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Fluid flow in fields of resistance

J.R. Blake

The velocity profiles in volumes of either passive resistance or

active transport are calculated for both linear and non-linear

resistive models. These include fluid flows containing particles

in a channel or pipe subject to either a steady or oscillatory

pressure gradient, cilia induced transport, and laminar flow in a

non-linear resistive shear layer. Resistive elements tend to

substantially reduce the inertial phase lag component in

oscillatory flows. Only small concentrations of particles are

needed to reduce the flow field to the Darcy approximation. An

'active porous media' model for a cilia sublayer predicts

accurate voleoity profiles for dense concentrations of cilia (for

example, on Opalina and in the lung).

1. Introduction

Practical problems in widely differing fields of research ranging

from soil physics, environmental mechanics to biological fluid mechanics

have the common feature that we are considering fluid flow in fields of

either passive resistance or active transport: for example, resistive flow

in porous media, air motion within crop canopies, active transport by

cilia in mucous movement and possible long distance sucrose translocation

by micro-filaments in phloem cells. We could further extend the problem to

suspensions in which the particulate matter is moving with the fluid. In

this case for neutrally bouyant particles the force and couple on the

particle will be zero (the particle will move with the local velocity and

rotate at half the local vorticity of the fluid), but the straining motion

due to rotation and higher moments will affect the ambient flow field.
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It is extremely difficult to calculate the exact flow pattern around

al l the particles of the suspension, fixed or otherwise. To overcome this

serious drawback we may investigate the problem in terms of ensemble

averages, which are denoted by angle brackets. Thus mathematically the

problem is defined by an ensemble average of the Navier Stokes equations,

with a force term which is a functional of the velocity. That i s , for an

incompressible fluid, the equations of motion are

l l + U " V U ) = " <Vp>

< V . U > = 0 ,

where U is the velocity vector, p the pressure, and p and \l the

density and viscosity respectively. The force term <F[u]> represents the

resistive or active element of the flow field. The problems considered in

this paper will be either uni-directional flows or flows at low Reynolds

numbers such that the advective terms in (l) will be equated to zero.

However F[li] may s t i l l be non-linear, especially for larger Reynolds

numbers, so the equations s t i l l maintain a non-linear character.

There have been some detailed analyses of (1) with respect to porous

media (Saffman [77]). He defines

( 2 ) U ( x ) = < u ( x ) > a n d P ( x ) = < p ( x ) > .

The velocity U is usually referred to in terms of a flux per unit area.

The mean interstitial velocity U(x) and the mean interstitial pressure

p(x) are conditional averages taken over the fluid alone and are given by

(Saffman [77]):

(3a) F(x) = J-«

(3b) p(x) = — < ,_

where n = <fl(x)> with ff(x) defined as equal to one in the pores and

zero in the solid. The ensemble averages U(x) and P are continuous and

differentiable.

Furthermore, if we considered a function <|>(x) which is piecewise

smooth and has single jumps at discontinuities, then
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where

(Ub) < [ * ] . > = l i m Ojr f

and

The velocity U(x) is continuous across the surface S , so i t immediately

follows that

(5) V.U = 0 ,

and y~—) = —5 , since i t is also continuous; then (l) 'becomes, for
& 0

uni-directional flow,

Saffman [//] derives this formulation t>y considering an earlier step: the

divergence of the stress tensor to obtain the force. Because of the

continuous nature of the functions i t is in order for us to proceed

directly from ( l ) .

The complete definition of the problem is obtained if we define a

further relation between F and U . For low Reynolds number flows the

equations are linear so we can express F as a linear functional of U as

follows:

(T) FAX) = u f f K.AX, ?, t, t')u.U, f)d&f -

This equation can be further simplified if we expand

(8) X. . (x, C, * , * ' ) = fx..(x)6(x-?) + K'.6{k\x-E.) + .

(T<) a
where 6 (x-5) = -5—S(x-g) and <S(X-g) is the Dirac delta function.

dxk
E q u a t i o n ( 6 ) b e c o m e s , on s u b s t i t u t i o n o f ( 7 ) and ( 8 ) ,
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W. „— W.
( 9 ) p I T " ~n ^ + w ^ i " ̂ / i + »*<,•* ^ •

This equation, (9 ) , allows for not only r e s i s t ive elements but also a term

due to a couple or s t raining motion on the suspended pa r t i c l e s . Higher

order moments would correspond to higher order derivatives in (8) . These

are neglected in t h i s paper because the i r influence on the flow-field is

much smaller than the force and couple terms and also from a pract ical

point of view since these higher moments are di f f icul t to measure. This

equation i s sufficient from the pract ical point of view since p and U

are the measurable quan t i t i e s , although i t c lear ly has s t a t i s t i c a l

l imi ta t ions from the theoret ica l s ide. Equation (9) without the time

dependent term and th i rd order tensor ^jp l l a s heen used by Brinkman [3]

in calculating the increased resistance on sedimenting spheres. If we

neglect the laplacian term as well, (9) reduces to Darcy's equation for

flow in porous media;

In the next sections we will consider solutions to equations (9) for

special cases which may have some practical relevance.

2 . F l o w i n a t w o - d i m e n s i o n a l c h a n n e l a n d a c i r c u l a r c y l i n d e r

InTthis section we will consider problems of uni-directional flow in a

two-dimensional channel or a circular cylinder. We consider flow fields in

either a resistive regime (proportional to U ) or a force free medium

(proportional to W/'dx ) for oscillatory pressure gradients. The steady

flow solutions and resistance free solutions are special cases of the

oscillatory pressure gradient resistive medium flow field.

(a) Resistive medium

A problem of practical interest is the flow profile in a two-

dimensional channel or circular cylinder in which there are particles

resisting fluid motion. For example in filtration processes we need to

consider the flow through arrays of cylinders. It also accours frequently

in the biological community, for example, the translocation of sucrose in

phloem cells of plants in which long fibres extend along the tube. These
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may assume either a passive or active role, as the exact nature of their

function to the plant is not known.

Oscillatory flow is an important component of arterial blood flow

because of the rhythmic beating of the heart. We can analyse the

oscillatory component of this flow by considering an oscillatory pressure

gradient
ax

Similar problems to th i s have been treated by

Womersley [ J2 ] , Jones [ 9 ] , and Chow and Lai [ 4 ] . Thus the equations of

motion with resistance for the two dimensional and axisymmetric cases are

rtfie = u - p — - yU ,

(11)

respectively. The scalar y is the resistive parameter peculiar to the

resistive medium and has the dimensions of force per unit volume. The

solution of these equations subject to the no-slip condition on the walls

is ,

(12)

and

(13)

where

where a = and push
. We have defined y' = y/h in (12) and

r1 = rlh in (13) where h is either channel height or pipe radius, and

Jo is the zeroth order modified Bessel function of the first kind. The

2
parameter g is commonly referred to as the Womersley parameter or as 3

the oscillatory Reynolds number. The special case of a and 3 equal to

zero together with n = 1 reduces to the Poiseuille parabolic profile in

both cases.
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Because of the similarity in velocity profiles for both the two-

dimensional and cylindrical models we will only illustrate the latter case.

In Figure 1 (a) we indicate the velocity profiles for various values of

(a, 6) . The combination line (-.-) indicates the steady velocity

profiles (that i s , 3 = 0 ) for various values of the resistance parameter

a . As a increases the velocity profile flattens out while the magnitude

decreases. It can be seen for values of a greater than 8 that the

velocity profiles become almost flat except near the walls where the no-

slip condition becomes important. For these larger values of a we can

neglect the no-slip condition together with the higher derivatives in (l l)

and just consider the Darcy solution which is the line marked D in Figure

1 (a). The oscillatory velocity profiles without resistance (that i s ,

a = 0 ) are shown by the dashed lines in Figure 1 (a). Again, for

increasing 3 the magnitude of the velocity profile decreases and for

larger values of 6 the maximum amplitude of the flow field is not on the

centre line for this instant in time (t = 0) . This is due to inertial

effects which produce a time-lag in the flow field relative to the applied

pressure gradient; this being illustrated in Figure 1 (b). The combined

effects of inertia and resistance produce interesting features in the flow

field. For smaller values of (a, 3) , the effect of increasing either

parameter is to reduce the magnitude of the velocity. For larger values of

3 though, finite values of a have the effect of increasing the magnitude

of the velocity on the centre line, this being produced by decreasing the

phase lag which is clearly indicated by Figure 1 (b).

We can obtain an estimate of the particle concentration in the fluid

medium for fixed particles by considering an array of cylindrical rods

aligned with the flow for very small Reynolds numbers. In this case

(15)

where d is the spacing of the rods in the regular array and r their

radius (Happel and Brenner [7]). Thus the non-dimensional parameter a is

equal to
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7 = 0

-10 -0.5

Figure 1 (a). Non-dimensionalised velocity profiles for different values

of the parameters (a, 8) . Note the rapid decrease in the

magnitude of the velocities for increasing values of a and

B •
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-1.5 -1.0 -0.5

<j> (RADIANS)

(0.1) d.D

r/h

1.0

0.5

Figure 1 (b) . Phase lag <£ as a function of radius for different values

of (a, 8) . The effect of increasing a is to decrease

the phase lag (f> .
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(16) a =
2-nh

The volume concentration of rods is equal to

(17)

Thus if we took values of

C = IT

=0.1 and d/h =0 .1 we would produce

values of C = 0.03 and a = 20 . From Figure 1 (a) i t can be clearly

seen that even at this low value volume concentration there are substantial

changes in the flow field; in fact, even in this case, the Darcy model is

more appropriate.

(b) Force-free medium

Many fluid flow problems involve the movement of suspensions of force

free particles; for example blood flow, in which case the particles are

being transported at the mean local fluid velocity and rotating with an

angular velocity equal to half the local vorticity resulting in a

dilatational motion and hence altering the velocity profile. By taking

certain liberties with the model we can regard this as a rate-of-strain per

unit volume. The equations of motion in this case for an oscillatory

pressure gradient are

(18) iut W

and

(19) x\Ke = u "2 + F

By using the definition of 6* as being equal to

(2o)

we can obtain the solution to (18) in the following form:
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and the solution to (19) can be represented in terms of the following

integral equation:

(22) U(r, t) = 21J£ v{r>) t

where V(r') is the solution of

E (a')-EAr'a')
V(r') = -± 1

a'

where K(r', £) is defined as

£e [E (a')-E.(ot'C)) , 0 - r' < E, ,

(2k) X(r\ 5) = •

%,e [E (a')—E ( a ' r 1 ) ) , E, < V £ 1 .

The function #. (x) is an exponential integral defined to be equal to

(25) E1

Note V{r') is complex, but the above integral can be resolved on the

computer by using real arithmetic, if we define

(25) V(r') = VXr') + iVAr') ,

and by resolving the problem into real and imaginary parts. Solutions are

shown in Figure 2 for various values of (a1, $) . It can be clearly seen

that the force-free terms above (that i s , 6 = 0 , (— - —) line in Figure

2) have a similar effect on the flow field as the resistive terms of the

previous case. Again the phase-lag of the flow field due to the inertial

terms is reduced by the action of the force-free terms; this being

illustrated in Figure 2 by the continuous line (—) .

3. App l i ca t i ons to c i l i a r y motion

Cilia line the airways of the lung, our reproductive tubules, and

propel many protozoa through their aqueous environment. They occur as a

dense mat of elongated cylindrical tubules on the epithelial surfaces which

beat with a "whiplash" movement. We can model the fluid motion in the

cil ia sublayer in terms of an "active porous medium" by neglecting the
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(1.0)

, II
-0.8 -0.5

r/h
1.0

0.5

Figure 2. Non-dimensional velocity profiles for different values of

(a1, 3) • Similar to Figure 1, except that larger numerical

values of ot' are required to decrease the magnitude of the

veloc ity.

higher derivatives. Generally the fluid motion may be considered as quasi-

steady and without a pressure gradient. If we consider the

porous media part of equations (6) and (7) by omitting time dependence, the

problem reduces to solving

(27) J i^(x, n'K^n'M^n1))*!1 = o ,

where V*.(r\') is the spatially averaged motion of the cilia and is defined
d
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(28) H

where £* i s the vector cartesian position of the cilium at time t for

some arc length posi t ion s . A similar equation to t h i s was derived from

the Stokes flow equations by Blake and Sleigh [2] , The only meaningful

coordinate dependence for c i l i a in (28) i s where V•> i s a function of the
3

vertical coordinate, in this case a;_ .

We can obtain the function V* very easily numerically. Because of
the periodicity of the ci l ia in space (metachronal wave) we need only
average over time for one cilium to obtain the function V* . From high
speed movie films we can obtain the position of points equi-distant along a
cilium at equal time intervals. Thus, if we consider M points along the
cilium and N time intervals (see Figure 3 (a)) in a complete beat we can
obtain the following simple summation for the velocity profile for a two-
dimensional beat pattern:

where in discretised terms

(30) 4 = [f (€*(V *W
and W(j) i s the number of points in the interval («/-%, j+%) , the square

brackets indicating integer part of the term inside. Thus sr is

discretized into M sections. T is the period of the ciliary beat and
L the length of the cilium. For continuity reasons vAx^] = 0 , since

there is now flow through the solid boundary. If we make the gross
assumption by using the f irs t term only in (8), then

(3D ^.(x) = y.(*3) .

That is the fluid is being propelled at the average velocity of the ci l ia .
This assumption, like most porous media studies, neglects the local micro-
scale fluid motion around the ci l ia , but produces a good macro-scale
approximation as can be seen from Figure 3 (t>) where the velocity profile
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for Opalina is shown. The observed velocity at the top of the cilia sub-

layer is usually about half the metachronal wave speed. In Opalina the

frequency / is 10-15 Hz and the wave length X is 12-15 vm , giving a

wave speed of 120-225 um/sec. This model predicts the velocity at the top

layer as being equal to 0.5 fL , where I is the length of the c i l ia ,

which in the case of Opalina is 15 \m • On substitution of these values

the predicted theoretical velocity will be in the range 75-120 jam/sec ,

being in good agreement with the observed values. To date, no observations

have been made of the velocity profile within the sublayer of Opalina but

we would qualitatively expect one similar to the predicted one; backflow

being produced by the cil ia in their recovery stroke.

This simple formula should be of great value to biologists and

physiologists for calculating velocity profiles in dense mats of cilia

instead of reverting to the complicated mathematical expressions derived

previously (Blake [?])•

Figure 3 (a) •

OPALINA

Ciliary beating pattern for the protozoan Opalina.

Numbering indicates successive e.qui-spaced time steps.
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y

-0.3

Figure 3 (b). Kon-dimensionalised velocity profile using the 'active

porous media1 model.

4. Laminar flow

Although the flow-field in a crop canopy is nearly always turbulent,

we can investigate the laminar flow problem in the hope that we may obtain

some feeling for the physical problem. Let us suppose we have laminar

unidirectional flow in a field of resistance without a mean pressure

gradient: the driving mechanism being the flow field at the top of the

crop canopy, in the form of a continuous velocity or a known shear stress.

Thus the equations of motion and boundary conditions reduce to, in non-

dimensional form,

[32) ^ - a*:/2 = 0 , tf(O) = 0 , and £/(l) = 1 .

The solution of this equation can be obtained exactly in terms of
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weierstrassian elliptic functions P(y, a, b) (see, for example, Murphy/

[?0], p. 380, and Erdelyi et al [6], p. 328), but we prefer to approach the

solution in terms of an asymptotic expansion of the form

(33) U(y) = I a*nu (y) .
n=0 n

On substitution into (31) we obtain the following solutions

vo(y) = v ,

n - l rl
Ujy) = I K(x, Z,)UA£,)V j,

n k=0 }Q * n~k~1

n-l rl

I
k=0

where

, 0 5 x < %, ,

K(x,

Convergence of the series is slow for large values of a* , and as many as

1000 terms are needed to provide convergence for a* = 5 .

Solutions for various values of a* are shown in Figure 1*. The

shear is considerably reduced in the lower layers reaching a maximum at the

canopy upper surface. If the flow field is turbulent, and the dynamic

viscosity M is replaced by an eddy viscosity an almost identical equation

is obtained. For the turbulent case 01* would be in the range 1 to 6

for most cereal crops (for example, wheat, rice) and the velocity profile

predicted by Cowan [5] is similar in shape to that in Figure h. Further

solutions to the turbulent problem have been considered in Inoue [S] and

Cowan [5].

5. Conclusions

In this paper, analytic solutions to various physical problems

involving flow in resistive media have been obtained. Frem the solutions

for two-dimensional channel and cylindrical pipe flow through a resistive

medium it was found that for even small, volume concentrations the Darcy

model for porous media was more appropriate. Resistive elements, as
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1.0

a* = 5

0 5

0.5 10

Figure 4. Velocity profiles in the non-linear laminar shear layer. Values

of the non-dimensional parameter a* are shown, a* = 0

corresponds to constant shear (Couette flow).

expected, reduce the inertial phase lag for flows subjected to oscillatory

pressure gradients.

A porous media model for flow due to cilia was found to be in

agreement with previously proposed models for dense concentrations of cilia

on the epithelia (for example, Opalina or in the lung). In the penultimate

section laminar flow in a non-linear resistive medium was considered.

In conclusion this analysis shows that many important phenomena exist

in flow-fields which include resistance to fluid motion.
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