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Abstract. We study infinite systems of mean field weakly coupled intermittent maps in the
Pomeau–Manneville scenario. We prove that the coupled system admits a unique ‘physical’
stationary state, to which all absolutely continuous states converge. Moreover, we show that
suitably regular states converge polynomially.
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1. Introduction
Mean field coupled dynamics can be thought of as a dynamical system with n ‘particles’
with states x1, . . . , xn evolving according to an equation of the type

xk �→ T

(
xk , ε

δx1 + · · · + δxn

n

)
.

Here T is some transformation, ε ∈ R is the strength of coupling and δxk are the delta
functions, so (δx1 + · · · + δxn)/n is a probability measure describing the ‘mean state’ of
the system.

As n → ∞, it is natural to consider the evolution of the distribution of particles: if μ
is a probability measure describing distribution of particles, then one looks at the operator
that maps μ to the distribution of T (x, εμ), where x ∼ μ is random.

In chaotic dynamics, mean field coupled systems have been studied first when T is
a perturbation of a uniformly expanding circle map by Keller [5] and followed, among
others, by Bálint et al. [2], Blank [3], Galatolo [4], and Sélley and Tanzi [9]. The case
when T is a perturbation of an Anosov diffeomorphism has been covered by Bahsoun,
Liverani and Sélley [1] (see in particular [1, §2.2] for a motivation of such study). See the
paper by Galatolo [4] for a general framework when the site dynamics admits exponential
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decay of correlations. The results of [4] also apply to certain mean field coupled random
systems. We refer the reader to Tanzi [10] for a recent review on the topic and to [1] for
connections with classical and important partial differential equations.

In this work, we consider the situation where T is a perturbation of the prototypical
chaotic map with non-uniform expansion and polynomial decay of correlations: the
intermittent map on the unit interval [0, 1] in the Pomeau–Manneville scenario [8]. We
restrict to the case when the coupling is weak, that is, ε is small.

Our results apply to a wide class of intermittent systems satisfying standard assumptions
(see §2). To keep the introduction simple, here we consider a very concrete example.

Fix γ∗ ∈ (0, 1) and let, for ε ∈ R, h ∈ L1[0, 1] and x ∈ [0, 1],

Tεh(x) = x(1 + xγ∗+εγh)+ εϕh(x) mod 1, (1.1)

where

γh =
∫ 1

0
h(s) sin(2πs) ds and ϕh(x) = x2(1 − x)

∫ 1

0
h(s) cos(2πs) ds.

This way, Tεh is a perturbation of the intermittent map x �→ x(1 + xγ∗) mod 1. Informally,
γh changes the degree of the indifferent point at 0 and ϕh is responsible for perturbations
away from 0.

We restrict to ε ∈ [−ε0, ε0] with ε0 small and to h non-negative with
∫ 1

0 h(x) dx = 1
(that is, h is a probability density).

Let Lεh : L1[0, 1] → L1[0, 1] be the transfer operator for Tεh:

(Lεhg)(x) =
∑

y∈T −1
εh (x)

g(y)

T ′
εh(y)

, (1.2)

and let

Lεh = Lεhh. (1.3)

We call Lε the self-consistent transfer operator. Observe that Lε is nonlinear and that Lεh
is the density of the distribution of Tεh(x), if x is distributed according to the probability
measure with density h.

We prove that for sufficiently small ε0, the self-consistent transfer operator Lε admits a
unique physical (see [1, Definition 2.1]) invariant state hε and that Lnεh converges to hε in
L1 polynomially for all sufficiently regular h.

THEOREM 1.1. There exists ε0 ∈ (0, 1 − γ∗) so that each Lε with ε ∈ [−ε0, ε0], as an
operator on probability densities, has a unique fixed point hε. For every probability
density h,

lim
n→∞ ‖Lnεh− hε‖L1 = 0.

Moreover, hε ∈ C∞(0, 1] and there are A, a1, a2, . . . > 0 such that for all � ≥ 1 and x ∈
(0, 1], ∫ x

0
hε(s) ds ≤ Ax1−1/(γ∗+ε0) and

|h(�)ε (x)|
hε(x)

≤ a�

x�
. (1.4)
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THEOREM 1.2. In the setup of Theorem 1.1, suppose that a probability density h is
twice differentiable on (0, 1] and satisfies, for some Ã, ã1, ã2 > 0 and all � = 1, 2 and
x ∈ (0, 1], ∫ x

0
h(s) ds ≤ Ãx1−1/(γ∗+ε0) and

|h(�)ε (x)|
hε(x)

≤ ã�

x�
.

Then,

‖Lnεh− hε‖L1 ≤ Cn−(1−γ∗−ε0)/(γ∗+ε0), (1.5)

where C depends only on Ã, ã1, ã2 and ε0.

Remark 1.3. The restriction ε0 < 1 − γ∗ serves to guarantee that γ∗ + εγh is bounded
away from 1 and that the right-hand side of equation (1.5) converges to zero.

Remark 1.4. A curious corollary of Theorem 1.1 is that the density of the unique absolutely
continuous invariant probability measure for the map x �→ x(1 + x

γ∗ ) is smooth, namely
C∞(0, 1] with the bounds in equation (1.4). Our abstract framework covers such a result
also for the Liverani–Saussol–Vaienti maps [7]. To the best of our knowledge, this is the
first time such a result is written down. At the same time, we are aware of at least two
different unwritten prior proofs which achieve similar or stronger results, one by Damien
Thomine and the other by Caroline Wormell.

Remark 1.5. Another example to which our results apply is

Tεh(x) = x(1 + xγ∗)+ εx(1 − x)

∫ 1

0
h(s) sin(πs) ds mod 1,

where γ∗ ∈ (0, 1) and ε ∈ [0, ε0]. This is interesting because now each Tεh with ε > 0 is
uniformly expanding, but the expansion is not uniform in ε. Thus, even for this example,
standard operator contraction techniques employed in [4, 5] do not apply.

Remark 1.6. Let hε be as in Theorem 1.1. A natural question is to study the regularity of
the map ε �→ hε. We expect that it should be differentiable in a suitable topology.

The paper is organized as follows. Theorems 1.1 and 1.2 are corollaries of the general
results in §2, where we introduce the abstract framework and state the abstract results.
The abstract proofs are carried out in §3, and in §4, we verify that the specific map in
equation (1.1) fits the abstract assumptions.

2. Assumptions and results
We consider a family of maps Tεh : [0, 1] → [0, 1], where ε ∈ [−ε∗, ε∗], ε∗ > 0, and h is
a probability density on [0, 1].

We require that each such Tεh is a full branch increasing map with finitely many
branches, i.e. there is a finite partition of the interval (0, 1) into open intervals Bkεh, modulo
their endpoints, such that each restriction Tεh : Bkεh → (0, 1) is an increasing bijection.

We assume that each restriction Tεh : Bkεh → (0, 1) satisfies the following assumptions
with the constants independent of ε, h or the branch.
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(a) Tεh is r + 1 times continuously differentiable with r ≥ 2.
(b) There are cγ > 0, Cγ > 1 and γ ∈ [0, 1) such that

1 + cγ x
γ ≤ T ′

εh(x) ≤ Cγ . (2.1)

(c) Denote w = 1/T ′
εh. There are b1, . . . , br > 0 and χ∗ ∈ (0, 1] so that for all

1 ≤ � ≤ r , 0 ≤ j ≤ � and each monomial w�,j in the expansion of (w�)(�−j),
w�

χ�
≤ 1
χ� ◦ Tεh − b�

|w�,j |
χj

, (2.2)

where χ�(x) = min{x�, χ∗}. (For example, the expansion of (w3)′′ is 6w(w′)2 +
3w2w′′.)

(d) If ∂Bkεh 
� 0, that is, Bkεh is not the leftmost branch, then Tεh has bounded distortion:

T ′′
εh

(T ′
εh)

2 ≤ Cd , (2.3)

with Cd > 0.

Remark 2.1. Assumption (c) is unusual, but we did not see a way to replace it with
something natural. At the same time, it is straightforward to verify and to apply. It plays
the role of a distortion bound in Cr adapted to an intermittency at 0.

In addition to the above, we assume that the transfer operators corresponding to Tεh
vary nicely in h. We state this formally in equation (2.6) after we introduce the required
notation.

Define the transfer operators Lεh and Lε as in equations (1.2) and (1.3).
For an integer k ≥ 1, let Hk denote the set of k-Hölder functions g : (0, 1] → (0, ∞),

that is, such that g is k − 1 times continuously differentiable with g(k−1) Lipschitz. Denote
Lipg(x) = lim supy→x |g(x)− g(y)|/|x − y|.

Suppose that a1, . . . , ar > 0. For 1 ≤ k ≤ r , let

Dk =
{
g ∈ Hk :

|g(�)|
g

≤ a�

χ�
for all 1 ≤ � < k,

Lipg(k−1)

g
≤ ak

χk

}
. (2.4)

Take A > 0 and let

Dk
1 =

{
g ∈ Dk :

∫ 1

0
g(s) ds = 1,

∫ x

0
g(s) ds ≤ Ax1−γ

}
. (2.5)

Remark 2.2. If g ∈ D1
1, then g(x) ≤ Cx−γ , where C depends only on a1 and A.

Now and for the rest of the paper, we fix a1, . . . , ar and A so that Dk and Dk
1 are

non-empty and invariant under Lεh. This can be done thanks to the following lemma.

LEMMA 2.3. There are a1, . . . , ar , A > 0 such that for all 1 ≤ q ≤ r:
(a) g ∈ Dq implies Lεhg ∈ Dq ;
(b) g ∈ Dq

1 implies Lεhg ∈ Dq

1 .
Moreover, given C > 0, we can ensure that min{a1, . . . , ar , A} > C.

The proof of Lemma 2.3 is postponed to §3.
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Finally, we assume that there are 0 ≤ β < min{γ , 1 − γ } and Cβ > 0 such that if
h0, h1 ∈ L1 and v ∈ D2

1, then

Lεh0v − Lεh1v = δ(f0 − f1), (2.6)

for some f0, f1 ∈ D1
1 with f0(x), f1(x) ≤ Cβx

−β and δ ≤ |ε|Cβ‖h0 − h1‖L1 .
Let C = (ε∗, r , cγ , Cγ , γ , b1, . . . , br , χ∗, Cd , A, a1, . . . , ar , β, Cβ) be the collection

of constants from the above assumptions.
Our main abstract result is the following theorem.

THEOREM 2.4. There exists ε0 > 0 such that for every ε ∈ [−ε0, ε0]:
(a) there exists hε in Dr

1 so that for every probability density h,

lim
n→∞ ‖Lnεh− hε‖L1 = 0;

(b) let D̃2
1 be a version of D2

1 with constants Ã, ã1, ã2 in place of A, a1, a2. (We do not
require that D̃2

1 is invariant.) Then for every h ∈ D̃2
1 ,

‖Lnεh− hε‖L1 ≤ Cn1−1/γ ,

where C depends only on C and Ã, ã1, ã2.

3. Proofs
In this section, we prove Lemma 2.3 and Theorem 2.4. The latter follows from Lemma 3.3,
and Propositions 3.6 and 3.8.

Throughout, we work with maps Tεh as per our assumptions, in particular, ε is always
assumed to belong to [−ε∗, ε∗] and h is always a probability density.

3.1. Invariance of Dq , Dq

1 and distortion bounds. We start with the proof of Lemma 2.3.
Our construction of A, a1, . . . , ar allows them to be arbitrarily large and, without
mentioning this further, we restrict the choice so that

x �→ (1 − γ )x−γ is in D̆r
1, (3.1)

where D̆r
1 is the version of Dr

1 with A/2, a1/2, . . . , ar/2 in place of A, a1, . . . , ar .
Informally, we require that (1 − γ )x−γ is deep inside Dr

1.

LEMMA 3.1. There is a choice of a1, . . . , ar such that if B ⊂ (0, 1) is a branch of Tεh and
g ∈ Dq with 1 ≤ q ≤ r , then Lεh(1Bg) ∈ Dq .

Proof. To simplify the notation, let T : B → (0, 1) denote the restriction of Tεh to B. Then
its inverse T −1 is well defined. Let w = 1/T ′ and f = (gw) ◦ T −1. We have to choose
a1, . . . , ar to show f ∈ Dq independently of g and B.

For illustration, it is helpful to write out a couple of derivatives of f :

f ′ = [g′w2 + gw′w] ◦ T −1,

f ′′ = [g′′w3 + 3g′w′w2 + gw′′w2 + g(w′)2w] ◦ T −1.
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An observation that f (�) = (u�w) ◦ T −1, where u0 = g and u�+1 = (u�w)
′, generalizes

the pattern:

f (�) =
[
g(�)w�+1 +

�−1∑
j=0

g(j)W�,jw

]
◦ T −1. (3.2)

Here each W�,j is a linear combination of monomials from the expansion of (w�)(�−j).
By equation (2.2), for each �, there is c� > 0 depending only on b1, . . . , b�−1, such that

w�

χ�
≤ 1
χ� ◦ T − c�

�−1∑
j=0

|W�,j |
χj

.

Using this and the triangle inequality,

∣∣∣∣g(�)g w� +
�−1∑
j=0

g(j)

g
W�,j

∣∣∣∣ ≤ |χ�g(�)|
g

w�

χ�
+ max

j<�

|χjg(j)|
g

�−1∑
j=0

|W�,j |
χj

≤ |χ�g(�)|
χ� ◦ T g −

[
c�

|χ�g(�)|
g

− max
j<�

|χjg(j)|
g

] �−1∑
j=0

|W�,j |
χj

.

(3.3)

Choose a1 ≥ c−1
1 and a� ≥ c−1

� maxj<� aj for 2 ≤ � ≤ r . It is immediate that if g ∈ Dq

and 1 ≤ � < q, then the right-hand side of equation (3.3) is at most a�/χ� ◦ T , which in
turn implies that f (�)/f ≤ a�/χ�. A similar argument yields Lipf (q−1)/f ≤ aq/χq , and
hence f ∈ Dq as required.

Proof of Lemma 2.3. First we show that part (a) follows from Lemma 3.1. Indeed, let
a1, . . . , ar be as in Lemma 3.1 and suppose that g ∈ Dq . Write

Lεhg =
∑
B

Lεh(1Bg),

where the sum is taken over the branches of Tεh. Each Lεh(1Bg) belongs to Dq by
Lemma 3.1, and Dq is closed under addition. Hence, Lεhg ∈ Dq .

It remains to prove part (b) by choosing a suitable A. Without loss of generality, we
restrict to q = 1.

Fix ε, h and denote, to simplify notation, T = Tεh and L = Lεh. Suppose that
g ∈ D1 with

∫ 1
0 g(s) ds = 1 and

∫ x
0 g(s) ds ≤ Ax1−γ for all x. We have to show that

if A is sufficiently large, then
∫ x

0 (Lg)(s) ds ≤ Ax1−γ .
Suppose that T has branches B1, . . . , BN , where B1 is the leftmost branch. Denote by

Tk : Bk → (0, 1) the corresponding restrictions. Taking the sum over branches, write

∫ x

0
(Lg)(s) ds =

N∑
k=1

∫
T −1
k (0,x)

g(s) ds. (3.4)
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Since T −1
1 (x) ≤ x/(1 + cxγ ) with some c depending only on cγ and γ ,∫

T −1
1 (0,x)

g(s) ds ≤ A

(
x

1 + cxγ

)1−γ
≤ A(x1−γ − c′x), (3.5)

where c′ > 0 also depends only on cγ and γ .
Let now k ≥ 2. Note that T −1

k (0, x) ⊂ (C−1
γ , 1). Observe that if g ∈ D1 with∫ 1

0 g(s) ds = 1, then g(s) ≤ C for s ∈ (C−1
γ , 1), where C depends only on a1 and χ∗.

Since Tk is uniformly expanding with bounded distortion in equation (2.3), |T −1
k (0, x)| ≤

C′|Bk|x with some C′ that depends only on Cd . Hence,∫
T −1
k (0,x)

g(s) ds ≤ CC′|Bk|x. (3.6)

Assembling equations (3.4), (3.5) and (3.6), we have∫ x

0
(Lg)(s) ds ≤ A(x1−γ − c′x)+ C′′x

with c′, C′′ > 0 independent of A, ε and h. For each A ≥ C′′/c′, the right-hand side above
is bounded by Ax1−γ , as desired.

A useful corollary of Lemma 3.1 is a distortion bound.

LEMMA 3.2. Let n > 0 and δ > 0. Consider maps Tεhk , 1 ≤ k ≤ n with some ε and hk as
per our assumptions. Choose and restrict to a single branch for every Tεhk , so that all Tεhk
are invertible and T −1

εhk
is well defined. Denote

Tn = Tεhn ◦ · · · ◦ Tεh1 and Jn = 1/T ′
n ◦ T −1

n .

Then,

|J (�)n |
Jn

≤ a�

χ�
for 1 ≤ � < r , and

Lip
J
(r−1)
n

Jn
≤ ar

χr
. (3.7)

In particular, for every δ > 0, the bounds above are uniform in x ∈ [δ, 1].

Proof. Let Pεhk be the transfer operator for Tεhk , restricted to the chosen branch:

Pεhkg = g

T ′
εhk

◦ T −1
εhk

.

Denote Pn = Pεhn · · · Pεh1 .
Let g ≡ 1. Clearly, g ∈ Dr . By Lemma 3.1, PεhkDr ⊂ Dr and thusPng ∈ Dr . However,

Png = Jn, and the desired result follows from the definition of Dk .

3.2. Fixed point and memory loss. Further, let hε be a fixed point of Lε as in the
following lemma; later we will show that it is unique.

LEMMA 3.3. There exists hε ∈ Dr
1 such that Lεhε = hε.
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Proof. Suppose that f , g ∈ Dr
1. Write

‖Lεf f − Lεgg‖L1 ≤ ‖Lεf f − Lεf g‖L1 + ‖Lεf g − Lεgg‖L1 .

The first term on the right is bounded by ‖f − g‖L1 because Lεf is a contraction in L1.
By equation (2.6), so is the second term, up to a multiplicative constant. It follows that Lε
is continuous in L1. Recall that Lε preserves Dr

1 and note that Dr
1 is compact in the L1

topology. By the Schauder fixed point theorem, Lε has a fixed point in Dr
1.

Further, we use the rates of memory loss for sequential dynamics from [6].

THEOREM 3.4. Suppose that f , g ∈ D1
1 and h1, h2, . . . are probability densities. Denote

Ln = Lεhn · · · Lεh1 . Then,

‖Lnf − Lng‖L1 ≤ C1n
−1/γ+1.

More generally, if f (x), g(x) ≤ C′
γ x

−γ ′
with C′

γ > 0 and γ ′ ∈ [0, γ ], then

‖Lnf − Lng‖L1 ≤ C2n
−1/γ+γ ′/γ .

The constant C1 depends only on C, and C2 depends additionally on γ ′, C′
γ .

Proof. In the language of [6], the family Tεhk defines a non-stationary non-uniformly
expanding dynamical system. As a base of ‘induction’, we use the whole interval (0, 1). For
a return time of x ∈ (0, 1) corresponding to a sequence Tεhk , k ≥ n, we take the minimal
j ≥ 1 such that Tεhk ◦ · · · ◦ Tεhj−1(x) belongs to one of the right branches of Tεhj , that
is, not to the leftmost branch. Note that we work with the return time which is not a first
return time, unlike in [6], but this is a minor issue that can be solved by extending the space
where the dynamics is defined.

It is a direct verification that our assumptions and Lemma 3.2 verify [6, equations
(NU:1)–(NU:7)] with tail function h(n) = Cn−1/γ with C depending only on γ and cγ .

Further, in the language of [6], functions in D1
1 are densities of probability measures

with a uniform tail bound Cn−1/γ+1, where C depends only on C; each f ∈ D1
1 with

f (x) ≤ C′
γ x

−γ ′
is a density of a probability measure with tail bound Cn−1/γ+γ ′/γ with C

depending only on C and γ ′, C′
γ .

In this setup, Theorem 3.4 is a particular case of [6, Theorem 3.8 and Remark 3.9].

Recall that, as a part of assumption in equation (2.6), we fixed β ∈ [0, min{γ , 1 − γ }).
LEMMA 3.5. There is a constant Cβ,γ > 0, depending only on β and γ , such that if a
non-negative sequence δn, n ≥ 0, satisfies

δn ≤ ξn−1/γ+1 + σ

n−1∑
j=0

δj (n− j)−1/γ+β/γ for all n > 0 (3.8)

with some σ ∈ (0, C−1
β,γ ) and ξ > 0, then

δn ≤ max
{
δ0,

ξ

1 − σCβ,γ

}
n−1/γ+1 for all n > 0.
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Proof. We choose Cβ,γ which makes the following inequality true for all n:

n−1∑
j=0

(j + 1)−1/γ+1(n− j)−1/γ+β/γ ≤ Cβ,γ (n+ 1)−1/γ+1. (3.9)

Let K = max{δ0, ξ/(1 − σCβ,γ )}. Then δ0 ≤ K , and if δj ≤ K(j + 1)−1/γ+1 for all j <
n, then by equations (3.8) and (3.9),

δn ≤ (ξ + σCβ,γK)(n+ 1)−1/γ+1 ≤ K(n+ 1)−1/γ+1.

It follows by induction that this bound holds for all n.

PROPOSITION 3.6. Let D̃2
1 be as in Theorem 2.4. There is ε0 > 0 and C > 0 such that for

all f , g ∈ D̃2
1 and ε ∈ [−ε0, ε0],

‖Lnεf − Lnεg‖L1 ≤ Cn−1/γ+1.

Proof. Without loss of generality, suppose that g(x) = (1 − γ )x−γ . By equation (3.1),
g ∈ D2

1. Choose ξ > 0 large enough so that (f + ξg)/(ξ + 1) ∈ D2
1. Such ξ exists by

Remark 2.2, equation (3.1) and the definition of D2
1; it depends only on A, a1, a2 and

Ã, ã1, ã2.
Denote fn = Lnεf and gn = Lnεg. Write fn − gn = An + Bn, where

An = (ξ + 1)
(
Lεfn−1 · · · Lεf0

h+ ξg

ξ + 1
− Lεfn−1 · · · Lεf0g

)
,

Bn = Lεfn−1 · · · Lεf0g − Lεgn−1 · · · Lεg0g

=
n−1∑
j=0

Lεfn−1 · · · Lεfj+1(Lεfj − Lεgj )Lεgj−1 · · · Lεg0g.

By the invariance of D2
1, the assumption in equation (2.6) and Theorem 3.4,

‖An‖L1 ≤ C′(ξ + 2)n−1/γ+1,

‖Bn‖L1 ≤ C′|ε|
n−1∑
j=0

‖fj − gj‖L1(n− j)−1/γ+β/γ .

Here C′ depends only on C. Let δn = ‖fn − gn‖L1 . Then,

δn ≤ ‖An‖L1 + ‖Bn‖L1 ≤ C′n−1/γ+1 + C′|ε|
n−1∑
j=0

δj (n− j)−1/γ+β/γ .

By Lemma 3.5, δn ≤ max{2, C′(1 − |ε|C′Cβ,γ )
−1}n−1/γ+1 for all n > 0, provided that

|ε|C′ < C−1
β,γ .

LEMMA 3.7. Suppose that f is a probability density on [0, 1]. For every δ > 0, there exist
n ≥ 0 and g ∈ Dr

1 such that ‖Lnεf − g‖L1 ≤ δ.
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Proof. Denote fk = Lkεf and Lk = Lεf0 · · · Lεfk−1 . Let f̃ be a C∞ probability density
with ‖f − f̃ ‖L1 ≤ δ/2. It exists because C∞ is dense in L1. Then for all k,

‖Lkf − Lkf̃ ‖L1 ≤ ‖f − f̃ ‖L1 ≤ δ/2.

Choose C ≥ 0 large enough so that (f̃ + C)/(C + 1) ∈ Dr
1. Write

Lkf̃ − Lk1 = (C + 1)
[
Lk

(
f̃ + C

C + 1

)
− Lk1

]
.

By Proposition 3.6, the right-hand side above converges to 0, in particular, ‖Lnf̃ −
Ln1‖L1 ≤ δ/2 for some n.

Take g = Ln1. Then g ∈ Dr
1 by the invariance of Dr

1, and ‖Lnεf − g‖ ≤ δ by
construction.

PROPOSITION 3.8. Suppose that f is a probability density on [0, 1]. There is ε0 > 0 such
that for all ε ∈ [−ε0, ε0],

lim
n→∞ ‖Lnεf − hε‖L1 = 0.

Proof. Choose a small δ > 0. Without loss of generality, suppose that ‖f − f̃ ‖L1 ≤ δ

with f̃ ∈ D1
1. (The general case is recovered using Lemma 3.7 and replacing f with Lnεf

with sufficiently large n.)
As in the proof of Proposition 3.6, denote fn = Lnεf and f̃n = Lnε f̃ , and write

fn − f̃n = An + Bn, where

An = Lεfn−1 · · · Lεf0f − Lεfn−1 · · · Lεf0 f̃ ,

Bn = Lεfn−1 · · · Lεf0 f̃ − L
εf̃n−1

· · · L
εf̃0
f̃

=
n−1∑
j=0

Lεfn−1 · · · Lεfj+1(Lεfj − L
εf̃j
)L
εf̃j−1

· · · L
εf̃0
f̃ .

Since all Lεfj are contractions in L1,

‖An‖L1 ≤ ‖f − f̃ ‖L1 ≤ δ. (3.10)

By equation (2.6) and Theorem 3.4,

‖Bn‖L1 ≤ C′|ε|
n−1∑
j=0

‖fj − f̃j‖L1(n− j)−1/γ+β/γ

≤ C′′|ε| max
j<n

‖fj − f̃j‖L1 ,

(3.11)

where C′ depends only on C and C′′ = C′ ∑∞
j=1 j

−1/γ+β/γ ; recall that −1/γ +
β/γ < −1, so this sum is finite.

From equations (3.10) and (3.11),

‖fn − f̃n‖L1 ≤ ‖An‖L1 + ‖Bn‖L1 ≤ δ + C′′|ε| max
j<n

‖fj − f̃j‖L1 .
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Hence, if ε is sufficiently small so that C′′|ε| < 1, then

‖fn − f̃n‖L1 ≤ δ/(1 − C′′|ε|) for all n.

Since δ > 0 is arbitrary, ‖fn − f̃n‖L1 → 0 as n → ∞.

4. Example: verification of assumptions
Here we verify that the example in equation (1.1) fits the assumptions of §2, namely
assumptions (a), (b), (c), (d) and equation (2.6). The key statements are Proposition 4.1
and Corollary 4.3.

Let ε∗ > 0, and denote γ− = γ∗ − 2ε∗ and γ+ = γ∗ + 2ε∗, so that for all ε, h,

γ− − ε∗ < γ∗ + εγh < γ+ + ε∗.

Force ε∗ to be small so that 0 < γ− < γ+ < 1. Let γ = γ+ and fix r ≥ 2.
In Proposition 4.1, we verify assumptions (a), (b), (c) and (d) from §2, and in

Corollary 4.3, we verify equation (2.6).
In this section, we use the notation A � B for A ≤ CB with C depending only on ε∗,

and A ∼ B for A � B � A.

PROPOSITION 4.1. The family of maps Tεh satisfies assumptions (a), (b), (c) and (d)
from §2.

Proof. It is immediate that assumptions (a), (b) and (d) hold, so we only need to justify
assumption (c). Denote γ̃ = γ∗ + εγh and observe that, with w and each w�,j as in
equation (2.2),

1
x� ◦ Tεh − w�

x�
∼ xγ̃−� and

|w�,j |
xj

� xγ̃−�.

The implied constants depend on � and j but not on ε or h, and assumption (c) follows.

It remains to verify equation (2.6). The precise expressions for γh and ϕh are not too
important, so we rely on the following properties.
• ϕh(0) = ϕ′

h(0) = ϕh(1) = 0 for each h, so that, informally, ϕh has no effect on the
indifferent fixed point at 0.

• The maps h �→ ϕh, L1 → C3, h �→ ϕ′
h, L1 �→ C2, and h �→ γh, L1 → R are contin-

uously Fréchet differentiable, that is, for each h, f ,

‖ϕh+f − ϕh −
hf ‖C3 = o(‖f ‖L1),

‖ϕ′
h+f − ϕ′

h −
′
hf ‖C2 = o(‖f ‖L1),

|γh+f − γh − �hf | = o(‖f ‖L1),

where 
h : L1 → C3, 
′
h : L1 → C2 and � : L1 → R are bounded linear operators,

continuously depending on h.
Suppose that f0, f1 ∈ L1 and v ∈ D2

1. Let fs = (1 − s)f0 + sf1 with s ∈ [0, 1]. Denote
Ts = Tεfs and let Ls be the associated transfer operator.
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PROPOSITION 4.2. |∂s(Lsv)| � |ε|x−(γ+−γ−) and |(∂s(Lsv))′(x)| � |ε|x−(γ+−γ−)−1.

Proof. We abuse notation, restricting to a single branch of Ts , so that Ts is invertible and
Lsv = (v/T ′

s ) ◦ T −1
s . Let ζs = 
fs (f1 − f0), ψs = 
′

fs
(f1 − f0) andλs = �fs (f1 − f0).

Then,

∂s(Lsv) =
[
(v′T ′

s − vT ′′
s )∂sTs

T ′3
s

+ v∂sT
′
s

T ′2
s

]
◦ T −1

s

with

(∂sTs)(x) = ελsx
1+γ+ενfs log x + εζs(x),

(∂sT
′
s )(x) = ελsx

γ+ενfs [1 + (1 + γ + ενfs ) log x] + εψs(x).

Observe that |v(x)| � x−γ+ , |v′(x)| � x−γ+−1, |∂sTs | � |ε|x1+γ− , |∂sT ′
s | � |ε|xγ− ,

T ′
s (x) ∼ 1 and |T ′′

s (x)| � xγ−−1. Hence,

|∂s(Lsv)(x)| � |ε|x−(γ+−γ−).

Differentiating in x further and observing that |v′′(x)| � x−γ+−2, |T ′′′
s (x)| � xγ−−2,

|(∂sTs)′(x)| � |ε|xγ− and |(∂sT ′
s )

′(x)| � |ε|xγ−−1, we obtain

|(∂s(Lsv))′(x)| � |ε|x−(γ+−γ−)−1.

COROLLARY 4.3. In the setup of Proposition 4.2, we can represent

Lεf0v − Lεf1v = δ(g0 − g1),

where δ � |ε|‖f0 − f1‖L1 , and g0, g1 ∈ D1
1 with g0(x), g1(x) � x−4ε.
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