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FORMULAS FOR THE NEHARI COEFFICIENTS 
OF BOUNDED UNIVALENT FUNCTIONS 

DUANE W. DE TEMPLE AND DAVID B. OULTON 

1. Introduction. The Grunsky inequalities [6] and their generalizations 
(e.g., [5; 14; 17]) have become an increasingly important tool for the study of 
the coefficients of normalized univalent functions defined on the unit disc. 
In particular, proofs based upon the Grunsky inequalities have now settled 
the Bieberbach conjecture for the fifth [15] and sixth [13] coefficients. For 
bounded univalent functions the situation is similar, although the Grunsky 
inequalities go over to those of Nehari [11]. These inequalities and their 
generalizations [1; 2; 3; 4; 12; 18] provide a fruitful approach to the study of 
coefficient problems for various subclasses of bounded univalent functions. 

One difficulty in applying the conditions is the actual determination of the 
required Grunsky-Nehari coefficients. To overcome this in the case of the 
Grunsky coefficients, Hummel [8] has derived some formulas which greatly 
ease their calculation, and moreover machine computed tables of these coeffi
cients are now available (Miller [10], Ross [16]). Corresponding formulas 
would be useful in working with inequalities of the Nehari type, and it is our 
purpose here to develop such formulas. While our main attention will be to 
the classes Si and Di which are defined below, we indicate in the concluding 
section how our techniques and formulas apply to other function classes as 
well, including the Bieberbach-Eilenberg functions as one important example. 

Class Si. The functions f(z) which are regular analytic and univalent in 
U = \z\ \z\ < 1}, have a Taylor series expansion about the origin of the form 

(1) /(*) = biz + b2z> + . . . + bnz
n + . . . , &! > 0, 

and satisfy | /(z) | < 1 in U. 

Class D\. The functions F{z) which are regular analytic and univalent in U, 
have a Taylor series expansion about the origin of the form 

(2) F(z) = p + fa + /te2 + • • . + $nz
n + . . . , 0 > 0, 

and satisfy the conditions \F{z)\ < 1 and F{z) + F({) ^ 0 for all z, f Ç U. 
For both these classes the Nehari inequalities can be written in the form 

(3) Re f ) [aM,XMX, + M M * > 1 < E ^ > iV = 1, 2, . . . , 
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where X0 is an arbitrary real number and Xi, X2, . . . are arbitrary complex 
numbers. The Nehari coefficients aM„ and b»v are defined differently in the 
two classes, however. 

For a function / of the form (1) the symmetric Nehari coefficients ayLV{f) 
are obtained from the series expansion 

(4) log/(z)~{(r) = £ ^(/Kf, 

convergent near the origin. Likewise the function has hermitean Nehari 
coefficients bfiV(f) which are obtained from 

(5) -log[i -mm] = £ w/)*r. 
Then a regular analytic function/ of the form (1) will be in Si if and only if 
(3) holds, where aMV = aM„(/) and &M„ = bllv(f) (Nehari [11], Schiffer and 
Tammi [18]). 

For a function F of the form (2) the symmetric Nehari coefficients Ailv(F) 
are defined by 

and the hermitean Nehari coefficients Bilv{F) are defined by 

these series being convergent in some neighborhood of the origin. Then a 
regular function F of the form (2) will belong to Dx if and only if (3) holds for 
(lav = ^nv(F) and b„v = BiiV{F) (DeTemple [2]). 

In all cases then, the Nehari coefficients can be defined implicitly by means 
of the relations (4), (5), (6), (7). For applications, however, the coefficients 
must be computed explicitly, and it is our goal to simplify these otherwise 
tedious calculations. 

2. Preliminaries. Let r be any real number and let s\, s2, . . . , sk be non-
negative integers, not all zero. If 5 = Si + . . . + sk then the multinomial 
coefficients are defined 

(8) ( r ) = r(r - I) . . . (r - s + 1) ^ 
\Si, . . . , SkJ Si\ . . . Sk\ 

In the case that r is a positive integer and s ^ r we note the identity 

(9) ( r + s ) = ( r + s ) . 
\si, . . . , sk! \r, si, . . . , sk/ 

Now if f(z) = Co + C\Z + czz
2 + . . . is convergent in some disc about the 
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origin, then for non-negative integers r we have in that same disc the expan
sion (multinomial theorem) 

do) [f(z)Y = £ c*(rV 

where c0
(r) = c0

r and for k = 1, 2, . . . 

(ID ^(r) = , E , C " J ^ v 1 . . . ^ , 
<5i *fc> \ ^ l > • • • t Sk' 

and where 

(12) yk = {(slf . . . , sk) : 5, ^ 0, Sl + 252 + . . . . + ksk = k}. 

Moreover, in the case c0 > 0, the expansion remains valid near the origin 
even when r is a rational number, positive or negative. Note that c0

(0) = 1, 
ck

w = 0 and ck^ = ck for k = 1,2, 
It will also be convenient to introduce the sets of ^-tuples 

(13) yk
n = {(su ... ,sk):sj^0Js^k + l-n,s1 + 2s2 + ... + ksk = n}, 

where k = 1,2, . . . , 0 ^ n ^ k, and 5 = si + . . . + sk. In particular $f \° = 
{(0, . . . , 0 ) } and yk*= {(0 0 fl)J. 

Suppose a map r is defined as follows: for (s i , . . . ysk) £ ¥ k
n let r ($ i , . . . , sk) = 

(fe + 1 — w — s, slf . . . , sk). Now & + 1 — n — s *t 0 and (fe + 1 — n — s) 
+ 2$i + • • • + (k -\- l)sk = k + 1 so T maps UÎ=o 5 ^ / into j /^+i . Moreover, 
the mapping can be uniquely inverted. If (so, Si, • • . , sk) £ J^t+i and if n is 
defined by w = k + 1 — s0 — Si — . . . — sk, then 0 ^ n ^ k and n + 5 ^ 
& + 1, where 5 = Si + . . . + sk. But 50 + 2s i + . . . + (k + l)sk = k + 1 
so Si + 2s2 + . . . + ksk = k + 1 — 5 — So = n. That is, (si, . . . , sk) £ Sfk

n 

and r(^i, . . . , sk) = (s0, Si, . . . , s*)- Thus r defines an isomorphism between 
Un=o«5̂ A;w andc5^A;+i. From this fact we obtain the following lemma. 

LEMMA. For any functions (pk>n(
si, • • • > sk), 0 ^ n ^ k, k = 1, 2, . . . , 

we /mz;e 

* 
2 ^ , ^ s <Plc,n(Sh • • • » Sfc) = , ^ , <^A;,A;+l-5-5o(5l> • • • t sk) 
n=0 (»i, V ( s0- s i V 

£Sfk
n d^k+i 

where s = s± + . . . + sk. 

In a more compact notation we will write this in the form 

(14) 22 Wfc.nfal» • • • i Sk) = ^2 Vk.k+l-qiÇïi • • . , <7*+l)> 

where 

Q, = {(gi, . . . , qt) : q, ^ 0, q, + 2q2 + . . . + lqx = /} 
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and 
q = gi + . . . + qt. 

Of course Qi = S^i, the only change being in the generic letter used to 
describe the set. This notational convention will be used numerous times in 
our development. 

3. Nehari coefficient formulas for Class Si. It is well-known that if 
f(z) e Su then so is [f(zp)]1/p = bi1/pz + . . . for each £ = 1,2, Due to 
the additional utility of the Nehari inequalities when p is greater than 1, we 
shall derive Nehari coefficient formulas for the function [f(zp)]l/p, for which 
we define 

«„<»(/) = a^fiz»)"») and b„™(f) = b„(f(z>y»). 

Since b\ 7e- 0, we may write f(z) = b\(z + a2z
2 + . . . ) = big(z), where 

an = bi~lbn. Then according to (4) we have 

(15) 

P * - f 
Thus, for \x, v 7^ 0, aM/p)(/) = CpV

iP)(g), where cM„(p) (g) are the Grunsky 
coefficients for the normalized univalent function g. Hummel [8] has derived 
formulas for these coefficients in the case \x,v ^ L i t remains to derive formulas 
for the coefficients aMo(p)(Z) for /x ^ 0. Setting f = 0 in (15), we obtain 

M=0 Z 

= T log bi + -- log (1 + a2z
p + . . . ) . 

P P 

For z sufficiently small we can write this as a power series in (a2z
p + . . .) and 

then apply the multinomial theorem (10), where we set cm = am+2, m = 
0, 1,2, We find 

oo -j -j oo / -j \ n+1 

(16) £ a^ifV = j- log h + ~ £ -L-ii— (a2z" + a^p + . . . ) " 
M=0 P P n=l W 

-j -I oo oo / -i \ t t f l 

£ £ n=l m=0 W 
(n) (n+m)p 

Now set k = m + n. Then & ̂  1 and 1 ^ n = k — msoO^m^k — 1. 
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N E H A R I C O E F F I C I E N T S 591 

Thus (16) takes the form 

1 oo k—1 f 1 \ k— w + 1 
(k—m) kp 

t 1 oo k-1 t -J \ k-m+1 

£ aMo(p)(/K = ~ log h + - -E £ " T - ' ^ *"• 
M=0 P £ *=1 m=0 k - M 

Clearly aMo(p)(/) = 0 unless /x is an integral multiple of p. In the case ju = kp 
for some integer & = 1, 2, . . . , we have by (9), (11) and (14) and recalling 

k-m-s si sm 

. t^, i. J-^I \ / a 2 a 3 . . . a m + 2 
P m=0 

fl*"° C/) - p io * - m fc U, . . . , J 

£ ~o « - w ^ \si, . . . , sk-i! 

= \*t S (Tirm+1( *"m W*~a." . . . «w 
p ^ 0 ^ * - W U i , . . . , Sjfc-i/ 

= I v (-Dg+1 ( 5 ) 
'P QÎ Z Wl» • • • , Î*/ 

5j <z2 #fc 
Û2 Û3 • • • # fc+ l • 

Summarizing, we obtain the following theorem: 

THEOREM 1. Let f(z) = &i(z + «2s2 + . . .) 6 Si. rfeew aMo(p)(/) = Oi/jn w 
wtf£ divisible by p. If /x = &p, & = 0, 1, 2, . . . , Jftew 

aoo ( ! ' > ( / )=^ogè 1 
P 

(17) 
«»,ow(o = -;-u j^ t z— L * „ K 1 • • • a*+ik>k> i, 

<3A 

wAere Q* = {(gi, . . . , g*) : g ^ 0, gi + 2g2 + . . . + kqk = k) and g = 
gi + . . . + g*. 

COROLLARY 1. For all N = 1, 2, . . . , and a// /x, i> = 0, 1, 2, . . . , the sym
metric Nehari coefficients satisfy the formula 

(Np) 1 (p) 

N 
aNn,Nv — AT

afiv 

Proof. The case for JU, v ^ 1 follows from the similar result for the Grunsky 
coefficients [8, Theorem 5]. It is obvious for JU ^ 0, v = 0 by examination of 
(17). 

The symmetric Nehari coefficients for Class Si, as given by equation (17) 
are listed in Table I for the cases \x = kp, k = 0, 1, 2, 3, 4, 5 and v = 0. This 
table complements the table of Hummel [8, p. 149]. 

In order to determine the formula for the hermitean Nehari coefficients, we 
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TABLE 1. Symmetric Nehari coefficients aMo(p)(/). f° r Class Si, 
M = kp, k = 0, 1 ,2 ,3 ,4 ,5 . 

P 

« 2 , , o W ( / ) = ^ ( « 3 - | « 2
2 ) 

= - I a4 - a2a2 + - a2 I ^3P)o
 P (J) = ~ I a4 - a2a2 + 

(p)/i-\ 1 I 1 2 , 2 1 4\ 

^ , o (/) = ~ I a5 ~ a2a4 - - a3 + a2 a3 - 7 a2 I 

to)/.A 1 I 1 2 , 2 3 1 1 5 I 

^ . o (/) = " I a6 - a2ab ~ a^aA + a2 a4 + a2a3 - a2 a3 + r a2 I 

where/(;z) = b\Z + b2z + . . . Ç 5i and an = frf \ . 

Note: for a^ } ( / ) , / i , ^ l (see Hummel [8]). 

use essentially the same techniques as before, this time beginning with equa
tion (5): 

CO 

E cp ,( /Kr = -iog{i - [/wo*)]1*} 
M» v = l 

For s and f small, and now taking ck = bk+i in the multinomial theorem (10), 
we then have 

CO CO -J 

= £ ^- (61 + ̂  + . . .r/p(bi + w +.. .y/p 

CO CO 1 _ V^ V^ A ^ (n/p) (n/p)n+pkpi+pl 
~ 2-J 2-, „Ck Ci Z f 

w =i k, 1=0 n 

Now let i = w + £& and j = n + pi. Then w ̂  1 implies k S (i — l)/p 
and / ^ (j •— l ) / £ . But i — j = p(k — I) so unless /x — v is divisible by £ 
we must have 6M/P)(/) = 0. In the case /x = v + m/>, m = 0, 1, 2, . . . , we 
have k = / + m and 

[(.v-D/p] -, 
U (P>/A — A to)/f\ _ V (v/p-l) r(»/p-l) 
uv+mp,v \J) — Vv,v+mp \J ) — £_j .-, C i+m Ci 

Z=0 V — pi 

for v = 1 , 2 , . . . and m = 0, 1, 2, . . . . Using (11), and recalling ck = bk+u this 
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formula becomes 

Vv+mp,v \J) = 2-J ~ 17 
1=0 V — pi 

(18) 
\ «T̂  \ n , • • • ,rj I 

1r0 V - pi y~m 4?t Ui, . . . , sl+mJ \rh . . . , rj 

X (a2
1...aHm+1

l+m)(ai
ri . . . al+1

Ti) 
when aw = bclbn. Due to the dependence of b^v

(p)(f) on both at and a*, this 
formula cannot be reduced further. Thus we have obtained the following 
theorem : 

THEOREM 2. Let f be a function in Class S\. Then whenever /x — v is not 
divisible by p, b^v){f) = 0. If \x = v + mp, v = 1, 2, . . . , and m = 0, 1, 2, 
. . . , /Aew 

(I9) ^..«(n-'^-^r.' E E ( '/*-' )(•/* - ; ) 
\\v) 1=0 v — pi s^i+m ®i \Si, . . . , Si+m/ \ri, . . . , Til 

• (a2 * . . . a z+w+i +m ) (a2 * . . . a i+i ' ) 
where an = bi~lbn, n = 1 , 2 , . . . . 

COROLLARY 2. For all N = 1 , 2 , . . . , awd all n, v = 1, 2, . . . , the hermitean 
Nehari coefficients satisfy the formula 

bN,.N:Nv\f) = ~K,^\f). 

Proof, M — v = mp if and only if N^ — Nv — m{Np). Also the interval 
(v — 1, v — l/N) contains no integer so neither does the interval ((V — l)/p, 
(Nv - l)/Np); that is, [(? - l)/p] = [(Nv - l)/iV/>]. But then (19) is 
identical in the two cases except for the denominator terms v — pi and 
N(v - pi). 

In order to tabulate the hermitean Nehari coefficients, it is convenient to 
define the following quantities. For v, p = 1, 2, . . . let x = v/p. Then define 

n0(*> = i/x 

and for 0 ^ / ^ [x - 1/p] and / + m = 1, 2, . . . , 

a 2 . . . #z+m+i (20) 0 ^ - » = - ^ E C *"' ) 
Then we can write (19) in the form 

(21) bv+mv,v{f)= £ x—~ (b1
2Y~lnliJ

x-l)Ql
(x-l) 

1=0 P 

for v = 1 , 2 , . . . and m = 0, 1, 2, . . . . The quantities (20) and coefficients (21) 
are listed in Table 2. In order to use this table it is first necessary to determine 

https://doi.org/10.4153/CJM-1977-060-6 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1977-060-6


TH G 

1-^ a 

^ l 
• ^ 

to 

U 

CO 

<M 

CO 

II 

I 
H 

G 

a 

COI 

I 
Hi 

^ 

a 

a 

col 

I 
HI 

• ^ 

o u 
'u 

l(N 

+ G a a 

d G 

e l l ^C ^C ^C 

1 1 
H 

i i 

1 1 

* s . 

1 
H 

i i t - o r O ^ 
CM CN CN 

H 

1 
1 
H 

• ^ 1 
H 

•^ 1 
H 

^ 

CO 

i - l l ( N 

CO 

i + 7 7 7 
H 

7 
^ ^ Q Jp JP Jp JP 

i—i Î? i—l Ci 
1 i 7 7 

i 1 II H 
CO ^ 

1 1 Jp JP G G 
^ >̂« ' -M ^ P~J 

ÎH 

i-H |CO i - l l < M 1 1 
H 

1 1 i 
c^ + + H 

1 | 

(M C l (M 

^ 1 

§ S 3 —1 —1 

i-H 

1 i—i 1—1 

1 
H 

•^ | 
H 

^ 1 
H 

-^ 1 •ç^ 

V. 1 1 
-̂̂  ^ ^ 

H | ( M O ' H 13 3 3 13 
+ + + II 1 G 

o 

1 G i ° 
1 C* CO T f m -r> ' H o o 

3 ^ G 1 1 

II H II ^ 1 -^ 
| 

o 

H (M 

es 
^ ,-H 

£, ^ i . H 
1 1 

^ r-O - O »-C> - O 
C<1 

G rj 
H 

1 1 H ^ H ^ H ^ H ^ Hi -^ 

TjH 

https://doi.org/10.4153/CJM-1977-060-6 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1977-060-6


NEHARI COEFFICIENTS 595 

m = (/x — v)/p, x = v/p and [x — 1/p]. The desired coefficient is then found 
by adding terms in the row corresponding to m (indicated in the left hand 
column) through the column headed by the value of [x — 1/p]. Table 2 has 
been constructed so it can be used for values of v and m for which v + m ^ 5. 
For example, in order to determine 67,4(3)(/), we find that m = 1, x = 4/3 and 
[x - 1/p] = 1. Thus, 

9 

1 7 8/3 , 1 , 2/31 1 2 \ _ 
= Ô &i a2 + Q 6i \az - -a2 )a2. 

4. Nehari coefficient formulas for Class Dx. In order to determine the 
symmetric Nehari coefficients it is convenient to write F(z) = /3(1 + 2f(z)) 
where 

f(z) = aiz + a2Z2 + • • . ,<*« = 0,/20. 

According to (6), we have 

- l o g - ^ ^ - P * - log (1 + / ( s ) + /«")) 

= £ ^ W - lug (1 + / ( * ) + / ( f ) ) 

where aMV(/) is the symmetric Nehari coefficient whose formula (in the case 
p = 1) was derived in Section 3. 

For sufficiently small z and f we may expand the logarithm as a power series 
in [f(z) + /(f)] and can then apply the binomial theorem. Defining 

(22) s/^F) = A,V{F) - a,p(f) 

we obtain 

£ sé^vr = £ - ^ £ ( * )mn-mmm. 
H,v=Q n = l "' m=0 \ TYl I 

We now apply the multinomial theorem (10) to obtain a power series in z and 
f, taking cl = al+1. 

oo oo- n oo oo / -j \n / \ 

(23) D J ^ U W = I E I I L—L
 C l<™v , n )*H l B - r+ m . 

M.J'=O w=i w=o z=o fc=o w \ m i 

Now let M = / + w — m and v =^ k -{- m. Then \x ^ n ~ m and v ^ rn.lt is 
convenient to deal separately with two cases: /x or p zero and /z, *> ^ 1. If both 
/x, p = 0, we have 

^oo(/0 = 0 . 
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For ji ^ 1 and v = 0 we must have k = m = 0. Hence, from (23), 

<24) = i ; 2J i " ' i^-^ - r« r" -w . • •« ; • -> 

1=0 Sf i \ S i , • . . , Si/ [X — I 

= E E ( M " * ) ( ~ i r 

y ix— l 

=E( 3 ) ^ 

o, wi» • • • > Su/ g 

:— f— s SI S 

a2 . . . a j + i 

( -1 ) ' 
û ! l Û!2 • • • OLp 

L / ffl Qp 

_ — « i . . . a„ 

where formulas (9), (11) and (14) have been used. 
Next consider the case /x, v ̂  1. Since ak

{0) = 0 if & > 0, m = 0 or m = n 
respectively imply that k and / in (23) are zero and hence v — 0 or /x = 0. But 
this is not the case and so when the order of summation on n and m is inter
changed we must have v ̂  m ^ 1 and /z + ra^w^ra + 1. Then (23) yields 

m) {m) _ > ç» (_i)- / „ \ 

= v g {-±Y+v-k-1 U + v-k-i\ C;(M_ 

Ùi #k £b r! \ V* - I / \ s h . . . , s l / \ r h . . . , r k / 

-Z) (v-k) 
Ck 

k 

\n+v— l—k 

(25) 

\y \ _ _ y M+J'-Zc-i-r-S / SI Sl\/ T\ Tk\ 

X — T 7 T « i (a2 . . . «z+i ) («2 . . . «fc+i ) 
/i -f- v — £ — k 

= Vyy T^ ŷ 1 ŷ  (v + v — k — i\i ^ — i \ 
k=0 k Z=0 yZ , \ ^ — I / \ 5 i , . . . , 5 M _ i / 

^v—1 ^ / i - 1 

X \ I ; 7 T ai (a2 . . . aM ) 
k* 

- . . . « / - ) = E E (s + r){ s ){ r ) 
®v sri \ r J \s2} . . . , V \r2, . . . , rj 

X (a2 

s + r 

s% ®v s + r \5i, . . . , v n, • • • , r„/ 

X ( a / 1 • . . OLV
TV). 
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In this form the symmetry is obvious, bu t further simplification is possible 
if we assume v ^ JU and then let h = n + v. Fur ther , we set st = 0 for i > JJL 
and ri = 0 for i > v, and define qt = s{ + r f for i = 1 , 2 , . . . h. Then 

gi + 2g2 + . . . + hqh = (sx + 2s2 + . . . + %) 

+ (ri + 2r2 + • • • + vrv) = ^ + p = h 

whenever (si, . . . , sM) £ j ^ M and (ri, . . . , YV) £ ^?„, and so (gi, . . . , qh) Ç Qh. 
Not all of Qh can be generated in this manner since gM+i, . . . , qh are all auto
matically zero. However, we claim (25) can be replaced by sums over Qh and 
0th

v\ t ha t is, 

(26) j/„,(/0 = Z E ( ^ ) " ^ « i " • . . *»". 
Qh ®T> \Qi - Y h . . . , q h - Yh,Yh..., YJ q 

T o check this we first note t ha t under the mapping (r1? . . . , YV) —» (ri, . . . , 
r„, 0, . . . , 0) , recalling v S M, there is a natural identification between 3% v 

and c ^ / . Moreover, if for some to we have qi0 — ri0 < 0, then the correspond
ing multinomial coefficient in (26) will vanish and thus make no contribution. 
We need only show, then, tha t in the case (gi, . . . , qh) Ç Qh, (Tu • • • , rn) £ 
t%hv, and qi — Y\ ^ 0, . . . , qh — rh ^ 0, the contribution made in (26) has a 
corresponding term in (25) which makes an equal contribution. But this is 
clear; jus t let st = qt — Yt. Then s* ^ 0 and S\ + 2s2 + . . . + hsh = (gi — ri) 
+ . . . + h(qh - rh) = h - v = M; tha t is, (su . . . , sh) G ^ V Although (26) 
was derived under the assumption v ^ 1, we notice t ha t if we formally set 
v — 0, so h = JU, then the same formula as (24) for J^/M0 obtains. 

T H E O R E M 3. Let F be a function in Class Dx. If F(z) = 0(1 + 2f(z)), wheYe 
f(z) = a\z + o^s2 + • . . and at = (2/5)~1/3^, then the symmetric Nehari coeffi
cients aYe given by 

(27) A,V{F) = aM ,(/) + J / M , ( F ) 

wAere dpvif) is the symmetYic Si Nehari coefficient and 

s/oo(F) = 0 

(28) J/„,(/O = Z { E ( g )} 

wheYeh = n -{- v,v ^ n, n, v = 1, 2, . . . , (/x, J>) ^ (0, 0) . 

T h e J ^ M V ( ^ ) components of the Nehari coefficients for Class Di , (28), are 
listed in Table 3. 
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T A B L E 3. The^/^V(F) components of the symmetr ic Nehari 
coefficients for Class Di, 0 ^ v ^ \x ^ 3. 

j / o o ( F ) = 0 

j / i o O O = - a i 

1 2 
20 (T

7) = - <xi - a2 

<Sxfzo(F) = — -on + aia2 — «3 

s/n(F) = a," 

^2i(F) = «10:2 — <*i 

31 (F) = û;ia3 — 2ai «2 + oc\ 

2 ^ 2 , 3 4 
Oil •S& ii (F) = a<i — 2ai «2 + 0 

32 (F) = «2^3 — on «3 — 2aia:2 + 4ai «2 — a i 

S^zz{F) = a3 — 4«ia2a3 + 2ai a3 + 6ai a2 — 8ai «2 ~̂ «l 

We now turn to the hermitean Nehari coefficients Btxv(F), defined by 

Since |-F(s)| < 1 we may expand this logarithm as a power series in F(z)F(Ç) 
and then apply the multinomial theorem to obtain 

t BAFVV - 2 t M L * -

v=o <3?„ \Tij . . . , r „ / 

T h u s in terms of the at = (3i/2j3 we have 

B^F^-2h^Tik Ç 2 \sh...,sJ\r1,...,J 
(ai . . . «M ) ( « i . . . a , ) . 

Noting t ha t 

( 2n + l \ ( 2 n + l\( s \ 
\Si, . . . , S J \ S I \Sh . . . , S J 
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we can then write 

m, s„(/o = z z 2'+s+y.i * )(r
 r

 r) 
(29) <̂  *„ Ui, • • • , V \ri , . . . , rj 

where 

(30) _ f, / 2»+ lW2n+l \ /34" 
"" ~ h \ s A r / 2» + 1 ' 

We now wish to express the ars as finite sums. Considering them as power 
series in the parameter y = /52, a short computation shows 

(31) (r + l)orr+i,s = j - (y<jrs) - rars, r, s = 0, 1, 2, . . . . 

An induction argument from (31) then shows 
77- -1 

(32) r\aTS = yT-l—~l(ju, s = 0, 1, 2, . . . , r = 1, 2, . . . . 

Now dTS = <jsr and so if in (32) we first set s = 0 and then replace r with s, 
we find 

7 5 - 1 

(33) slaos = y8'1-?-^ o-io, 5 = 1, 2, . . . . 

But from (31) we see 

(34) au = jj(y*o,), 5 = 0, 1,2, . . . . 

and so combining (32), (33), (34) we get 
1 r_j d s ds~ 1 _ 

Applying Leibniz's formula for the rth derivative of a product we obtain the 
symmetric form 

! dr+S~,C-1 (35) '" = ̂ i S ( I )( l )k[y ":^™ *"• k=-o \ K i \ K / dy 

From (30) we see 

*»° - T~=r-yi
 = I \T^~y + ïT3i) 

and hence 

a"'1 1 1 
d / - 1 1 - y* 2 

= i („ - 1)![(1 _ y ) - - ( - ! ) » ( ! + y)-"} 

- ( 1 - y 2 ) " ^ \ 2 i + l / y • 
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This allows (35) to be written as 

r\s\ 

x«<,+ .—i..'5s(î)(rsr.4V 2( r+s-Z- . / - l ) 

Next suppose we change the summation indices according to 

m = r + s — I — j — 1, 

(37) £ = r + 5 - k, 

q = r -\- s — I. 

Now 2j + 1 ^ r -{- s — k and / ^ k so j ^ r + 5 — / — j — 1 = m ; we thus 
have the limits O ^ m r g r + s — 1. Making these substitutions into (36) and 
simplifying we get the final form 

T+S-l 

(38) 

a" = (\ - ,?y+~s ^ y 
V1 y ) m=0 

I JA JAP p \p — s,p — r,r + s — q,q — p/ \2q — 2m — 1/ j 

Although (38) was derived under the assumption r, s ^ 1, it nevertheless is 
valid even if one of r or .9 is zero, as may be checked using equation (33). Intro
ducing the functions Xrs = 2r+s+1/3Vrs, we have derived the following result. 

THEOREM 4. Let F(z) = 0(1 + 2axz + 2a2z
2 + . . . ) £ #i- 7 7 ^ //^ hermi-

tean Nehari coefficients B^ÇF) are given by 

(39) Bo«(F) = log f ^ - | 

and, for n + v ^ I, by 

B^F)= E E xi * J(r
 r

 r) 
\™J) , S 1 p \ / r i ri» v 

X \OL\ . . . a^ )(ai . . . a , ) 
where 

(41) 

or+s+1/ ,2 r + s - 1 

U — P ) m==0 

l p i PÏ £ \p- s,p-r,r + s-q,q-p/\2q-2in -lj) ' 

Tables 4 and 5 list respectively x™ for 0 ^ s ^ r ^ 3 and B^V{F) for 
O â ^ / i ^ 3. 

https://doi.org/10.4153/CJM-1977-060-6 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1977-060-6


NEHARICOEFFICIENTS 601 

T A B L E 4. x™, 0 ^ s g r ^ 3 , l ^ r . 

xio = 4/32(l - /34)-1 

X 2 0 = 8/32(l - /34)-2 /?4 

X 3 o = 1 6 ^ 2 ( l - / î 4 r 3 ( ^ 4 + /38) 

Xn = 8 ^ 2 ( l - / 3 4 ) - 2 ( l + ^4) 

XH = 16/32(1 - ^ 4 ) - 3 ( 3 ^ 4 + /38) 

X3i = 32/32(l - /î4)-4(/34 + 6/38 + /312) 

X22 = 3 2 0 2 ( 1 - ^ 4 ) - 4 ( 3 / 3 4 + 8/38 + /312) 

X32 = 64/3 2 ( l - /3 4 ) - s ( /3 4 + 15/38 + 15/312 + /?16) 

XB3 = 1 2 8 ^ ( 1 - / 3 4 r 6 ( | /?4 + 17/38 + 60/312 + f /316 + /320) 

T A B L E 5. Hermitean Nehari coefficients Bltv(F) for 
Class D1 0 S v ^ M ̂  3m 1 g /x. 

^ io (F) = Xioai 

^20 (i7) = Xio«2 + X20ai2 

Bzo(F) = Xi0û!3 + 2X20Û!ia:2 + X30«l 

5 n ( / 0 = Xn|ai | 2 

Bil(F) = XnO!2âl + X21«i «1 

Bzi(F) = Xiia35i + 2X21̂ 10:20:1 + X3IÛ!I ai 

B22(F) = Xn|a2 |2 + 2X2i Re (ai2a2) + X22|a<i|4 

B 32(F) = Xiia353 + X21 (0:30:1 + 2o:io:2ô:2) 

+ 2X22o:ia2â:i + X3io:i â2 + X32«i «1 

#33(/0 = Xn|a3 |2 + 4x2 i Re (aia253) + 2*3i Re (ai3â3) 

+ 4X22|Û:IO:2|2 + 4X3 2 |Û:I |2 Re (ai2â2) 

+ x 3 3 ki! 6 
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5. Modification of the formulas for application to other function 
c lasses . While the formulas t ha t have been derived apply to the Nehari 
coefficients appropr ia te to the classes Si and Di, with suitable modification 
they also yield the Nehari (or Grunsky) coefficients relevant to many other 
function classes as well. In this section we briefly illustrate such modifications 
for some of these classes. 

Class SiR. This consists of the function f(z) = b\% + b2z
2 + . . . £ Si with 

real coefficents bn. As before the Nehari inequalities (3) apply, with the Nehari 
coefficients allv{f) and bltv{f) defined by (4) and (5). The formulas of Hummel 
[8] and Theorem 1 for the symmetr ic coefficients is unchanged, bu t simplifica
tions are now possible for the b^v(f) formulas. Let t ing /x = v + m, m ^ 0, and 
taking the case p = 1, then the first equali ty of (18) is now 

(42) ^'W = § 7=1 

X ( V - ' - V 1 . . . bl+m+isl+m) • ( t r ' - V 1 • • • bI+iTl), 

where we recall s = Si + s2 + . . . + Si+m, r = fi + r2 + . . . + rh Set t ing 
Sj = 0 for / + m + 1 ^ j S M ~ 1 and rk = 0 for / + 1 ^ k S M - 1, then 
the integers vi, . . . , z;M, Wi, . . . , w^ can be defined by 

vi = 2(v - /) - {si + s2 + . . .) - (n + r2 + . . .) 

V2 = Si + fi 

(43) i/M = V- i + r/x_i 

Wl = „ - / _ (n + r2 + . . .) 

W2 = T\ 

w» = V-i-

Now the multinomial coefficients which appear in (42) Avili be zero unless 
Si + s2 + . . . ^ v — I and ri + r2 + . . . ^ v — I. T h u s for the terms in (42) 
which give rise to a non-zero contribution we have (vi, . . . , z/M) 6 F„_z and 
(wi, . . . , wM) £ JT„_j, where we define 

(44) F , = {(wi, . . . , wM) : w, è 0, fli + 2v2 + . . . + M*V = A, 

z>i + 2̂ + . . . + v» = 2&} 

(45) Wk = {(wi, . . . , wM) : 0 S Wj ^ vh wx + 2w2 + . . . + /z«v = ^, 

^ 1 + ^2 + . . . + ^ M = ^ 1 -

Because the transformation in (43) is invertible, the following theorem follows 
by a short computa t ion from equation (42). 

( ' • ' ' • ' ) 

\s i Si+m \ n rJ 
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THEOREM 5. Letf = bxz + b2z
2 + . . . Ç SiR. Then 

(48) W / ) = É T E E (
 k ){ k )bin...b*> 

where Vh and Wh are given by (44) and (45). 

Class E (Bieberbach-Eilenberg). An analytic function/(z) = b\z + b2z
2 + 

. . . is in Class E if /(z)/(f) F^ 1 for all pairs 2, f Ç t/. Hummel and Schiffer [9] 
have shown that the univalent Bieberbach-Eilenberg functions are character
ized by the Grunsky-type inequalities 

(47) Re E TM,(/)XMX, ^ £ — " , iV = 1, 2, 3, . . . , 
M,y=o n=i M 

where X0 is real and Xi, X2, . . . are arbitrary. The Grunsky coefficients y^v(f) 
are defined by 

(48) ^(*4m~-mmrt^vs" 
Comparing (48) with (4) and (5) the following result is immediate. 

THEOREM 6. For f = bxz + b2z
2 + ... £ E let y»v(f) be defined by (48). Then 

700(f) = log 61; 

7,o(/) = E ^ ^ ( g
 n Vv1... w, M ^ 1, 

h — k + q — s ] 
(49) / M " v y ^ w &?> h - k + q - s \sh . . . ,sh,qi — slt . . . ,qh — sj 

x ôr V 1 . . . bh+1
Qh 

+ E - E E ( * )( — \wi, . . . , w„/ Wi — wh . . . , v» — wj 

x & i w . . . V \ ^ ^ i ; 

Aere A = jit + v, Qh, Vk, Wk are given respectively by (12), (44), (45), and 

yk' = {(su . . . , ^ : 0 g 5 ^ qh 5i + 2s2 + . . . + hsh = k}, 

s = sx + s2 + . . . + sh, 

q = qi + q2 + . . . + qh. 

Class T. An analytic function/ = b\Z + b2z
2 + . . . is in class Y if/(s)/G") ^ 

— 1 for all pairs z, f Ç £/. Sladkowska [19] has recently shown that the in
equality (3) holds when aM„ = a^if) as given by (4) and b^ = SM„(f) where 

00 

(50) -log [1 +f(z)W)) = L CCfKf-
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Comparison of (5) and (50) shows that the derivation of formula (19) need 
only be modified by the insertion of a factor ( — l ) ' - ' . That is (in the case 
P= 1). 

51) K+mAÏ) = 5 ~V=T~&, S U, • • • , 5„JU, ...,rj 
X (a2

sl • • • al+m+1
s,+m)(ai

Ti...am
n) 

where as usual as = bi~lbj. 

Class D. (Guelfer [7]). An analytic function F(z) = 1 + 2aiZ + 2a2z
2 + . . . 

is a Guelfer function if F(z) + F(Ç) ^ 0 for all pairs z , f Ç U. De Temple [2] 
has shown that the univalent Guelfer functions satisfy the Grunsky-type 
inequalities (47), where 7M„(/) is replaced by A^V(F) as denned by (6). Hence 
formulas for Allv{F) are obtained directly from Theorem 3 upon setting (3 = 1. 
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