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Predicting the impact of infectious diseases on the

well-being of the community is a cornerstone of

identifying effective prevention, control and support.

One only has to reflect on the last few years in the

United Kingdom to see the impact mathematical

modelling has had on public and government, with

controversy around the likely numbers of sufferers

from new-variant Creutzfeld–Jakob disease, human

immunodeficiency virus, and continuing debate as to

whether to use vaccine to support control of foot-

and-mouth disease. Over the last 20–25 years,

Epidemiology and Infection, and before it the Journal

of Hygiene, have published many of the sentinel

papers in the mathematical modelling of infectious

disease, both in humans and animals. The discipline

has advanced from relatively simple analyses to the

most complex assessments whose underlying math-

ematics and statistics almost certainly exceed the

comprehension of all but a few microbiologists and

public health specialists. The depth of the analysis

does not obscure the key messages, however, for the

epidemiology of infectious disease and its control, and

a Special Article in the journal in 1988 overviewed its

contribution [1].

In 1988, McLean and Anderson published their

prediction of the impact of mass vaccination on the

transmission dynamics of measles in developing

countries [2]. Uncontrolled measles has a devastating

effect on the health of children, with even now some

one million deaths a year in developing countries. Yet

we have had effective live attenuated vaccines avail-

able since the early 1960s, and successful eradication

in much of the developed world. Predicting how to

use vaccine optimally to eradicate measles in the

developing world presents problems not seen with

such modelling in the developed world. For instance,

the high mortality rates and high population growth

have a significant impact on virus transmission.

McLean and Anderson concluded from their analyses

that there was no single optimum age to immunize

children in developing countries, that a temporary

phase of low incidence would follow mass vacci-

nation, but recurrent epidemics will appear later, and

that a one-stage programme aimed at young children

is of greater benefit than two-stage programmes. A

key parameter to be calculated in such analyses is the

basic reproductive rate of infection (R0) – ‘the average

number of new cases that would be generated if one

infectious individual were introduced into a wholly

susceptible population’ [3]. If a vaccination strategy

were to ensure R0 is less than 1, eradication is

achievable. Calculating R0 is dependent on having the

appropriate data. To provide the basic data to enable

mathematical modelling to be meaningful requires

information on the epidemiology of the infection in

the community being studied. In a previous paper,

McLean and Anderson reviewed available infor-

mation on measles in developing countries [4]. Data

included duration of protection from maternally

derived antibodies, age distribution of infection, age-

stratified serological profiles, measles fatality rates,

and fertility/mortality age profile.

It is not only in developing countries that mathe-

matic modelling has led to major vaccine initiatives.

In 1994, the United Kingdom had a mass measles/

rubella vaccine campaign aimed at children aged 5–16

years. This campaign was carried out to avert an anti-

cipated epidemic in older children and younger adults.

This was presaged by modelling the age-stratified

measles antibody profile (‘seroepidemiology’) of the
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population, anddeducing that susceptibilitywas build-

ing in the target population as a consequence of failure

to achieve the necessary high levels of immunization

with mumps, measles and rubella vaccine since its

introduction in the United Kingdom in 1988, whilst

endemic measles had been reduced to the levels where

exposure was unlikely [5, 6]. This build-up of suscep-

tibles was becoming sufficient to support a major

epidemic, as indeed happened in Scotland in 1993.

These studies have confirmed the importance in

having high-quality seroepidemiology information

available : robust age-stratified serological infor-

mation on exposure and immunity of the community

based on validated techniques. Such information, and

the resultant conclusions on epidemiology and con-

trol, have now been presented in the journal for a wide

range of human viral infections, but particularly

measles, rubella, mumps and varicella-zoster [7–18],

bacterial infections such as whooping cough [19–23],

and parasitic infections [24, 25]. Studies also include

infections in animals [26–28], including prion diseases

[29], and from many parts of the world. International

collaborative studies have been performed [30], and

are now being reported which compare the efficacy of

the different strategies for vaccine use in Europe and

beyond [9, 12, 14, 23]. Mathematical modelling is an

essential part of understanding the epidemiology of

infectious disease, and hence its control.
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