally finite tree T, let 2 (T') denote the set of orientations on 7. Let p € (0, 1) and
fix aroot p € T'. Define a probability measure ), on 2(T) by orienting an edge towards o
with probability p and away from p with probability 1 — p. If G C Aut(T) is a subgroup,
then we naturally obtain a non-singular action G ~ (2(7T'), 1p). Up to equivalence of
measures, the measure 1, does not depend on the choice of root p € T. The Poincaré
exponent of G C Aut(T) is defined as

8(G ~ T)=inf {5 > 0forwhich Y exp(—sd(v,w)) < +oo] , (L5

weG-v
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where v € V(T) is any vertex of 7. In [AIM19, Theorem 10.4] Arano, Isono and
Marrakchi showed that if G C Aut(T') is a closed non-elementary subgroup, the action
G ~ (Q(T), up) is dissipative up to compact stabilizers if 2¢/p(I — p) < exp(—§)
and weakly mixing if 2./p(I — p) > exp(—38). This motivates the following similar
construction.

Let E(T) C V(T) x V(T) denote the set of oriented edges, so that vertices v and w are
adjacent if and only if (v, w), (w, v) € E(T). Suppose that X is a standard Borel space
and that pg, ;1 are equivalent probability measures on Xo. Fix a root p € T and define a
family of probability measures (it¢)ec (1) by

o if e is oriented towards p,
Me = . (1.6)
w1 if e is oriented away from p.

Suppose that G C Aut(7') is a subgroup. Then the generalized Bernoulli action

G [T Koome): (8-x)e =241, (1.7)
ecE(T)
is non-singular and up to conjugacy it does not depend on the choice of root p € T. In
our next main result we generalize [AIM19, Theorem 10.4] to non-singular actions of the
form (1.7).

THEOREM C. Let T be a locally finite tree with root p € T and let G C Aut(T) be a
non-elementary closed subgroup with Poincaré exponent § = §(G ~ T). Let o and jiq
be equivalent probability measures on a standard Borel space Xo and define a family of
equivalent probability measures (Jie)ecE(T) bY (1.6). Then the generalized Bernoulli action
(1.7) is dissipative up to compact stabilizers if 1 — H?*(wo, 1) < exp(—4/2) and weakly
mixing if 1 — H?(uo, 1) > exp(—38/2).

2. Preliminaries
2.1. Non-singular group actions. Let (X, n), (Y, v) be standard measure spaces. A
Borel map ¢: X — Y is called non-singular if the pushforward measure ¢, i is equivalent
to v. If in addition there exist conull Borel sets Xo C X and Yy C Y suchthatp: Xo — Yy
is a bijection we say that ¢ is a non-singular isomorphism. We write Aut(X, ) for the
group of all non-singular automorphisms ¢: X — X, where we identify two elements if
they agree almost everywhere. The group Aut(X, w) carries a canonical Polish topology.
A non-singular group action G ~ (X, i) of an Icsc group G on a standard measure
space (X, ) is a continuous group homomorphism G — Aut(X, ). A non-singular
group action G ~ (X, ) is called essentially free if the stabilizer subgroup G, = {g €
G : g-x = x} is trivial for almost every (a.e.) x € X. When G is countable this is the
same as the condition that u({x € X : g-x = x}) =0 for every g € G\ {e}. We say
that G ~ (X, n) is ergodic if every G-invariant Borel set A C X satisfies u(A) =0
or u(X \ A) = 0. A non-singular action G ~ (X, w) is called weakly mixing if for any
ergodic pmp action G ~ (Y, v) the diagonal product action G ~ X x Y is ergodic. If G
is not compact and G ~ (X, u) is pmp, we say that G ~ X is mixing if

lim pu(g-ANB)=pu(A)u(B) forevery pair of Borel subsets A, B C X.
g—> 00

https://doi.org/10.1017/etds.2023.24 Published online by Cambridge University Press


https://doi.org/10.1017/etds.2023.24

Phase transitions for non-singular Bernoulli actions 357

Suppose that G ~ (X, w) is a non-singular action and that p is a probability measure.
A sequence of Borel subsets A, C X is called almost invariant if

sup u(g - A,AA,) — 0 for every compact subset K C G.
gekK

The action G ~ (X, w) is called strongly ergodic if every almost invariant sequence
A, C X is trivial, that is, w(A,)(1 — n(A,)) — 0. The strong ergodicity of G ~ (X, ®)
only depends on the measure class of ©. When (Y, v) is a standard measure space and v
is infinite, a non-singular action G ~ (Y, v) is called strongly ergodic if G ~ (Y, V') is
strongly ergodic, where 1’ is a probability measure that is equivalent to v.

Following [AIM19, Definition A.16], we say that a non-singular action G ~ (X, ) is
dissipative up to compact stabilizers if each ergodic component is of the form G ~ G/K,
for a compact subgroup K C G. By [AIM19, Theorem A.29] a non-singular action
G ~ (X, u), with u(X) = 1, is dissipative up to compact stabilizers if and only if

d
/ 8 ) di(g) < 400 forae. x € X,
¢ dp

where A denotes the left invariant Haar measure on G. We say that G ~ (X, p) is
infinitely recurrent if for every non-negligible subset A C X and every compact subset
K C G there exists g € G\ K such that u(g- AN A) > 0. By [AIM19, Proposition
A.28] and Lemma 2.1 below, a non-singular action G ~ (X, u), with u(X) =1, is
infinitely recurrent if and only if

d
/ ﬂ(x) dr(g) = +oo forae. x € X.
¢ du

A non-singular action G ~ (X, ) is called dissipative if it is essentially free and
dissipative up to compact stabilizers. In that case there exists a standard measure space
(X0, (o) such that G ~ X is conjugate with the action G ~ G X Xo: g-(h,x) =
(gh, x). A non-singular action G ~ (X, n) decomposes, uniquely up to a null set, as
G ~ DuC, where G ~ D is dissipative up to compact stabilizers and G ~ C is
infinitely recurrent. When G is a countable group and G ~ (X, ) is essentially free, we
say that G ~ X is conservative if it is infinitely recurrent.

LEMMA 2.1. Suppose that G is an lcsc group with left invariant Haar measure ). and that
(X, ) is a standard probability space. Assume that G ~ (X, ) is a non-singular action
that is infinitely recurrent. Then we have that

dgp B
—(x)dr(g) = +00 fora.e x € X.
¢ dpn
Proof. Note that the set
d
D = {x e X :/ ﬂ(x) dr(g) < —|—oo}
¢ du

is G-invariant. Therefore, it suffices to show that G ~ X is not infinitely recurrent under
the assumption that D has full measure.
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Let w: (X, u) — (Y, v) be the projection onto the space of ergodic components of
G ~ X. Then there exist a conull Borel subset Yo C Y and a Borel map 8: Yy — X such
that (r 0 8)(y) = y forevery y € Y.

Write X, = 77 '({y}). By [AIM19, Theorem A.29], for a.e. y € ¥ there exists a
compact subgroup K, C G suchthat G ~ X is conjugate with G ~ G/K,.LetG, C G

be an increasing sequence of compact subsets of G such that | J,., G, = G. For every
x € X,write Gy = {g € G : g - x = x} for the stabilizer subgroup of x. Using an argument
as in [MRV11, Lemma 10], one shows that for eachn > 1 the set {x € X : G, C G,}is
Borel. Thus, for every n > 1 the set

Un:{yeYO:KyCGn}:{yGYO:GB(y)CGn}
is a Borel subset of Y and we have that v(UnZl U,) = 1. Therefore, the sets

Ay =1{g-0(y):8€GnyclUy,)

are analytic and exhaust X up to a set of measure zero. So there exist an ngp € N and
a non-negligible Borel set B C A,,. Suppose that 7 € G is such that h- BN B # .
Then there exist y € Uy, and g1, g2 € Gy, such that hg - 0(y) = g2 - (y), and we get
that h € G, K yG;01 C GGy G,jol. In other words, for & € G outside the compact set
GyGny G,jol we have that u(h - B N B) = 0, so that G ~ X is not infinitely recurrent. [J

We will frequently use the following result of Schmidt and Walters. Suppose that
G ~ (X, pn) is a non-singular action that is infinitely recurrent and suppose that
G ~ (Y, v) is pmp and mixing. Then by [SW81, Theorem 2.3] we have that

LX x V)¢ = L®¥X)’®1,

where G ~ X x Y acts diagonally. Although [SW81, Theorem 2.3] demands proper
ergodicity of the action G ~ (X, w), the infinite recurrence assumption is sufficient as
remarked in [AIM19, Remark 7.4].

2.2. The Maharam extension and crossed products. Let (X, i) be a standard measure
space. For any non-singular automorphism ¢ € Aut(X, u), we define its Maharam
extension by

P:XxR—> XxR: @, 1) = (pkx),t+logde ' w/dw)(x)).

Then ¢ preserves the infinite measure p x exp(—¢)dt. The assignment ¢ > @ is a con-
tinuous group homomorphism from Aut(X) to Aut(X x R). Thus, for each non-singular
group action G ~ (X, ), by composing with this map, we obtain a non-singular group
action G ~ X x R, which we call the Maharam extension of G ~ X. If G ~ X is a
non-singular group action, the translation action R »~ X x R in the second component
commutes with the Maharam extension G ~ X x R. Therefore, we get a well-defined
action R ~ L®(X x R)Y, which is the Krieger flow associated to the action G ~ X. The
Krieger flow is given by R ~ R if and only if there exists a G-invariant o-finite measure
v on X that is equivalent to .
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Suppose that M C B(#) is a von Neumann algebra represented on the Hilbert space H
and that «: G ~ M is a continuous action on M of an lcsc group G. Then the crossed
product von Neumann algebra M x4, G C B(L?*(G,H)) is the von Neumann algebra
generated by the operators {m (x)}xep and {u,}rec actingon & € LZ(G, H) as

(T(X)E)(Q) = ag-1(DEQ),  (urk)(g) =& g).

In particular, if G ~ (X, ) is a non-singular group action, the crossed product L*°(X) x
G C B(L*(G x X)) is the von Neumann algebra generated by the operators

(T(H)E)(g, x) = H(g - 0)E(g, %),  (un€)(g,x) =& ""g, x),

for H € L®°(X) and h € G. If G ~ X is non-singular essentially free and ergodic, then
L*>®(X) x G is a factor. Moreover, when G is a unimodular group, the Krieger flow
of G ~ X equals the flow of weights of the crossed product von Neumann algebra
L*°(X) x G. For non-unimodular groups this is not necessarily true, motivating the
following definition.

Definition 2.2. Let G be an Icsc group with modular function A: G — R. . Let A denote
the Lebesgue measure on R. Suppose that «: G ~ (X, p) is a non-singular action. We
define the modular Maharam extension of G ~ X as the non-singular action

B:GA (X xR uxd): g-(x,1)= (g x.t+log(Ag)) + log(dg™" n/du)(x)).

Let L°(X x R)? denote the subalgebra of B-invariant elements. We define the flow of
weights associated to G ~ X as the translation action R ~ L®(X xR)? : (¢ - H)(x, s) =
H(x,s —1t).

As we explain below, the flow of weights associated to an essentially free ergodic
non-singular action G ~ X equals the flow of weights of the crossed product factor
L% (X) x G, justifying the terminology. See also [Sa74, Proposition 4.1].

Let @: G ~ X be an essentially free ergodic non-singular group action with modular
Maharam extension 8: G ~ X x R. By [Sa74, Proposition 1.1] there is a canonical
normal semifinite faithful weight ¢ on L°°(X) x4 G such that the modular automorphism
group o¥ is given by

of (m(H) = n(H), of(ug) = A(g) ugn((dg™" n/dw)"),

where A: G — R. ¢ denotes the modular function of G.

For an element & € L2(R, L%(G x X)) and (g, x) € G x X, write &, for the
map given by &, ((s) =&(s, g, x). Then by Fubini’s theorem &, , € L2(R) for a.e.
(g.x) € G x X.Let U: L>(R, L>(G x X)) — L*(G, L>(X x R)) be the unitary given
on& € L*(R, L%(G x X)) by

(UE)(g, x, 1) = F ' (5,00t + log(A(g)) + log(dg ™" pu/d ) (x)),

where F~': L2(R) — L?*(R) denotes the inverse Fourier transform. One can check that
conjugation by U induces an isomorphism

W: (L®(X) Xy G) oo R = L¥(X x R) x5 G.
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Letk: L®(X x R) = L*°(X x R) xg G be the inclusion map andlety : R ~ L*°(X x
R) x4 G be the action given by

vi(e (H))(x, 8) =k (H)(x,s —1),  yi(ug) =ug.

Then one can verify that W conjugates the dual action c?: R~ (L®(X) g G) XNge R
and y. Therefore, we can identify the flow of weights R ~ Z((L*°(X) Xq G) Xse R)
with R~ Z(L®(X x R) x5 G) = L*(X x R)?: the flow of weights associated to
G X.

Remark 2.3. 1t will be useful to speak about the Krieger type of a non-singular ergodic
action G ~ X. In light of the discussion above, we will only use this terminology for
countable groups G, so that no confusion arises with the type of the crossed product von
Neumann algebra L°°(X) x G. So assume that G is countable and that G ~ (X, u) is a
non-singular ergodic action. Then the Krieger flow is ergodic and we distinguish several
cases. If v is atomic, we say that G ~ X is of type I. If v is non-atomic and finite, we say
that G ~ X is of type II;. If v is non-atomic and infinite, we say that G ~ X is of type
Il. If the Krieger flow is given by R ~ R/ log(A)Z with A € (0, 1), we say that G ~ X
is of type III,. If the Krieger flow is the trivial flow R ~ {x}, we say that G ~ X is of
type II1;. If the Krieger flow is properly ergodic (that is, every orbit has measure zero), we
say that G ~ X is of type Ilp.

2.3. Non-singular Bernoulli actions. Suppose that G is a countable infinite group and
that (ug)gec is a family of equivalent probability measures on a standard Borel space Xj.
The action

G Xow=[]Komn: (g-0n=0x.1 @1
heG

is called the Bernoulli action. For two probability measures v, n on a standard Borel space
Y, the Hellinger distance H*(v, n) is defined by

1 2
Hwun) =5 | (Vavide - Janjiz) de. 22)
Y

where ¢ is any probability measure on Y such that v, n < ¢. By Kakutani’s criterion for
equivalence of infinite product measures [Kak48] the Bernoulli action (2.1) is non-singular
if and only if

Z Hz(uh, Mgn) < +oo forevery g € G.
heG

If (X, ) is non-atomic and the Bernoulli action (2.1) is non-singular, then it is essentially
free by [BKV19, Lemma 2.2].

Suppose that / is a countable infinite set and that (u;);cs is a family of equivalent
probability measures on a standard Borel space X¢. If G is an lcsc group that acts on 7, the
action

GrX.w=]]Xom): (g-0i=x01, (2.3)

iel
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is called the generalized Bernoulli action and it is non-singular if and only if
>icr H* (s ihg.i) < +o0 for every g € G. When v is a probability measure on X, such
that u; = v forevery i € I, the generalized Bernoulli action (2.3) is pmp and it is mixing if
and only if the stabilizer subgroup G; = {g € G : g -i =i} is compact foreveryi € /. In
particular, if G is countable infinite, the pmp Bernoulli action G ~ (Xg, o) is mixing.

2.4. Groups acting on trees. LetT = (V(T), E(T)) be a locally finite tree, so that the
edge set E(T) is a symmetric subset of V(T) x V(T) with the property that vertices
v, w € V(T) are adjacent if and only if (v, w), (w,v) € E(T). When T is clear from
the context, we will write E instead of E(T). Also we will often write T instead of
V(T) for the vertex set. For any two vertices v, w € T let [v, w] denote the smallest
subtree of T that contains v and w. The distance between vertices v, w € T is defined
as d(v, w) = |V([v, w])| — 1. Fixing a root p € T, we define the boundary 0T of
T as the collection of all infinite line segments starting at p. We equip 97 with a
metric d, as follows. If w, ' € 3T, let v € T be the unique vertex such that d(p, v) =
SUP,cwne 4 (0, v) and define

dp(w’ (,()/) = eXP(_d(p, U))

Then, up to homeomorphism, the space (37, d,) does not depend on the chosen root
p € T. Furthermore, the Hausdorff dimension dimy T of (97, d,) is also independent
of the choiceof p € T'.

Let Aut(T) denote the group of automorphisms of 7. By [Tit70, Proposition 3.2], if
g € Aut(T), then either:
e g fixes a vertex or interchanges a pair of vertices (in this case we say that g is elliptic);
e or there exists a bi-infinite line segment L C T, called the axis of g, such that g acts

on L by non-trivial translation (in this case we say that g is hyperbolic).

We equip Aut(7') with the topology of pointwise convergence. A subgroup G C Aut(T')
is closed with respect to this topology if and only if for every v € T the stabilizer
subgroup G, = {g € G : g - v = v} is compact. An action of an Icsc group G on T is a
continuous homomorphism G — Aut(7T). We say that the action G ~ T is cocompact if
there is a finite set F C E(T) suchthat G - F = E(T). A subgroup G C Aut(7) is called
non-elementary if it does not fix any point in 7 U a7 and does not interchange any pair of
points in 7 U 0T . Equivalently, G C Aut(7T') is non-elementary if there exist hyperbolic
elements &, g € G with axes Ly and L, such that L, N L, is finite. If G C Aut(T) is a
non-elementary closed subgroup, there exists a unique minimal G-invariant subtree S C T
and G is compactly generated if and only if G ~ S is cocompact (see [CM11, §2]). Recall
from (1.5) the definition of the Poincaré exponent (G ~ T') of a subgroup G C Aut(T).
If G C Aut(T) is a closed subgroup such that G ~ T is cocompact, then we have that
8(G ~T)=dimyg 9T.

3. Phase transitions of non-singular Bernoulli actions: proof of Theorems A and B

Let G be a countable infinite group and let (11¢)gec be a family of equivalent probability
measures on a standard Borel space X(. Let v also be a probability measure on X¢. For
t € [0, 1] we define the family of probability measures
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wo=(-0v+tp, geG. @3.1)

We write /1, for the infinite product measure i, = [, iy on X =[], Xo. We prove
Theorem 3.1 below, which is slightly more general than Theorem A.

THEOREM 3.1. Let G be a countable infinite group and let (ug)eec be a family
of equivalent probability measures on a standard probability space X, which is not
supported on a single atom. Assume that the Bernoulli action G ]_[geG(Xo, Mg) is
non-singular. Let v also be a probability measure on Xo. Then for every t € [0, 1] the
Bernoulli action

G (X,u) =[] Ko, (1= 1)+ 1) (3:2)
geG

is non-singular. Assume, in addition, that one of the following conditions holds.

(1 v~ pe.

(2) v < peandsup,c; llogdug/due(x)| < +00 fora.e x € Xo.

Then there exists a t; € [0, 1] such that G ~ (X, u,) is dissipative for every t > t| and
weakly mixing for every t < t1.

Remark 3.2. One might hope to prove a completely general phase transition result that only
requires v < (L, and not the additional assumption that sup 9cG logdug/dpe(x)| < 400
for a.e. x € Xo. However, the following example shows that this is not possible.

Let G be any countable infinite group and let G ~ [] gec(Co. 1g) be a conservative
non-singular Bernoulli action. Note that Theorem 3.1 implies that

G~ [[(Co. (1 = D)ne + )
geG

is conservative for every ¢t < 1. Let Cy be a standard Borel space and let (14) e be a fam-
ily of equivalent probability measures on Xg=CoU C; suchthat0 < > geG Mg(C1) <+00
and such that g |c, = g (Co)ng. Then the Bernoulli action G ~ (X, u) = ]_[geG(Xo, Mg)
is non-singular with non-negligible conservative part COG C G and dissipative part
X\ Cg. Taking v = e < W, for each t <1 the Bernoulli action G ~ (X, u;) =
ngG(XOv (I —1t)ne +tug) is constructed in the same way, by starting with the
conservative Bernoulli action G ~ ]_[geG(Co, (I —)ne +1tng). So for every t € (0, 1)
the Bernoulli action G ~ (X, ;) has non-negligible conservative part and non-negligible
dissipative part.

We can also prove a version of Theorem B in the more general setting of Theorem 3.1.

THEOREM 3.3. Let G be a countable infinite non-amenable group. Make the same
assumptions as in Theorem 3.1 and consider the non-singular Bernoulli actions
G ~ (X, uy) given by (3.2). Assume, moreover, that:

(D v~ e, or
2) v < pueand SUPyci [log dug/die(x)| < 400 for a.e. x € X.

Then there exists a ty > 0 such that G ~ (X, ) is strongly ergodic for every t < t.
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Proof of Theorem 3.1. Assume that G ~ (X, u1) = ngG(XO’ g) is non-singular. For
every t € [0, 1] we have that

D H (o i) <t ) H*(ua, pgn)  forevery g € G,
heG heG

so that G ~ (X, p;) is non-singular for every ¢ € [0, 1]. The rest of the proof we divide
into two steps.

CLAIM 1. If G ~ (X, ) is conservative, then G ™~ (X, Ws) is weakly mixing for every
s <t

Proof of Claim 1. Note that for every g € G we have that
()" =0 —rwtrpuy,=>0—rv+rl —s)v+rspug = pny,

so that (us) = wgr. Therefore, it suffices to prove that G ~ (X, uy) is weakly mixing for
every s < 1, assuming that G ~ (X, 1) is conservative.

The claim is trivially true for s = 0. So assume that G ~ (X, 1) is conservative and fix
s € (0,1). Let G ~ (Y, nn) be an ergodic pmp action. Define Yy = X¢ x X x {0, 1} and
define the probability measures A on {0, 1} by A(0) = s. Define the map 6: Yo — Xg by

x ifj=0,

3.3
x'if j =1 ©)

0(x,x, j) =

Then for every g € G we have that 0, (g x v x X) = ,u;,. Write Z = {0, 1}° and equip
Z with the probability measure 1¢. We identify the Bernoulli action G ~ YOG with
the diagonal action G ~ X x X x Z. By applying 6 in each coordinate we obtain a
G-equivariant factor map

W:XXXXZ—>X: Wx,x',2n=00nx,,z0)- (3.4)

Then the map idy x W: ¥ x X x X x Z — Y x X is G-equivariant and we have
that (idy x W),(n x w1 % o x A9) = n x us. The construction above is similar to
[KS20, §4].

Take F € L®°(Y x X, n x us)¢. Note that the diagonal action G ~ (Y x X, n x u1)
is conservative, since G ~ (Y, n) is pmp. The action G ~ (X X Z, o X 29) can be
identified with a pmp Bernoulli action with base space (X¢o x {0, 1}, v x 1), so that it
is mixing. By [SW81, Theorem 2.3] we have that

LY x XXX XZ,npx 1 Xxpo X A =L®¥ x X, nx u)’ @11,

which implies that the assignment (y, x, x’, z) = F(y, ¥(x, x’, 7)) is essentially indepen-
dent of x” and z. Choosing a finite set of coordinates 7 C G and changing, for g € F, the
value z, between 0 and 1, we see that F is essentially independent of the x,-coordinates
for g € F. As this is true for any finite set / C G, we have that F € L®(Y)S ® 1. The
action G ~ (Y, n) is ergodic and therefore F is essentially constant. We conclude that
G ~ (X, us) is weakly mixing. O]
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CLAM 2. Ifv ~ pe and if G ~ (X, ) is not dissipative, then G ~ (X, [us) is conser-
vative for every s < t.

Proof of Claim 2. Again it suffices to assume that G ~ (X, p1) is not dissipative and to
show that G ~ (X, uy) is conservative for every s < 1.

When s = 0, the statement is trivial, so assume that G ~ (X, p1) is not dissipative and
fix s € (0, 1). Let C C X denote the non-negligible conservative part of G ~ (X, u1).
As in the proof of Claim 1, write Z = {0, 1} and let A be the probability measure on
{0, 1} given by A(0) = 5. Writing W: X x X x Z — X for the G-equivariant map (3.4).
We claim that W, (1 X 1o X A9)|cxxxz) ~ s, so that G ~ (X, uy) is a factor of a
conservative non-singular action, and therefore must be conservative itself.

As W, (1 x po x AY9) = g, we have that W, ((u1 x o x A9)|cxxxz) < is. Let
U C X be the Borel set, uniquely determined up to a set of measure zero, such that
W, (1 % o X A9 |cxxxz) ~ tsly. We have to show that s (X \ U) = 0. Fix a finite
subset /' C G. For every t € [0, 1] define

X1,y =[] Ko, (1 =) +112),
geF

Xo,yp) = [ Koo (=0 +1pg).
geG\F

We shall write y| = yll, = y21. Also define
(V1. 61) = [ ] (Xo x Xo x {0, 1}, g x v x 4),
geF

(Y2, )= [] (Xox Xox {0, 1}, g x v x 4.
geG\F

By applying the map (3.3) in every coordinate, we get factor maps ¥;: ¥V; — X;
that satisfy (¥;)«(¢;) = y; for j = 1, 2. Identify X; x ¥ = X x (Xo x {0, 1HG\V and
define the subset C’ C X x Y2 by C’' = C x (Xo x {0, 1)\, Let &’ C X be Borel
such that

(idx, x ¥2).((y1 X &2)ler) ~ (1 X ¥) -

Identify Y1 x X» = X x (Xg x {0, 1})]: and define V C Y] x Xo by V=U" x (X X
{0, 1})]:. Then we have that

(W1 idx,)a (@1 x p3)Iv) ~ (U1 X idy,)s(idy, x W2)((r1 x S0l x v7 x 27)
= W, ((¢1 X &)lexxxz) ~ Msly-

Let m: X| x Xp — Xp and 7’: Y1 x X» — X» denote the coordinate projections. Note
that by construction we have that

7 (G < y)Iv) ~ (1 X v lur) ~ 7 (slun).- (3.5)
Let W C X be Borel such that 7, (151/) ~ ¥; |w. For every y € X» define the Borel sets
Uy ={xeX|:(x,y) €U} and L{;:{x eXi:(x,y)eld).
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As . ((y1 X ¥3)lur) ~ v5 lw, we have that
nUy) >0 foryy-ae. yeW.

The disintegration of (y1 x y;)[y along 7 is given by (y lee;)yew. Therefore, the
disintegration of (§1 x y,)|v along 7’ is given by (y |u}< x vF x ')»}—)yew. We conclude
that the disintegration of (¥ x idy,)«((£1 X yzs)|v) along 7 is given by ((W1)«(y1 |u; X
vF x k}—))},ew. The disintegration of sl along 7 is given by (y; le, ) yew. Since
Msly ~ (W1 x idx,)«((¢1 X ¥3)|v), we conclude that

(WDl x v7 x A7) ~ yfly,  forys-ae.y € W.

As y1 (Z/l;) > 0 for yzs-a.e. y € W, and using that v ~ ., we see that

vy~ v~ (WDs((1 X v/ x )»F)|uy’.xx(fx{l}f)

< (WDl x v x27),

for y5-a.e. y € W.Itis clear that also (W1)+(y |u; x vF x aF) < ¥1»so that yily, ~ 7
for y;-a.e. y € W. Therefore, we have that y{ (X \ U,) = 0 for y;-a.e. y € W, so that

s UAXT x W)) = 0.

Since this is true for every finite subset /' C G, we conclude that ps (X \ U) = 0. O]

The conclusion of the proof now follows by combining both claims. Assume that
G ~ (X, uy) is not dissipative and fix s < ¢. Choose r such that s < r < ¢.

vV ~ . By Claim 2 we have that G ~ (X, u;) is conservative. Then by Claim | we
see that G ~ (X, uy) is weakly mixing.

V < [de. AS U < [L,, the measures i), and ji, are equivalent. We have that

dus, _ ((1 _p dv +tdug>due_
du, dpue  dpe ) dul,

e

So if SUPgeG [log dpug/de(x)| < 400 fora.e x € Xo, we also have that

sup |log dpy /d g (x)| < 400 forae. x € Xo.
geG

It follows from [BV20, Proposition 4.3] that G ~ (X, ;) is conservative. Then by Claim 1
we have that G ~ (X, uy) is weakly mixing. O

Remark 3.4. Let I be a countably infinite set and suppose that we are given a family
of equivalent probability measures (u;)ic; on a standard Borel space Xgo. Let v be a
probability measure on X that is equivalent to all the u;. If G is an Icsc group that acts
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on [ such that for each i € I the stabilizer subgroup G; = {g € G : g -i = i} is compact,
then the pmp generalized Bernoulli action

G H(Xo, v), (8-X)i=xg-1,

iel
is mixing. For 7 € [0, 1] write

(X, 1) = [ [(Xo. (1 = 0)v +1p1:)
iel
and assume that the generalized Bernoulli action G ~ (X, 1) is non-singular.

Since [SW81, Theorem 2.3] still applies to infinitely recurrent actions of lcsc groups
(see [AIM19, Remark 7.4]), it is straightforward to adapt the proof of Claim 1 in the proof
of Theorem 3.1 to prove that if G ~ (X, u,) is infinitely recurrent, then G ~ (X, ) is
weakly mixing for every s < t. Similarly, we can adapt the proof of Claim 2, using that a
factor of an infinitely recurrent action is again infinitely recurrent. Together, this leads to
the following phase transition result in the Icsc setting.

Assume that G; = {g € G : g -i = i} is compact for every i € [ and thatv ~ .. Then
there exists a t; € [0, 1] such that G ~ (X, u;) is dissipative up to compact stabilizers for
every t > t; and weakly mixing for every t < #;.

Recall the following definition from [BKV19, Definition 4.2]. When G is a countable
infinite group and G ~ (X, ) is a non-singular action on a standard probability space,
a sequence (1),) of probability measures on G is called strongly recurrent for the action
G~ (X, p)if

dp(x) A 400
o 0
chnn( : X 2ke M(hk=Ndk= p/dpu(x)

We say that G ~ (X, w) is strongly conservative if there exists a sequence (n,) of
probability measures on G that is strongly recurrent for G ~ (X, ).

LEMMA 3.5. Let G ~ (X, ) and G ~ (Y, v) be non-singular actions of a count-
able infinite group G on standard probability spaces (X, u) and (Y, v). Suppose that
v (X, uw) — (Y,v) is a measure-preserving G-equivariant factor map and that ny
is a sequence of probability measures on G that is strongly recurrent for the action
G ~ (X, w). Then n, is strongly recurrent for the action G ~ (Y, v).

Proof. Let E: LO(X , [0, +00)) — LO(Y, [0, +00)) denote the conditional expectation
map that is uniquely determined by

/ E(F)H dv =/ F(Hovy)du
Y X
for all positive measurable functions F: X — [0, +00) and H: Y — [0, +00). Since

dk™'v Ay, ('w) E dk—p
dv — dyp du
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for every k € G, we have that

dk=! dk=!
Z nn(hk_l)Tv(y) = E< Z N (hk™ 1) dﬂ“)(y) forae.yeY. (3.6

keG keG

By Jensen’s inequality for conditional expectations, applied to the convex function
t — 1/t, we also have that

! I

E for ae. yeY.
E(Y jeg Mn(hk=Ndk='p/dp)(y) = <ZkeG nn(hk—l)dk—l,u/d,u>(y) orae.ye
3.7

Combining (3.6) and (3.7), we see that

dv(y)
2 h f
D M) Y 2keg Mn(hk=Ndk=1v/dv(y)

heG

1
2(p /E( ) d
<> mah) L E s e T () dv(y)

heG

du(x)
= 2(h / ,
Z (1) X Doke Mhk™N)dk='w/dp(x)

heG

which converges to 0 as 7, is strongly recurrent for G ~ (X, ). O

We say that a non-singular group action G ~ (X, ) has an invariant mean if
there exists a G-invariant linear functional ¢ € L°°(X)*. We say that G ~ (X, u) is
amenable (in the sense of Zimmer) if there exists a G-equivariant conditional expectation
E: L°(G x X) — L*°(X), where the action G ~ G x X is given by g-(h,x) =
(gh, g - x).

PROPOSITION 3.6. Let G be a countable infinite group and let (j1g)gec be a family of

equivalent probability measures on a standard Borel space X that is not supported on

a single atom. Let v be a probability measure on X and for each t € [0, 1] consider the

Bernoulli action (3.2). Assume that G ~ (X, 1) is non-singular.

() If G ~ (X, ut) has an invariant mean, then G ~ (X, (ts) has an invariant mean
for every s < t.

2) IfG ~ (X, u;) is amenable, then G ~ (X, us) is amenable for every s > t.

(3) If G ~ (X, uy) is strongly conservative, then G ~ (X, W) is strongly conservative
Jor every s < t.

Proof. (1) We may assume that ¢+ = 1. So suppose that G ~ (X, ©1) has an invariant
mean and fix s < 1. Let A be the probability measure on {0, 1} that is given by
A(0) = s. Then by [AIM19, Proposition A.9] the diagonal action G ~ (X x X x {0, 1}9,
w1 X o X A9) has an invariant mean. Since G ~ (X, wy) is a factor of this diagonal
action, it admits a G-invariant mean as well.

(2) It suffices to show that G ~ (X, 1) is amenable whenever there exists at € (0, 1)
such that G ~ (X, ;) is amenable. Write A for the probability measure on {0, 1}
given by A(0) = ¢. Then G ~ (X, u;) is a factor of the diagonal action G ~ (X x X X
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{0, 136, u1 x po x A9), so by [Zim78, Theorem 2.4] also the latter action is amenable.
Since G ~ (X x {0, 116, ug x A9) is pmp, we have that G ~ (X, 1) is amenable.

(3) We may again assume that r = 1. Suppose that (n,) is a strongly recurrent
sequence of probability measures on G for the action G ~ (X, u1). Fix s < 1 and let
A be the probability measure on {0, 1} defined by A(0) =s. As the diagonal action
G ~ (X x {0, 1}%, uo x A9) is pmp, the sequence 7, is also strongly recurrent for the
diagonal action G ~ (X x X x {0, 1}, 1 x o x A9). Since G ~ (X, ;) is a factor of
G (X x X x{0,1}9, 1 x uo x A9), it follows from Lemma 3.5 that the sequence 1,
is strongly recurrent for G ~ (X, y). O]

We finally prove Theorem 3.3. The proof relies heavily upon the techniques developed
in [MV20, §5].

Proof of Theorem 3.3. For every t € (0, 1] write p' for the Koopman representation
g, \'"?
PG A LX) (pp(E)(x) = (Wm) Eg' ).
t

Fix s € (0, 1) and let C > 0 be such that log(1 — x) > —Cx for every x € [0, s). Then for
every t < s and every g € G we have that

log({pf (1), 1)) = Y log(1 — H* (1. )

heG

> Y log(1 — tH*(igh, 1))
heG

> —Ct Z Hz(,ugh, Hh).

heG

Because G ~ (X, p1) is non-singular we get that
(py(1), 1) > 1 ast — 0, forevery g € G. (3.8)

We claim that there exists a ¢ > 0 such that G ~ (X, ;) is non-amenable for every
t < t'. Suppose, to the contrary, that #, is a sequence that converges to zero such that
G ~ (X, uy,) is amenable for every n € N. Then it follows from [Nev03, Theorem 3.7]
that p™ is weakly contained in the left regular representation A for every n € N. Write 1
for the trivial representation of G. It follows from (3.8) that B, eN o™ has almost invariant
vectors, so that

lg < @ p™" < oolg < Ag,
neN

which is in contradiction to the non-amenability of G. By Theorem 3.1 there exists
a t; € [0, 1] such that G ~ (X, uy) is weakly mixing for every ¢ < f1. Since every
dissipative action is amenable (see, for example, [AIM19, Theorem A.29]) it follows that
n>t>0.
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Write Zo = [0, 1) and let A denote the Lebesgue probability measure on Zg. Let p°
denote the reduced Koopman representation

P’ G A LA(X x Z§, uo x 19) O CL:  (pg(8))(x) = &(g™" - ).

As G is non-amenable, p° has stable spectral gap. Suppose that for every s > 0 we can
find 0 < s’ < s such that ps/ is weakly contained in ,05/ ® p°. Then there exists a sequence
s, that converges to zero, such that p* is weakly contained in p* ® p° for every n € N.
This implies that €, .y p* is weakly contained in (P, oy ™) ® p°. But by (3.8), the
representation €D, o* has almost invariant vectors, so that (), p™) ® p° weakly
contains the trivial representation. This is in contradiction to p° having stable spectral gap.
We conclude that there exists an s > 0 such that p’ is not weakly contained in o’ ® p° for
everyt < s.

We prove that G ~ (X, ;) is strongly ergodic for every ¢ < min{¢’, s}, in which case
we can apply [MV20, Lemma 5.2] to the non-singular action G ~ (X, ;) and the pmp
action G ~ (X x ZOG , Lo X 26) by our choice of ¢’ and s. After rescaling, we may assume
that G ~ (X, 1) is ergodic and that o is not weakly contained in p’ ® p? for every
t €(0,1).

Let ¢ € (0, 1) be arbitrary and define the map

8 XxXxZOG_> X: V&, y,0n= ixh ?fzh =t
yp ifzp > t.
Then W is G-equivariant and we have that W(uj x po x 19 = u,. Suppose that
G ~ (X, u;) is not strongly ergodic. Then we can find a bounded almost invariant
sequence f, € L*®°(X, u;) such that | f,ll2 =1 and u,(f,) =0 for every n € N.
Therefore, W, ( f,) is a bounded almost invariant sequence for G ~ (X x X X ZOG , U1 X
wo x A9). Let E: L®(X x X x Zg) — L°°(X) be the conditional expectation that
is uniquely determined by pj o E = 1 x o x A%. By [MV20, Lemma 5.2] we have
that lim,,_ oo [|(E o W) (fn) — Ws(fu)ll2 = 0. As ¥ is measure-preserving we get, in
particular, that

Jm [(E o W) (fa)ll2 = 1. (3.9)

Note that if u,(f) = 0 for some f € L2(X, u;), we have that 1 ((E o v,)(f)) =0.So
we can view E o W, as a bounded operator

EoW,: L*(X, u) ©Cl — L*(X, u1) © Cl.

CLAIM. The bounded operator E o W, : L2(X, u) ©C1 — L%(X, w1) © Cl1 has norm
strictly less than 1.

The claim is in direct contradiction to (3.9), so we conclude that G ~ (X, u;) is
strongly ergodic.

Proof of claim. For every g € G, let ¢, be the map
g1 L*(Xo, py) = L*(Xo, 1tg) = 9g(F) =1F + (1 = )v(F) - 1.
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Then E o W,.: L?(Xo, us) — L*(X, 1) is given by the infinite product ®g€G ¢g. For
every g € G we have that

IF N2, = @ty /dpeg) ™ 2 Flla s < 67 21 g,

so that the inclusion map ¢, : L2(X, p,fg,) < L2(Xo, g) satisfies ||tg || < =172 for every
g € G. We have that

9o (F) = t(F — ug(F) - 1) + p,(F) - 1 forevery F € L*(Xo, 11}).

So if we write Pé for the projection map onto L?(Xo, /ﬂg) © Cl1, and P, for the projection
map onto L?(Xo, mg) © C1, we have that

ggo0 Py =1(Pgot,) forevery g €G. (3.10)

For a non-empty finite subset 7 C G let V (F) be the linear subspace of L2(X, uy) ©Cl1
spanned by

(@ L*(Xo. 1) © (C1> ® @ L
geF geG\F

Then, using (3.10), we see that
ICE o W) (Pll2 <t 12 £y forevery f € V(F).
Since @J_—#@ V(F) is dense inside L2(X, ;) © C1, we have that

ICE o W)l p2cx ppect | < 117 < 1.

This also concludes the proof of Theorem 3.3. O

4. Non-singular Bernoulli actions arising from groups acting on trees: proof of
Theorem C

Let T be a locally finite tree and choose a root p € T. Let ug and w; be equivalent
probability measures on a standard Borel space X¢. Following [AIM19, §10], we define a
family of equivalent probability measures (ite)ecE by

no if e is oriented towards p,
Me = { 4.1

w1 if e is oriented away from p.

Let G C Aut(T) be a subgroup. When g € G and e € E, the edges e and g -e are
simultaneously oriented towards, or away from p, unless e € E([p, g - p]). As E([p, g -
p]) is finite for every g € G, the generalized Bernoulli action

G X, w=[]Xo ne): (€ x)e =241, 4.2)
ecE

is non-singular. If we start with a different root p’ € T, let (14,,).cg denote the correspond-
ing family of probability measures on Xo. Then we have that u, = w/, for all but finitely
many e € E, so that the measures [ [, i and [[,. 1, are equivalent. Therefore, up to
conjugacy, the action (4.2) is independent of the choice of root p € T.
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LEMMA 4.1. Let T be a locally finite tree such that each vertex v € V(T) has degree at
least 2. Suppose that G C Aut(T) is a countable subgroup. Let o and |11 be equivalent
probability measures on a standard Borel space X and fix a root p € T. Then the action
o: G~ (X, p) given by (4.2) is essentially free.

Proof. Take g € G\ {e}. It suffices to show that u({x e X : g-x =x})=0. If g is
elliptic, there exist disjoint infinite subtrees 71, 7o C T such that g - 71 = 7. Note that

Xuu)= [] Kome) and (X2, )= ] (Xo. o)
e€E(Ty) e€E(Tr)

are non-atomic and that g induces a non-singular isomorphism ¢: (X1, u1) — (X2, u2) :
@(x)e = x4-1,,. We get that

mr X a({(x, p(x)) : x € X1}) =0.

A fortiori u({x € X : g-x =x}) =0. If g is hyperbolic, let L, C T denote its axis on
which it acts by non-trivial translation. Then [, . E(Ly) (X0, He) is non-atomic and by

[BKV19, Lemma 2.2] the action gZ N HeeE(Lg)(XO’ W) is essentially free. This implies
thatalso u({x € X : g - x = x}) = 0. ‘ O

We prove Theorem 4.2 below, which implies Theorem C and also describes the stable
type when the action is weakly mixing.

THEOREM 4.2. Let T be a locally finite tree with root p € T. Let G C Aut(T) be a closed
non-elementary subgroup with Poincaré exponent § = §(G ~ T) given by (1.5). Let 1
and |1 be non-trivial equivalent probability measures on a standard Borel space X.
Consider the generalized non-singular Bernoulli action oc: G ~ (X, ) given by (4.2).
Then a is:

o weakly mixing if 1 — H? (1o, t1) > exp(—38/2);

e dissipative up to compact stabilizers if 1 — H?(uo, 1) < exp(—38/2).

Let G ~ (Y, v) be an ergodic pmp action and let A C R be the smallest closed subgroup
that contains the essential range of the map

Xox Xo—R: (x,x") > log(dpo/dp1)(x) —log(dmo/dp1)(x').

Let A: G — R.q denote the modular function and let ¥ be the smallest subgroup
generated by A and log(A(G)).
Suppose that 1 — H*(uo, 1) > exp(—38/2). Then the Krieger flow and the flow of

weights of B: G ~ X x Y are determined by A and ¥ as follows.

(1) If A (respectively, X) is trivial, then the Krieger flow (respectively, flow of weights)
is given by R ~ R.

(2) If A (respectively, X) is dense, then the Krieger flow (respectively, flow of weights)
is trivial.

(3) If A (respectively, X ) equals aZ, with a > 0, then the Krieger flow (respectively, flow
of weights) is given by R ~ R/aZ.
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In general, we do not know the behaviour of the action (4.2) in the critical situation
1 — H* (o, p1) = exp(—4/2). However, if T is a regular tree and G ~ T has full
Poincaré exponent, we prove in Proposition 4.3 below that the action is dissipative up
to compact stabilizers. This is similar to [AIM19, Theorems 8.4 and 9.10].

PROPOSITION 4.3. Let T be a g-regular tree with root p € T and let G C Aut(T) be a
closed subgroup with Poincaré exponent § = §(G ~ T) =log(q — 1). Let o and 1 be
equivalent probability measures on a standard Borel space X.

If1— HZ([,L(), ny) =(@q — 1)_1/2, then the action (4.2) is dissipative up to compact
stabilizers.

Interesting examples of actions of the form (4.2) arise when G C Aut(T) is the free
group on a finite set of generators acting on its Cayley tree. In that case, following [AIM19,
§6] and [M'V20, Remark 5.3], we can also give a sufficient criterion for strong ergodicity.

PROPOSITION 4.4. Let the free group Ty on d > 2 generators act on its Cayley tree
T. Let po and py be equivalent probability measures on a standard Borel space Xo.
Then the action (4.2) dissipative if 1 — Hz(uo, n1) < Qd — D~Y2 and weakly mixing
and non-amenable if 1 — Hz(uo, n) > Qd — D)~Y2. Furthermore, the action (4.2) is
strongly ergodic when 1 — H?(uo, 1) > (2d — 1)~ 1/4,

The proof of Theorem 4.2 below is similar to that of [LP92, Theorem 4] and [AIM19,
Theorems 10.3 and 10.4]

Proof of Theorem 4.2. Define a family (X.).cg of independent random variables on
(X9 I'L) = l_[eEE(X()’ I'LE) by

log(dw1/duo)(xe) if e is oriented towards p,
X.(x) = . 4.3)
log(dwo/di1)(xe) if e is oriented away from p.

For v € T we write
Ss= Y Xe
ecE([p,v])
Then we have that
dgp
du
Since G C Aut(T) is a closed subgroup, for each v € T the stabilizer subgroup G, = {g €

G : g - v = v} is a compact open subgroup of G.
Suppose that 1 — HZ (o, 1) < exp(—4/2). Then we have that

= exp(Sg.p) forevery g € G.

fX 3 exp(8u(0)/2) du) = Y (1= H (o, p1))* @Y < oo,

veG-p veG-p

by definition of the Poincaré exponent. Therefore, we have that ) . o exp(Sy(x)/2) <
+o00 for a.e. x € X. Let A denote the left invariant Haar measure on G and define
L = A(G,), where G, = {g € G : g - p = p}. Then we have that
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d
/ %(x) drg) =L Y exp(S,(x)) < +oo forae.x € X.
G an veG-p

We conclude that G ~ (X, w) is dissipative up to compact stabilizers.

Now assume that 1 — H2(uq, 1) > exp(—4/2). We start by proving that G ~ (X, u)
is infinitely recurrent. By [AIM19, Theorem 8.17] we can find a non-elementary closed
compactly generated subgroup G’ C G such that 1 — H? (o, it1) > exp(—8(G’)/2). Let
T’ C T be the unique minimal G'-invariant subtree. Then G’ acts cocompactly on 7’
and we have that §(G’) = dimy 9T’. Let X and Y be independent random variables with
distributions (log d1/d o)« o and (log d o /d 1)« i1, respectively. Set Z = X 4+ Y and
write

@(1) = E(exp(t2)).

The assignment 7+ @(f) is convex, ¢(t) = ¢(1 —t) for every ¢ and ¢(1/2) =
(1 — H?(uo, 01))%. We conclude that

infp(t) = (1 - H (110, u1))*.

Write Ry for the sum of k independent copies of Z. By the Chernoff—-Cramér theorem, as
stated in [ILP92], there exists an M € N such that

P(Ry > 0) > exp(—M8(G")). 4.4)

Below we define a new unoriented tree S. This means that the edge set of S consists of
subsets {v, w} C V(S). Fix a vertex p’ € T’ and define the unoriented tree S as follows.
e Shas vertices v € T’ so that d7/(p/, v) is divisible by M.
e There is an edge {v, w} € E(S) between two vertices v, w € S if d7/(v, w) = M and

(o', vlr C [p', wlrr.

Here the notation [o’, v]7+ means that we consider the line segment [o’, v] as a subtree of
T'. We have that dimy 05 = M dimy o7’ = MS(G’). Form a random subgraph S(x) of
S by deleting those edges {v, w} € E(S) where

Z X, (x,) <O.

ecE([v,w]yr)

This is an edge percolation on S, where each edge remains with probability
p =P(Ry = 0). So by (4.4) we have that p exp(dimg S) > 1. Furthermore, if {v, w}
and {v/, w'} are edges of S so that E([v, w]7/) N E([v/, w']7/) = @, their presence in S(x)
constitutes independent events. So the percolation process is a quasi-Bernoulli percolation
as introduced in [Lyo89]. Taking w € (1, p exp(dimgy S)) and setting w, = w™", it
follows from [Lyo89, Theorem 3.1] that percolation occurs almost surely, that is, S(x)
contains an infinite connected component for a.e. x € X. Writing

S = D Xe(x),

ecE([p vlp)
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this means that for a.e. x € (X, ) we can find a constant a, > —oo such that S (x) > ay
for infinitely many v € T’. As T’/ G’ is finite, there exists a vertex w € T’ such that

Z exp(S, (x)) = 400  with positive probability. 4.5)

veG'w

Therefore, by Kolmogorov’s zero—one law, we have that ZveG,_w exp(S) (x)) = +o0

almost surely. Since a change of root results in a conjugate action, we may assume that

o = w. Then (4.5) implies that Zuec.p exp(Sy(x)) = 400 for a.e. x € X. Writing again

L for the Haar measure of the stabilizer subgroup G, = {g € G : g - p = p}, we see that
g

d
/;; d_M dr(g) =1L Z exp(Sy) = +oo almost surely.

H veG-p

We conclude that G ~ (X, p) is infinitely recurrent. We prove that G ~ (X, p) is weakly
mixing using a phase transition result from the previous section. Define the measurable
map

¥ Xo— (0,1]: ¢(x) = min{du;/dpo(x), 1}.

Let v be the probability measure on X determined by
dv _1
d—(x) =p Y(x) wherep= [ ¥(x)duo(x).
Hno Xo

Then we have that v ~ g and for every s > 1 — p the probability measures

A

ny=s""(uo — (1 = $)v),

m=s""(u1 — (1= s)v)

are well defined. We consider the non-singular actions G ~ (X, ng) = ]—[eeE(Xo, 7)),
where

0 = {nf) if e is oriented towards p,
S =

n) if e is oriented away from p.

By the dominated convergence theorem we have that H 2(;78, m) — H 2(;/,0, un1)ass — 1.
So we can choose s close enough to 1, but not equal to 1, such that 1 — H 2(n(s), n{ ) >
exp(—34/2). By the first part of the proof we have that G ~ (X, ny) is infinitely recurrent.
Note that

Wj =(1—s)v+sn‘;- for j =0, 1.

Since we assumed that G C Aut(7) is closed, all the stabilizer subgroups G, = {g € G :
g - v = v} are compact. By Remark 3.4 we conclude that G ~ (X, p) is weakly mixing.

Let G ~ (Y, v) be an ergodic pmp action. To determine the Krieger flow and the flow
of weights of §: G ~ X x Y we use a similar approach to [AIM19, Theorem 10.4] and
[VW17, Proposition 7.3]. First we determine the Krieger flow and then we deal with the
flow of weights.
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As before, let G’ C G be a non-elementary compactly generated subgroup such that
1-— Hz(uo, u1) > exp(—38(G’)/2). By [AIM19, Theorem 8.7] we may assume that G/ G’
is not compact. Let T/ C T be the minimal G’-invariant subtree. Let v € T’ be as in
Lemma 4.5 below so that

N (E(gT’) UE(v, g~ - v])) —g. (4.6)

geG

Since changing the root yields a conjugate action, we may assume that p = v. Let (Zo, o)
be a standard probability space such that there exist measurable maps 6y, 61: Zy — X
that satisfy (6p)«{o = o and (01)«8o = 1. Write

z.o=[] “ow).
ecE(T)\E(T")

XuLpen= ] o e,

ecE(T)\E(T")

X2, ;)= [] Xo. e

ecE(T")
By the first part of the proof we have that G’ ~ (X, p7) is infinitely recurrent. Define the
pmp map

6o(z.) if e is oriented towards p,
V:(Z,8)—> Xi,p1): (W(@)e = o
01(z.) if e is oriented away from p.

Consider
U = {e € E(T) : e is oriented towards p}.

Since gUAU = E(T)([p, g - p]) C E(T’) for any g € G’, the set (E(T)\ E(T"))NU
is G’-invariant. Therefore, ¥ is a G’-equivariant factor map. Consider the Maharam
extensions

GNZxXoxYxR and GAXxY xR

of the diagonal actions G’ ~ Z x X, x Y and G’ ~ X x Y x R, respectively. Identify-
ing (X, u) = (X1, p1) x (X2, p2), we obtain a G’-equivariant factor map

P:ZxXo XYV XR=> X xXoxYxR: ®(z,x,y,1) =W(2),x,y,1).

Take F € L®(X x Y x R)®. By [AIM19, Proposition A.33] the Maharam extension
G' ~ X; x Y x R is infinitely recurrent. Since G’ ~ Z is a mixing pmp generalized
Bernoulli action we have that Fo® € L¥(Z x Xa x ¥ x R) ¢ C 1 ® L®(X, x Y x
R)G by [SW81, Theorem 2.3]. Therefore, F is essentially independent of the E(T) \
E(T")-coordinates. Thus, for any g € G the assignment

(6, y,0) > F(g-x,y,1) = F(x, y, 1 —log(dg ™' /du)(x))

is essentially independent of the E(T) \ E(gT’)-coordinates. Since log(dg™'/d ) only
depends on the E([p, g~' - p])-coordinates, we deduce that F is essentially independent of
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the E(T) \ (E(gT")U E([p, g~ - p]))-coordinates, for every g € G. Therefore, by (4.6),
we have that F € 1 ® L®°(Y x R).

So we have proven that any G-invariant function F € L*°(X x Y x R) is of the form
F(x,y,t) = H(y,t), forsome H € L*°(Y x R) that satisfies

H(y,t)=H(g-y,t+ log(dgflu/du)(x)) forae. (x,y,1) e X x Y x R.

Since 0 is in the essential range of the maps log(dgu/du), for every g € G, we see that
H(g-y,t) = H(y,t) forae. (y,t) € Y x R. By ergodicity of G ~ Y, we conclude that
H is of the form H(y, t) = P(t), for some P € L°°(R) that satisfies

P(t) =P+ log(a’g_ly,/dy,)(x)) forae. (x,t) € X xR, forevery g € G. (4.7)

Let I' C R be the subgroup generated by the essential ranges of the maps log(dgu/duw),
for g € G. If I' = {0} we can identify L®°(X x ¥ x R)¢ = L®(R). If I' C R is dense,
then it follows that P is essentially constant so that the Maharam extension G ~ X x Y X
R is ergodic, that is, the Krieger flow of G ~ X x Y is trivial. If ' = aZ, with a > 0,
we conclude by (4.7) that we can identify L°°(X x ¥ x R)Y = L*®(R/aZ), so that the
Krieger flow of G ~ X x Y is given by R ~ R/aZ. Finally, note that the closure of "
equals the closure of the subgroup generated by the essential range of the map

Xo x Xo— R:  (x, %) = log(duo/dup)(x) — log(dpo/dp)(x').

So we have calculated the Krieger flow in every case, concluding the proof of the theorem
in the case where G is unimodular.

When G is not unimodular, let Gg = ker A be the kernel of the modular function. Let
G ~ X x Y x R be the modular Maharam extension and let «: Gy ~ X x Y x R be its
restriction to the subgroup Go. Then we have that

L¥(X x Y xR)Y C L®(X x Y x R)*.

By [AIM19, Theorem 8.16] we have that §(Go) = §, and we can apply the argument above
to conclude that L®(X x ¥ x R)* C 1 ® 1 ® L®(R). So for every F € L®(X x Y x
R)C there exists a P € L*°(R) such that

P(t)=P(t + log(dg ' u/du)(x) + log(A(g))) forae. (x,t)eX xR, forevery geG.
(4.8)

Let IT be the subgroup of R generated by the essential range of the maps
X > log(dg_lu/du)(x) + log(A(g)) withg e G.

As 0 is contained in the essential range of log(dg~'/1/dv), for every g € G, we get that
log(A(G)) C II. Therefore, IT also contains the subgroup I' C R defined above. Thus, the
closure of IT equals the closure of ¥, where ¥ C R is the subgroup as in the statement of
the theorem. From (4.8) we conclude that we may identify L (X x ¥ x R)¢ = L®(R)>,
so that the flow of weights of G ~ X x Y is as stated in the theorem. O
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LEMMA 4.5. Let T be a locally finite tree and let G C Aut(T) be a closed subgroup.
Suppose that H C G is a closed compactly generated subgroup that contains a hyperbolic
element and assume that G/H is not compact. Let S C T be the unique minimal
H-invariant subtree. Then there exists a vertex v € S such that

M (ssUlv. g™ - v]) = (o} (4.9)

geG

Proof. Letk € H be a hyperbolic element and let L C T be its axis, on which k acts by a
non-trivial translation. Then L C S, as one can show for instance as in the proof of [CM11,
Proposition 3.8]. Pick any vertex v € L. We claim that this vertex will satisfy (4.9). Take
any w € V(T) \ {v}. As G/H is not compact, one can show as in [AIM19, Theorem 9.7]
that there exists a g € G such that g - w ¢ S. Since k acts by translation on L, there exists
an n € N large enough such that
[v,k-v] C[v,k"g-v] and [v,k~'-v]C[v,k"g-v],

so that in particular we have that w ¢ [v,k"g - v]N[v, kK "g-v] = {v}. Since § is
H-invariant, we also have that k" g - w ¢ Sand k™"g - w ¢ S and we conclude that

w ¢ (Kg)~'S U, kg - v N (k") SUv, kg - v]). s

Proof of Proposition 4.3. Define the family (X,).cg of independent random variables on
(X, ) by (4.3) and write
Si;= Y. X

ecE([p,v])
CLAIM. There exists a 8 > 0 such that

u{x e X:Sy(x) <=6 foreveryveT\{p}}) > 0.

Proof of claim. Note that E(exp(X./2)) =1 — H?%(o, 1) for every e € E. Define a
family of random variables (W,),>0 on (X, i) by

W= > exp(Su/2).

veT
d(v,p)=n

Using that 1 — H? (i, t1) = (¢ — 1)~'/2, one computes that
E(Wpt1l Sy, d(v, p) <n) =W, foreveryn > 1.

So the sequence (W,),>0 is a martingale, and since it is positive it converges
almost surely to a finite limit when n — +oo. Write ¥, ={v € T : d(v, p) = n}. As
W, > max,ex, exp(Sy/2) we conclude that there exists a positive constant C < 400

such that
P(S, < Cforeveryv e T) > 0.

For any vertex w € T, write Ty, = {v € T : [p, w] C [p, v]}: the set of children of w,
including w itself. Using the symmetry of the tree and changing the root from ptow € T,
we also have that
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P(Sy, — Sy < C foreveryv € Ty,) >0 foreveryw € T. (4.10)

Set vg = (log dyu1/dso)« o and vy = (log dpuo/d 1)« 1. Because 1 — H? (o, pu1) # 0
we have that ;o # w1, so that there exists a § > 0 such that

Vo * v ((—o0, —=48)) > 0.

Here vg * v| denotes the convolution product of vy with v;. Therefore, there exists N € N
large enough such that

P(S, < —C — 5 forevery w € Zy and S,y < —§ forevery w’' € ¥, withn < N) > 0.
4.11)

Since for any w € T and w’ € ¥, with n < N, we have that S, — S, is independent of
S, for every v € Ty, and since X is a finite set, it follows from (4.10) and (4.11) that

P(Sy < =6 foreveryv e T\ {p}) > 0.

This concludes the proof of the claim. O

Let § > 0 be as in the claim and define
U={xe X :S5kx)<—-bforeveryv eT\ {p}},

so that u(U) > 0. Let G, be the stabilizer subgroup of p. Note that for every g,h € G
we have that Sp,.,(x) = g.p(h_1 - X) + Sp.p(x) fora.e. x € X, so that for h € G we have
that

h-UC{xe€X:Shgpx) <—06+Sh,x)forevery g ¢ G,}.
It follows that if & ¢ G, we have that
UNh-UC{x € X :Shp(x) <—dand Sp.,(x) =8} =0.

Since G C Aut(T) is closed, we have that G, is compact. So the action G ~ (X, u) is not
infinitely recurrent. Let A denote the left invariant Haar measure on G. By an adaptation of
the proof of [BV20, Proposition 4.3], the set

D= {x eX ;/ dg_u(x) dr(g) < +oo} = {x eX :f exp(Sg.p(x)) dA(g) < +oo}
G dn G

satisfies u(D) € {0, 1}. Since G ~ (X, p) is not infinitely recurrent, it follows from
[AIM19, Proposition A.28] that (D) > 0, so that we must have that w(D) = 1.
By [AIM19, Theorem A.29] the action G ~ (X, n) is dissipative up to compact
stabilizers. O

We use a similar approach to [MV20, §6] in the proof of Proposition 4.4.

Proof of Proposition 4.4. 1t follows from Theorem 4.2 and Proposition 4.3 that the
action G ~ (X, u), given by (4.2), is dissipative when 1 — H%(po, 1) < (2d — 1)~1/2
and weakly mixing when 1 — HZ(,uo, 1) > 2d — 1)_1/2. So it remains to show that
G ~ (X, u)is non-amenable when 1 — HZ(MO, un1) > 2d — 1)~Y2 and strongly ergodic
when 1 — H2(uo, 1) > 2d — 1)~1/4,
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Assume first that 1 — H2(uo, 1) > (2d — 1)71/2. By taking the kernel of a surjective
homomorphism F; — Z we find a normal subgroup H; C F,; that is free on infinitely
many generators. By [RT13, Théoréme 0.1] we have that §(H;) = (2d — n~Y 2. Then,
using [Sul79, Corollary 6], we can find a finitely generated free subgroup H> C Hj such
that H; = H, x H3 for some free subgroup H3 C H; and such that 1 — Hz(uo, ni) >
exp(—38(H2)/2). Let ¢v: Hy — H3 be the surjective group homomorphism uniquely
determined by

e ifh e Hp,

h =
v {h if h € Hs.

We set N = ker ¢, so that H C N and we get that 1 — H2 (o, 1) > exp(—38(N)/2).
Therefore, N ~ (X, w) is ergodic by Theorem 4.2. Also we have that H;/N = H3, which
is a free group on infinitely many generators. Therefore, H; ~ (X, w) is non-amenable by
[MV20, Lemma 6.4]. A posteriori also Fy ~ (X, @) is non-amenable.

Let = be the Koopman representation of the action Fy ~ (X, u):

d 1/2
%G LX) (ng(s»(x):(di:(x)) Eg" 0.

CLam. If 1 — Hz(,uo, uw1) > 2d — 1)_1/4, then 1 is not weakly contained in the left
regular representation.

Proof of claim. Let n denote the canonical symmetric measure on the generator set of Fy
and define

P = Z n(g)mg-
geFq

The n-spectral radius of o: Fy ~ (X, n), which we denote by p,(a), is by definition
the norm of P, as a bounded operator on L%(X, w). By [AIM19, Proposition A.11] we have
that

pyle = lim (P"(1), H/"

1/n
= lim ( > —szo,m)f'g') :

n—
gelky

where |g| denotes the word length of a group element g € F,;. By [AIM19, Theorem 6.10]
we then have that

(1 — H? (1o, 11))?
2d

if 1 — H?(no, 1) > 2d — 1)~Y4, and

pu(@) = (@d =1+ = H o, u) ™)

V2d —1
pn(a) = T

if 1 — H?(uo, 1) < (2d — 1)~1/4, Therefore, if 1 — H?(uo, 1) > 2d — )14, we
have that p, () > p,(Fy), where p;,(IF;) denotes the n-spectral radius of the left regular
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representation. This implies that « is not weakly contained in the left regular representation
(see, for instance, [AD03, §3.2]). O]

Now assume that 1 — HZ(uo, 1) > (2d — 1)~/4. As in the proof of Theorem 4.2
there exist probability measures v, g and 11 on X that are equivalent to ¢ and a number
s € (0, 1) such that

nj=0A-s)v+sp; forj=0,1,

and such that 1 — H 2(170, n) > Qd — 1)~Y/4, Consider the non-singular action

Fa~ (X.n)= [] (Xo.n.) wheren, =

ecE(T)

no if e is oriented towards p,
n1 if e is oriented away from p.

By Theorem 4.2 the action F; ~ (X, n) is ergodic. Write p for the Koopman rep-
resentation associated to Fy; ~ (X, n). By the claim, p is not weakly contained in
the left regular representation. Let A be the probability measure on {0, 1} given by
1(0) = s. Let p° be the reduced Koopman representation of the pmp generalized Bernoulli
action Fy ~ (X x {0, 1}EM pED 5 RET)) Then p° is contained in a multiple of the
left regular representation. Therefore, as p is not weakly contained in the left regular
representation, p is not weakly contained in p ® p°.
Define the map
xe ifz, =0,

WX x X x{0,}FD 5 x: w(x,y,2).= .
vy ifz,=1.

Then W is Fy-equivariant and we have that W, (n x vE™) x AFTM)) = ;. Suppose that
Fg ~ (X, ) is not strongly ergodic. Then there exists a bounded almost invariant
sequence f, € L*°(X, u) such that ||f,llo =1 and wu(f,) =0 for every n € N.
Therefore, W,.(f,) is a bounded almost invariant sequence for the diagonal action
Fg (X x X x {0, LED 5 x vEM  REMY Let E: L®(X x X x {0, 1}EM))
L*>®(X) be the conditional expectation that is uniquely determined by poE =
n x vEM x AE(M) By [MV20, Lemma 5.2] we have that lim, o [|(E o W,)(f,) —
W, (fu)ll2 = 0, and in particular we get that

lim [|(E o W) (fu)ll2 = 1. (4.12)
n—oQ
But just as in the proof of Theorem 3.3 we have that

H(E o W*)|L2(X,M)6C1H < ls

which is in contradiction with (4.12). We conclude that F; ~ (X, ) is strongly
ergodic. O

Proposition 4.6 below complements Theorem 4.2 by considering groups G C Aut(T)
that are not closed. This is similar to [AIM19, Theorem 10.5].

PROPOSITION 4.6. Let T be a locally finite tree with root p € T. Let G C Aut(T) be
an lcsc group such that the inclusion map G — Aut(T) is continuous and such that
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G C Aut(T) is not closed. Write § = (G ~ T) for the Poincaré exponent given by (1.5).

Let o and i1 be non-trivial equivalent probability measures on a standard Borel space

Xo. Consider the generalized non-singular Bernoulli action o: G ~ (X, ) given by

(4.2). Let H C Aut(T) be the closure of G. Then the following assertions hold.

o If1— H?*(uo, 1) > exp(—38/2), then « is ergodic and its Krieger flow is determined
by the essential range of the map

Xox Xo—R:  (x,x") > log(dpo/du)(x) — log(dpo/du) (') (4.13)

as in Theorem 4.2.

o If1— H?(uo, u1) < exp(—8/2), then each ergodic component of o is of the form
G ~ H/K, where K is a compact subgroup of H. In particular, there exists a
G-invariant o -finite measure on X that is equivalent to (.

Proof. Let H C Aut(T) be the closure of G. Then §(H) =38 and we can apply
Theorem 4.2 to the non-singular action H ~ (X, ).

If 1 — H* (o, 1) > exp(—38/2),then H ~ X is ergodic. As G C H is dense, we have
that

L®X)% = L*x)" =1,

so that G ~ X is ergodic. Let H ~ X x R be the Maharam extension associated
to H n~ X. Again, as G C H is dense, we have that

L¥(X x R)Y = L®(X x R)H.

Note that the subgroup generated by the essential ranges of the maps log(dg~'u/duw),
with g € G, is the same as the subgroup generated by the essential ranges of the maps
log(dh’1 n/dw), with h € H. Then one determines the Krieger flow of G ~ X as in the
proof of Theorem 4.2.

If 1 — H% (o, n1) < exp(—34/2), the action H ~ (X, p) is dissipative up to compact
stabilizers. By [AIM19, Theorem A.29] each ergodic component is of the form H ~ H/K
for a compact subgroup K C H. Therefore, each ergodic component of G ~ (X, u) is of
the form G ~ H/K, for some compact subgroup K C H. [
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