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In a recent paper (13), we introduced the class of strongly jE-reflexive inverse
semigroups. This class was shown to coincide with the class of those inverse
semigroups which are semilattices of E-unitary inverse semigroups. In particular,
therefore, E-unitary inverse semigroups and semilattices of groups are strongly
^-reflexive, and in fact so are subdirect products of these two types of semigroups.

J. Mills (1) considers orthodox semigroups which are subdirect products of an
£-unitary regular semigroup and a semilattice of groups, and of course there are
strong connections between the two papers.

In this communication we wish in part to .specialise Mills' results to inverse
semigroups, and in doing so, to consider them in the context of the theory of strongly
E-reflexive inverse semigroups. As well, we give yet another characterisation of these
semigroups in terms of JS-unitary inverse semigroups, and show that an inverse
semigroup which is a semilattice of strongly jE-reflexive inverse semigroups is again
strongly E-reflexive.

In this section, some results on congruences which will be needed below are
collected together.

Let S be an inverse semigroup with semilattice of idempotents E. Let a =
{(*, y) £ S x S\ex - ey for some e G E}; then a is the minimum group congruence on S
(10). Moreover, S is said to be E-unitary if Ea = E. In general, there exists a
minimum .E-unitary congruence on S, which we shall denote by K.

Proposition 1. (See 12) #c is the congruence on S generated by a D£%.

Let n = {(a, b)G S x S\a']ea = b~leb for all e £ £ ) ; then ft is the maximum
idempotent-separating congruence on S (7). Recall that a congruence v on S is called
idempotent-determined (5) if (e, x)Gv and eE.E imply that xGE; as is natural, a
homomorphism on S will be called idempotent-determined when the associated
congruence on S is so. The minimum semilattice of groups congruence on S will be
denoted by £, the minimum semilattice congruence by 17, and the identity congruence
by 1.

Note that K C 17 C\a and that £ C 17 Ha.

Proposition 2. (See 1) £ = {(a, b) £ v\\ea = eb for some e2 = e-r\d\.
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2 L. O'CARROLL

Remark. Proposition 2 follows, by the usual type of argument based on abstract
nonsense, from the result due to Hardy and Tirasupa (6, Lemma 1) quoted in (13, §1).

The next result is a formulation of the well-known theorem due to Tamura.

Proposition 3. (See 15) Let A be an TJ-class of S. Then the universal congruence
on the inverse subsemigroup A is the only semilattice congruence on A.

As usual, we adhere to the notation and terminology of (2,14), and we assume
familiarity with the basic theory of inverse semigroups contained in (2). Finally, the
symbol ' C ' means 'properly contained in'.

This section is devoted to proving two theorems on strongly E-reflexive inverse
semigroups in general. First we recall some theory from (13).

The inverse semigroup S is said to be strongly E-reflexive if, given e G £ ' and x
and y in S, exy G E implies that eyx G E, where the element 1 is the identity of S1.

Note that the subdirect product of a family of strongly E-reflexive inverse
semigroups is again strongly E-reflexive.

Proposition 4. (See 13) Let S be an inverse semigroup. Then the following are
equivalent:

(i) S is strongly E-reflexive.
(ii) S is a semilattice of E-unitary inverse semigroups.
(iii) The congruence £ is idempotent-determined.

Now follows another characterisation of these semigroups.

Theorem 1. Let S be an inverse semigroup. Then S is strongly E-reflexive if and
only if S is a subdirect product of E-unitary inverse semigroups and E-unitary inverse
semigroups with zero.

Proof. Suppose that 5 is strongly E-reflexive. By Proposition 4, S is the semilat-
tice W of E-unitary inverse semigroups Sa, a G W, say. The theory of (13, §3) - see
Theorem 11 there - shows that there exists an inverse semigroup T which is a strong
semilattice of E-unitary inverse semigroups Ta, a G W, and an embedding of S in T
which embeds each Sa in Ta. (In fact each Ta is a semidirect product of a semilattice
and a group, but we do not need this result here.) Thus we may consider S c T , with
Sa C Ta for each a G W.

Given a =* /3 in W, let <f>aP denote the structural homomorphism of T going from Ta

to T0. For each 8G W define the map <f>s: S-» Ts or <f>s: S-* T°s, depending on whether 8
is or is not the minimum member of W, respectively, as follows:

if x G Sa with a ^ 8 , let xtf>s = x<t>aS;
if 8 is not the minimum member of W, and
if x G Sa with a ?t 8, let x<f>s = 0.
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STRONGLY E-REFLEXIVE INVERSE SEMIGROUPS II 3

Note that OG Im<fo in the latter case, and that each <t>s\Ss is the identity map.
It is easily checked that each fa is a homomorphism, so that Im<fo is an E-unitary

inverse semigroup with zero added possibly. Clearly the fa separate the elements of
S, so that the result follows.

The converse is immediate in view of Proposition 4 and the remark which
precedes it.

The final result of the section indicates to some extent how extensive is the class
of strongly E-reflexive inverse semigroups. It generalises part of (13, Theorem 1).

Theorem 2. Let S be an inverse semigroup which is a semilattice of strongly
E-reflexive inverse semigroups. Then S is strongly E-reflexive.

Proof. Let S be the semilattice W of strongly E-reflexive inverse semigroups Sa,
a G W, and let v be the semilattice congruence on 5 induced by the canonical
homomorphism from S onto W. Then -n C v, so that for each a G W, ya =
TJ (l(Sa x Sa) is a semilattice congruence on Sa.

Pick a G W, and let T)'a denote the minimum semilattice congruence on Sa.
Then T)'aQt)a; suppose that T)'aCt]a. Then for some x G Sa, xy'aCx-qa, so that
y'a= i7in(x7jQ XXTJ,,) is a semilattice congruence on the inverse subsemigroup xr)a of
S which is not the universal congruence. This contradicts Tamura's theorem (Pro-
position 3 above).

Hence for each a G W, r}a is the minimum semilattice congruence on Sa. Setting

£> = {(<*> b) G -qa\ea = eb for some e1 = e-nad\,

it follows from Proposition 2 that £, is the minimum semilattice of groups congruence
on Sa. Clearly £ = U£a, since rjCc. However, by Proposition 4, each £, is idempotent-
determined, and it follows that £ itself is idempotent-determined. Hence, by Pro-
position 4 again, S itself is strongly E-reflexive.

The final section is devoted to specialising the theory of (1) to inverse semigroups,
and to placing it in the context of the theory of strongly .E-reflexive inverse
semigroups.

First of all we have a result which is of independent interest.

Proposition 5. Let S be an inverse semigroup. Then the following are equivalent:
(i) Sn<r is a congruence.
(i)' J£C\o- is a congruence.
(ii) &tr\a- = £ena. (A)
(iii) 91 Da = (i Ha.
(iv) There exists an idempotent-separating E-unitary congruence v on S.

In this case v Pier is unique; in fact, v (la = ft fler = K.

Proof. (ii)=£>(i). 01 fltr is a left congruence, and if Da is a right congruence.
(i)=>(iii). <% Da is certainly idempotent-separating, so that S f l a C / i . Hence

91 Ho- C ti Ha. But fi C l , whence /x (la C 9t (la.
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). Let v = /x (la. Then v is an idempotent-separating congruence, which
moreover is the congruence generated by S% (la; in fact it is equal to £% Do-. Hence v
is an E-unitary congruence, being the minimum E-unitary congruence on S (see
Proposition 1).

(iv)^(ii). By Proposition 1, S% (laC v and by supposition vQti. Hence 0Mla<Z
v C (i, so that as before V (la = @t (la = ft. (la. By duality, i/no- = i fno-= vC\a, and
the result follows.

Now conditions (ii), (iii), and (iv) are self-dual, while (i)' is the dual of (i), whence the
full result.

The next result is the analogue of (1, Theorem 3.5), and follows to some extent the
proof of that result.

Theorem 3. Let S be an inverse semigroup. Then S is a subdirect product of an
E-unitary inverse semigroup and a semilattice of groups if and only if S is strongly
E-reflexive and satisfies any one of the mutually equivalent conditions (A).

Proof. Suppose that S is a subdirect product of an E-unitary inverse semigroup
and a semilattice of groups. In view of Proposition 4 and the remark which precedes
it, S is strongly E-reflexive, and moreover |n#c = i. Following the exact argument
used in (1, Theorem 3.5) we show that K is idempotent-separating.

Let e, f be idempotents with eKf. Then et\f, so that by Proposition 2, e(,f. Hence
(e, /) £ K D£ = i, so that e = /.

Hence S satisfies condition (iv) of Proposition 5.
Conversely, suppose that S is strongly E-reflexive and satisfies condition (iv) of

Proposition 5, say. Then K is idempotent-separating, and by Proposition 4, £ is
idempotent-determined. Hence K D£ is both idempotent-separating and idempotent-
determined, and it follows that K fl£ = /, whence the result.

Remarks. Consider B°, where B is the bicyclic semigroup. Then 5° is strongly
E-reflexive. However, by condition (ii) of (A) say, B° is not a subdirect product of an
E-unitary inverse semigroup and a semilattice of groups. Note that the equivalence
3€ Da on B° is a congruence; in fact, $f D<r = i.

Now consider the bisimple inverse «>-semigroup S(G,a) where the endomorphism
a of G is injective. Then S(G, a) is E-unitary and the two distinct congruences i% and
i are both idempotent-separating and E-unitary; note that #?£ a (see (11)).

Finally consider S(G, a) whenever a is not injective. As shown in (13, §1), S(G, a)
is not strongly E-reflexive. However, 9P is an idempotent-separating E-unitary
congruence on S(G, a) (see (11) again).

Following the theory of (3,4,8), whenever an inverse semigroup S satisfies
condition (iv) of Proposition 5, we may regard the structure of S as being known,
albeit in a highly abstract form, in terms of an E-unitary inverse semigroup and a
semilattice of groups. Note also that this situation is in a sense the opposite to that
considered by McAlister in his theory of "E-unitary covers" (see (9), for example).

We now wish to consider what Theorem 3 means in terms of the structure theory
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STRONGLY E-REFLEXIVE INVERSE SEMIGROUPS II 5

for strongly E-reflexive inverse semigroups developed in (13, §3). A brief sketch of
this theory now follows.

Let X be a down-directed partially ordered set, and let Y be a non-empty
subsemilattice and order-ideal of X. Suppose that an inverse semigroup T is given
together with a homomorphism <j>: T-*£x, by means of which we consider T acting
on X on the left; as usual, given t G T, t<j> will be denoted by f. Suppose further that
X = TY and that for each t e T, the domain At and range Vt of (the action of )t are
non-empty order ideals of X, and f: At-*Vt is an order-isomorphism. Define L =
L(T,X, Y) to be

{(a, t)\tGT, aEYHAr', rla&Y}

under the multiplication (a, t)(b, s) = (t{t~la A b), ts). Then L is an inverse semigroup
with semilattice of idempotents % = {(a, e)\e2 = e E T, a G Y r\Ae}, and (T, X, Y) is
said to be an L-triple. If (a, I ) 6 L , then (a, t)~l = (t^a, t~x) and (a, t)(a, t)~l = (a, tt~{);
moreover if (a, e) and (b,f) are in %, then (a, e)(b,f) = (a A b, ef). We also note that
the given hypotheses imply that for each / G T there exists a G Y such that (a, t) G L.

If, further, T has the property that

for each a E Y there is a minimum idempotent e(a) in T
such that a G Ae(a), where for each a, b in Y",
e(a A b)

then (T,X, Y) is said to be strict L-triple.
If (T,X, Y) is a strict L-triple, define Lm = Lm(T,X,Y) to be {(a, t) G L\tr{ =

e(a)}. Then Lm is an inverse subsemigroup of L with semilattice of idempotents
%m = {(a, e(a))\a E V}, and the map (a, O ^ a is a homomorphism from gm onto Y. If,
further, the homomorphism (a, t)*-+t from Lm into T is surjective, then (T, X, V) is
called a /«//y sfricf L-triple.

We now summarise the main results which connect the theory of strongly
^-reflexive inverse semigroups with that of L-triples.

Theorem 4. (See 13) (i) Let S be a strongly E-reflexive inverse semigroup. Then
there exist a fully strict L-triple (T, X, Y), with T a semilattice of groups, and an
isomorphism from S onto Lm.

(ii) Let (T,X, Y) be an L-triple with T a semilattice of groups. Then the inverse
semigroup L(T,X,Y) is strongly E-reflexive. Moreover, X can be embedded in a
semilattice X such that (T,X,X) is an L-triple with L(T,X,Y) embedded in
L(T,X,X).

In fact the inverse semigroup L(T,X,X) of Theorem 4 (ii) is a strong semilattice
of inverse semigroups each of which is a semidirect product of a semilattice and a
group. Each of the semigroups Lm(T,X,Y), L(T,X,Y) and L(T,X,X) can be
presented explicitly as a semilattice of B-unitary inverse semigroups (see (13) for
further details).

Our final theorems can be viewed as concrete analogues of (1, Theorem 3.9).
Before stating them, we fix some notation and prove a technical lemma.

Let T be the semilattice W of groups Ga, a G W, with connecting homomorphisms
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iffap, a 5* fi, and let (T, X, Y) be an L-triple specified by the homomorphism <f>: T ->JX-
Denote the identity of Ga by ea, and recall that for each t £ Ga, t is an order
automorphism with domain and range Aea. Further, for each a G W, let Ka =
U{Ker_(/ro/)|/3 =Sa}. Then Ka is a normal subgroup of Ga. Let Ga = GJKa and let va:
Ga-*Ga denote the canonical homomorphism. Given a s= /3 in W, <ltae.Ga-*Gp
induces a unique injective homomorphism tyaP: Ga-*G$ such that vatyae = i/k^. The
ipae form a family of connecting homomorphisms under which f = U{Ga\a G W}
becomes an £-unitary semilattice of groups on W. In fact, it follows easily from
Proposition 1 that {Ka\a G W) is the kernel normal system on T for K, so that
f = 77K.

We denote by v the canonical homomorphism from T onto T.

Lemma 1. Let S be an inverse semigroup with semilattice of idempotents E. Let vi
be a left congruence on S and let v1 be a congruence on S. Then v\ C vj if and only if
evx C ev2 for all e G E.

Proof. Suppose that evx C ev2 for all e G E and let (a,b)& v,. Then (a~]a, a~lb)G
k kv\, so that (a a, a b)Gv2- Hence (a,aa b)Gv2, and it follows that av2^bv2.

1,. I,,
Similarly, bv2n av2, whence (a, b) G v2. Thus vx C v2.

The converse is immediate.

For brevity, L(T,X, Y) will be denoted by L, and whenever (T, X, Y) is a strict
L-triple, Lm(T, X, Y) will be denoted by Lm.

Theorem 5. The following are equivalent:
(i) L is the subdirect product of an E-unitary inverse semigroup and a semilattice

of groups.
(ii) Given a G W, t G Ka, and a G Y DAea such that ta G Y, then tb = b for all

b^a. (1)

Proof. (i)=>(ii) Suppose that we are given a G W, t G Ka, and a G Y DAea

such that fa G y. Let f"1 be denoted by s. Then (a, s )GL and s G Ka, so that
s G Ker ipae for some £ «£ a. Recall that there exists c G Y such that (c, ep) G g. Now
(a, € a )Gg and (c, e^)(a, «„) = (c, c^)(a, 5) = (c A a, ep). Hence (a, ea)a{a, s);
moreover, (a, ea)dt(a, s).

Now by Theorem 4, L is strongly £s-reflexive, so that by Theorem 3, 0t Her C n on
L. Hence (a, ea)/i(a, s). Let b «s a. Then fcGAea, so that (b, ea)G£, and it follows
from the definition of ft that (a, ea)~\b, ea)(a, ea) = (a, s)~\b, ea)(a, s). Now the left
hand side of this equation equals (b,ea) while on the right, (a, s)~\b, ea)(a, s) =
(s~la, s~l)(b, s) = (s~'fc, €„). Hence tb = s~xb = b.

(ii) >̂ (i). In view of Theorems 3 and 4, it suffices to prove that 9? flcr = /1 Do- on
L, or what is equivalent, that 9t Do- C /i. By Lemma 1, then this amounts to showing
that for (a, ea)£% and (d, s) G L, (a, ea)$ (lo-(d, s) implies that (a, ea)fi(d, s).

Now (a, ea)&(d, s) if and only if d = a and s G Ga, and it is easy to see that
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STRONGLY E-REFLEXIVE INVERSE SEMIGROUPS II 7

(a, ea)a(a, s) implies that 5 G Ka. Thus s~' G Ka. Hence for all (c, ey) G &,

(a, s)'\c,ey){a, s) = (s~la, s'l)(c A a, eys)
= (s'^c A a), eay)
= (c A a, eay),

using the hypotheses with s"1 in place of t and c A a in place of b. But (c A a, €„,,) =
(a, ea)~\c, ey)(a, ea), so that (a, ea)fi(a, s), and the result follows.

A particularly favourable circumstance in which L becomes the subdirect product
of an E-unitary inverse semigroup and a semilattice of groups is described in the next
result.

Theorem 6. The homomorphism <f>: T-*$x induces a homomorphism <£: f-*£x

such that <f> = v<j> if and only if

each t G U{Ka\a G W} is the identity map on At. (2)

In this case,(f, X, Y) becomes an L-triple under the induced action, andL(T,X, Y) is the
subdirect product of the E-unitary inverse semigroup L(f, X, Y) and the semilattice of
groups T.

Proof. The first part is immediate, as is the fact that (f, X, Y) becomes an L-triple
under the induced action. Suppose then that each I £ U{Ko|a £ W} is the identity
map on Af, and let L = L(f,X,Y). The map dx:L^L defined by the rule 9\.
(a, 0•"*(«. tv) is clearly a surjective homomorphism, which together with the surjective
homomorphism 02: (a, t)*-+t from L onto T separates the elements of L.

We claim that L is E-unitary. To see this, recall from (13) that the second
projection map (a, tv) •-» tv from £ onto T is an idempotent-determined homomor-
phism. Since f is E-unitary, it follows easily that L is E-unitary.

Whenever (T, X, Y) is a fully strict L-triple we have analogous results for Lm, the
proofs being slightly more complicated.

Theorem 7. Suppose that (T, X, Y) is a fully strict L-triple. Then the following
are equivalent:

(i) Lm is a subdirect product of an E-unitary inverse semigroup and a semilattice
of groups.

(ii) Given a G W, t G Ka, and a G Y DAea such that ta G Y, then tb = b for all

Proof. (i)=>(ii) Suppose that we are given a E W, t G Ka, and a G Y flAca such
that ta G Y. Let ee = e{a), and let u = tep. Then ep «£ ea, « G G$, and ua = tepa =
ta G Y. Denote u~l by v. Then (a, v)GLm, and it is easily seen that v G Kp, so
that »EKeri(rj, for some y</3. Recall that since (T,X, Y) is a fully strict L-triple
there exists c G Y such that (c, eT) G %m. Now (a, tp) G %m.

Proceeding exactly as in the proof of the first part of Theorem 5 with (a, ep) in
place of (a, €„), and (a, 1;) in place of (a, s), we deduce that (a, €P)/i(a, v). Let b « a,
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and let es = e(b). Then es «£ ep, and (b, es) G %m. It follows that (a, ep)'\b, es)(a, e0) =
(a, v)'\b, €s)(a, v). The left hand side of the equation equals {b, es), while on the right,
(a, v)'\b, ea)(a, v) = (v~'a, v~*)(b, e&v) = (v~'b, es). Hence tb = tepb = ub = v~xb = b.

(i) The proof is almost a replica of that for the second part of Theorem 5.

Corollary. If (T,X, Y) is a fully strict L-triple, then Lm is a subdirect product of
an E-unitary inverse semigroup and a semilattice of groups if and only if L is also.

Proof. This follows immediately from Theorems 5 and 7.

The analogue of Theorem 6 holds with an entirely similar proof.

Theorem 8. Suppose that (T, X, Y) is a fully strict L-triple. Then the homomor-
phism 4>: T -+$x induces a homomorphism <£: f -* $x such that <f> = vifr if and only if
each t G U{Ka\a G W} is the identity map on At. In this case, (f,X, Y) becomes a
fully strict L-triple under the induced action, and Lm(T, X, Y) is the subdirect product
of the E-unitary inverse semigroup Lm(f, X, Y) and the semilattice of groups T.

Given our L-triple (T, X, Y), let X be the set of order-ideals A of X such that
AC g(Y nAeQ) for some g G Go, a G W, the order on X being that of inclusion. For
each a ^ W, let £«•„ = {A G X\A C Aep}. Following the preamble to (13, Theoremll),
(T, X, X) is an L-triple, g GGp having domain Ae3. In fact, as shown there, L(T, X, X)
is a strong semilattice of inverse semigroups each of which is a semidirect product of
a semilattice and a group, and there is a natural embedding of L(T, X, Y) in
L(T, X, X) (see Theorem 4 (ii) and subsequent remarks). Only under the favourable
circumstances of Theorems 6 and 8 however, viz. that condition (2) holds, is it the
case that L(T,X,X) is also the subdirect product of an E-unitary inverse semigroup
and a semilattice of groups. (This follows on applying Theorem 6 to L(T, X, X).)

Note that B° is a strong semilattice of E-unitary inverse semigroups which is not
the subdirect product of an E-unitary inverse semigroup and a semilattice of groups,
B being the bicyclic semigroup (see the remarks after Theorem 3).

We now consider a slightly more complicated example. This example shows,
firstly, that the subdirect product of an E-unitary inverse semigroup and a semilattice
of groups need not be a strong semilattice of E-unitary inverse semigroups. In the
second place, it shows that the condition (1) does not imply the condition (2) (of
course, the latter does imply the former), even for a fully strict L-triple (T, X, Y).
Thirdly, this example also shows that L(T,X,X) need not be a subdirect product of
an E-unitary inverse semigroup and a semilattice of groups even though Lm(T,X, Y)
and L(T,X, Y) are.

E x a m p l e . L e t X = { a , b, c, d, e, / } w h e r e a = b A c, bvc = d = eAf, b a n d c a r e
incomparable, and e and / are also incomparable. Let Y = {a, b, c, d, e), let W be the
chain {a, 0} with a > p, and let T be the semilattice W of groups G = the Klein
4-group and Gp = the cyclic 2-group, the linking map from G« to Gp being surjective.
Then, in an obvious way, (T, X, Y) is a fully strict L-triple, where T has a faithful
action on X with Aeo = X and A«p = {a, b, c}. Let tET be the element which
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permutes e and / and leaves the rest of X invariant. Then Ka = {ea, t}, and Kp =
It is clear, therefore, that condition (1) is satisfied, but not condition (2), for the

triple (T, X, Y). However, not even condition (1) is satisfied for the triple_(7\ X, X ) .
For if we consider element Y G Aea, tY* Y (of course, Y G X and tY G X).

It now remains to show that Lm(T,X, Y) is not a strong semilattice of £-unitary
inverse semigroups. Suppose that Lm is the semilattice A of £-unitary inverse
semigroups 5A, A G A, where (b, g) G SM say, g being the non-identity element of Gp.
Then (c,«) = ( i , g r ' £ S , so that (c, ep) = (c, g){c, g)'1 G 5M and (&,€„) =
(fc, g)(b, g)"1 £ SM. Hence (a, €„) = (fc, ee)(c, ep) G SM. It follows that {a, b, c } x G f C S».
A similar argument establishes that {d} x Ga C SA for some A 5= /x. In fact A > /A, since
(a, €p)(d, t) = (a, eg) where (d, t) is non-idempotent. Let s be the element of Ga which
permutes b and c and leaves the rest of X invariant. The only remaining elements of
Lm are then (e, ea) and (e, s). Together these form the group of units U of Lm. Thus
U CSy, where A'3= A.

Note that {a,b,c}xep is not a p-ideal of %m, see (13), since (b, ep)^(d, ea) and
(c, £p) ss (d, ea), and desired result follows from (13, Theorem 8) and the above
remarks.

This example is a variant on (13, Example 5.2).
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