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ON THE EXCURSIONS OF REFLECTED LOCAL-TIME
PROCESSES AND STOCHASTIC FLUID QUEUES

BY TAKIS KONSTANTOPOULOS, ANDREAS E. KYPRIANOU
AND PAAVO SALMINEN

Abstract

In this paper we extend our previous work. We consider the local-time process L of a
strong Markov processX, add negative drift toL, and reflect it à la Skorokhod to obtain a
processQ. The reflection ofX, together withQ, is, in some sense, a macroscopic model
for a service system with two priorities. We derive an expression for the joint law of the
duration of an excursion, the maximum value of the process on it, and the time between
successive excursions. We work with a properly constructed stationary version of the
process. Examples are also given in the paper.
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1. Introduction

In this paper we consider a model for which special cases have been studied in [8], [9],
and [11], consisting of a priority queueing system where the high priority class is a stochastic
process denoted by X and the low priority class is a process denoted by Q. Our interest is in
studying Q. It turns out that the problem can be expressed in general terms via an underlying
strong Markov process X and its local time L at 0, a process which is considered as an input
to Q. For further motivation to the physical problem, we refer the reader to [8], [9], and [11].
In what follows, we express the problem in mathematical terms.

Consider a stationary strong Markov process X = (Xt , t ∈ R), defined on some filtered
probability space (�,F ,P, (Ft , t ∈ R)), with values in R+ almost surely (a.s.) càdlàg paths,
and adapted to (Ft ). In this paper, the local time L of the process X at x = 0 is considered as
an (Ft )-adapted stationary random measure that regenerates jointly with X at every (stopping)
time that X hits 0. More precisely:

(A1) L assigns a nonnegative random variable L(B,ω) to each B ∈ B(R) such that L(·, ω)
is a Radon measure for each ω ∈ �,

(A2) for any a.s. finite (Ft )-stopping time T at whichXT = 0, the process ((XT+t , L(T , T +
t)), t ≥ 0) is independent of FT .

We take the broader perspective with regard to the process L and we allow for the case that it is
a local time of an irregular point (in which case L has discontinuous paths) as well as the case
that 0 is a sticky point (in which case L is absolutely continuous with respect to the Lebesgue
measure with density c 1(Xt = 0) for some c > 0). We refer the reader to [1, Chapter IV] (in
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80 T. KONSTANTOPOULOS ET AL.

particular Corollary 6), [3, Section V.3], and [10, Chapter 6] for further discussion. For each
s ∈ R, define the inverse local-time process with respect to t by

L−1
s;u := inf{t > 0 : L[s, s + t] > u}, u ≥ 0. (1)

What is important is that, owing to this definition, the inverse of the cumulative local time is a
Lévy process in the following sense.

Lemma 1. IfL is continuous then, for every a.s. finite (Ft )-stopping time T such thatXT = 0,
the process (L−1

T ;u, u ≥ 0) is a subordinator with L−1
T ;0 = 0.

If L is not continuous, that is, if 0 is an irregular point for X, then Lemma 1 is taken as
an additional requirement to the definition of L. This is easily arranged by choosing L to be
a modification of the counting process on Z, the discrete set of times that X visits 0, so that
the inverse is a subordinator. To do this, we assign, to each element of Z, an independent and
identically distributed (i.i.d.) unit-mean exponentially distributed weight. Then let the local
time on an interval I to be the sum of all the weights of the points of Z in I .

We summarise this as an assumption, in addition to (A1)–(A2) above.

(A3) If L is discontinuous then we require that, for every a.s. finite (Ft )-stopping time T such
that XT = 0, the process (L−1

T ;u, u ≥ 0) is a subordinator.

We will also need the following assumption.

(A4) The stationary random measure L has finite rate not exceeding 1, i.e.

EL(0, t) = µt,

where 0 < µ < 1.

Then, as in [8], [9], [11], and [13], we define a stationary process Q = (Qt , t ∈ R) by

Qt = sup
−∞<s≤t

{L(s, t] − (t − s)}, t ∈ R. (2)

Furthermore, Q is ergodic (its invariant σ -field is trivial). Note that Q also satisfies, pathwise,

Qt = Qs + L(s, t] − (t − s)− inf
s≤r≤t(Qs + L(s, r] − (r − s)) ∧ 0

= sup
s≤r≤t

(L(r, t] − (t − r)) ∨ (Qs + L(s, t] − (t − s)) (3)

for all −∞ < s < t < ∞. It is worth recalling [8] that if we consider (3) as a fixed point
equation for Q then the process defined by (2) is the unique stationary and ergodic solution
of (3). A typical sample path of Q is depicted in Figure 2 in Section 2. It consists of isolated
excursions away from 0 (also called ‘busy periods’), followed by intervals of time at which Q
stays at 0 (called ‘idle periods’). In this respect, the process Q is thought of as the workload
in a stochastic fluid queue. Amongst other things in [8], [9], and [13], expressions are derived
for the marginal distribution ofQ and the Laplace transform of the duration of typical idle and
busy periods.

In this paper we shall derive an expression for the joint law of three random variables: the
duration of a busy period, the duration of an idle period, and the maximum of Q over a busy
period. The result is formulated as Theorem 1 in Section 3: (16) therein is new and extends
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On the excursions of reflected local-time processes 81

some of the results of [8]. The result is expressed in terms of the process �, which is in turn
a function of the underlying Markov process X. Its construction and properties are given in
Section 2. The approach in this paper is new (compared to [8] and [9]). In Section 4 we use
Theorem 1 for finding marginal distributions. Subsequently, in Section 5, we prove Theorem 2
on the joint law of endpoints of an idle period. The formula given in Theorem 2 appeared in our
previous paper [8], but the proof presented here is new. We then prove Theorem 3 on the joint
law of endpoints of a busy period, together with the maximum of Q over this period. This is a
new result which is also proved by means of applying Theorem 1 together with Palm calculus.

It is assumed, throughout, that (�,F ,P) is endowed with a P-preserving measurable flow
θt : � → �, t ∈ R, with a measurable inverse θ−1

t = θ−t . In other words, P(θtA) = P(A)
for all A ∈ F and t ∈ R. All stationary random processes and measures can be constructed
on � in such a way that the flow commutes with the natural shift, e.g. Qt(θs ◦ω) = Qt+s(ω),
and L(B, θsω) = L(B + s, ω) for all s, t ∈ R, Borel sets B ⊂ R, and ω ∈ �. The flow will
be used explicitly in Section 5 to obtain distributions conditional on observing a positive (or a
zero) value of Q0.

2. A closer look at the reflected process

Consider now any a.s. finite (Ft )-stopping time T , such that XT = 0. Then (L−1
T ;t , t ≥ 0)

is a subordinator starting from 0 (owing to Lemma 1 or assumption (A3)) with a law that does
not depend on T . It turns out that the process of interest is �T = {�T,t : t ≥ 0}, where

�T ;t = t − L−1
T ;t , t ≥ 0. (4)

Note that, irrespective of T , the process �T obeys the law of the same bounded variation
spectrally negative Lévy process which is issued from the origin at time 0. By (A4), L has rate
µ < 1; hence, E�T ;1 = 1 − 1/µ < 0. Since L−1

T ;t is a subordinator, it has a well-defined,
possibly nonzero, drift. If this drift is larger than or equal to unity then −�T is a subordinator
and, as it will turn out, this is a trivial case.

We therefore assume in the sequel that the drift of L−1
T is less than unity or, equivalently,

that

(A5) the drift δ� of the process � defined by (4) is strictly positive.

Under this assumption, the point 0 is irregular for (−∞, 0) for�T (this follows as a standard
result for bounded variation spectrally negative Lévy processes—see [1, Chapter VII]).

In addition, under (A5), it is clear that the time taken for �T to first enter (−∞, 0) is a.s.
strictly positive. It will be shown below (Lemma 3) that this implies that the excursions of
the process Q, i.e. the busy periods, have strictly positive length with probability 1. It can be
intuitively seen, via a geometric argument involving the reflection of the space–time path of
�T about the diagonal (see Figure 1) that the time taken for �T to first enter (−∞, 0) is a.s.
equal to the length of the excursion of Q started at time T .

In this light, note also that�T cannot creep downwards because it is spectrally negative with
paths of bounded variation (cf. [1, Chapter VII]). Hence, the overshoot at first passage of �T
into (−∞, 0) is a.s. strictly positive. It turns out (Lemma 1) that this overshoot agrees with the
idle period following the aforementioned excursion of Q.

The above analysis implies that, on finite intervals of time, Q has finitely many excursions
(busy periods) separated by positive-length idle periods. Denote by

· · · < g(−1) < g(0) < g(1) < g(2) < · · ·
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Figure 1: The construction of the process (�T ;t , t ≥ 0) and related processes, assuming that T = 0.
Note that � may have countably many jumps on finite intervals.

d( )1− (d 1)d( )0 g( )10g( )

Q*

Sample path of Q

B I

Figure 2: The definitions of g(n) and d(n). By convention, the origin of time is between g(0) and g(1),
under the original measure P. Under Pd , the origin of time is at d(0). Under Pg , the origin of time is at
g(0). The random variable Q∗ is the maximum deviation from 0 of Q within the typical busy period.

the beginnings of the idle periods and by

· · · < d(−1) < d(0) < d(1) < d(2) < · · ·
their ends; see Figure 2. We choose the indexing so that g(0) ≤ 0 < g(1). Let Ng and Nd
respectively be the point processes with points {g(n) : n ∈ Z} and {d(n) : n ∈ Z}. As Q is a
stationary process,Ng andNd are jointly stationary with finite, nonzero intensity [8] denoted by
λ (an expression for which is given by (24) and is derived in Section 4.3, below). Corresponding
to point processes Ng and Nd we have the Palm probabilities Pg and Pd , respectively. Let us
consider Q under the measure Pd . Then Pd(d(0) = 0) = 1, i.e. the origin of time is placed at
the beginning of a busy period. By the strong Markov property, the ‘cycles’

Cn := {Qt : d(n) ≤ t < d(n+ 1)}, n ∈ Z,

are i.i.d. under the measure Pd . In particular, the pairs of random variables

(g(n+ 1)− d(n), d(n+ 1)− g(n+ 1)), n ∈ Z,
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are i.i.d. under Pd . Consider the triple

(B, I,Q∗) :=
(
g(1)− d(0), d(1)− g(1), sup

d(0)<t<g(1)
Qt

)
, (5)

which is a function of cycle C0. We are primarily interested in the Pd -law of (B, I,Q∗).
Since, under Pd , the origin of time is placed at d(0), we interpret B, I , and Q∗ as the typical
busy period, the typical idle period, and the maximum value of Q over a typical busy period,
respectively.

The next lemma is proved in [8].

Lemma 2. Let D = inf{t > 0 : Xt = 0} and d = inf{t > 0 : Qt > 0}. Then d = D a.s. on
{Q0 = 0}.

We now obtain an alternative expression for B = g(1)− d(0) and I = d(1)− g(1) in terms
of the inverse local time.

Lemma 3. We have

B = g(1)− d(0) = inf{u > 0 : L−1
d(0);u > u}, (6)

B + I = d(1)− d(0) = L−1
d(0);g(1)−d(0). (7)

Proof. Since d(0) is the end of an idle period (and the beginning of a busy period), we have
Qd(0)− = 0. Then, using (3), we obtain

Qt = L[d(0), t] − (t − d(0)), d(0) ≤ t < g(1),

which gives
B = g(1)− d(0) = inf{t > 0 : L[d(0), d(0)+ t] = t}.

Consider now L−1
d(0);u, defined by (1). By Lemma 2, d(0) is a point of increase of the function

t �→ L[d(0), d(0) + t]. Hence, g(1) > d(0). Also, when L[d(0), d(0) + t] − t decreases, it
does so continuously. Therefore,

B = inf{t > 0 : L[d(0), d(0)+ t] ≤ t}.
Note also that, for all t, x > 0,

L[d(0), d(0)+ t] ≤ x ⇐⇒ t ≤ L−1
d(0);x+ε for all ε > 0.

It follows that
B = inf{t > 0 : L−1

d(0);t > t},
by the right continuity of t �→ L−1

d(0);t . To prove the expression for B + I , note that, as a
measure, L is not supported in the interval [g(1), d(1)) because, by definition, Q is 0 for all t
in this interval. This completes the proof.

Henceforth it will be convenient to work with the process � = (�t , t ≥ 0), where

�t := t − L−1
d(0);t , t ≥ 0.

Note also that d(0) is an (Ft )-stopping time at which X takes the value 0 and, hence, in our
earlier notation, �t = �d(0);t .
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From (6), and as discussed at the beginning of Section 2, we see that B is simply the first
time at which � enters (−∞, 0),

B = inf{t > 0 : �t < 0}, (8)

which is necessarily strictly positive thanks to the irregularity of 0 for (−∞, 0) for �. From
(6) and (7), we see that

I = L−1
d(0);g(1) − B = L−1

d(0);B − B = −�B, (9)

i.e. I is, in absolute value, equal to the value of � at the first time it becomes negative. Again,
we recall from the discussion at the beginning of Section 2 that � cannot creep downwards
and, hence, I > 0 a.s.

Consider now the random variable Q∗ = supd(0)<t<g(1) Qt . If we define

τx := inf{t > 0 : �t > x} = inf{t > 0 : �t = x}, (10)

we immediately see that
{Q∗ < x} = {B < τx}. (11)

3. The triple law

Recall that Pd is the Palm probability with respect to the point process {d(n), n ∈ Z}. The
function

H(α, β, x) = Ed [e−αB−βI 1(Q∗ ≤ x)]
characterises the joint law of the triple (B, I,Q∗) under Pd . Since Pd(d(0) = 0) = 1, we have

�t = t − L−1
0;t with �0 = 0,Pd -a.s. (12)

Recalling (8), (9), and (11) for B, I , and Q∗, respectively, we write

H(α, β, x) = Ed [e−αB+β�B 1(B ≤ τx)]. (13)

Since our primary object is the process � defined in (12), and in view of (4) and (13), it
makes sense to consider the process on its canonical probability space and denote its law by
P̂0. Then

H(α, β, x) = Ê0[e−αB+β�B 1(B < τx)]. (14)

The latter function may now be expressed in terms of so-called scale functions for spectrally
negative Lévy processes. To define the latter, let

ψ�(θ) := log Ê0eθ�1 , θ ≥ 0,

be the Laplace exponent of � under P̂0. Then the, so-called, q-scale function for (�, P̂0),
denoted byW(q)(x), satisfiesW(q)(x) = 0 for x < 0 and on [0,∞) it is the unique continuous
(right continuous at the origin) monotone increasing function whose Laplace transform is given
by ∫ ∞

0
e−θxW(q)(x) dx = 1

ψ�(θ)− q
for β > �(q), (15)

where
�(q) = sup{θ ≥ 0 : ψ�(θ) = q}

is the right inverse of ψ�. (See, for example, the discussion in Chapter 9 of [10].)
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Theorem 1. Let� be the process defined by (12), let B be its first entry time to (−∞, 0) as in
(8), and let τx be the first hitting time of {x} as in (10). For α, β, x ≥ 0, we have

H(α, β, x) = Ê0[e−αB+β�B 1(B < τx)]

= 1 − 1

δ�

1 + (α − ψ�(β))
∫ x

0 e−βyW(α)(y) dy

e−βxW(α)(x)
. (16)

Proof. Let Gt := σ(�s, s ≤ t), and define, for all β ≥ 0, the exponential (Gt )-martingale

M
β
t := eβ�t−ψ�(β)t , t ≥ 0.

On the canonical space of�, let P̂
β

0 be a probability measure, absolutely continuous with respect
to P̂0 on Gt for each t , with Radon–Nikodým derivative

dP̂β0
dP̂0

∣∣∣∣
Gt

:= M
β
t .

Note that � is still a Lévy process under P̂
β

0 with Laplace exponent

ψ
β
�(θ) = log Ê

β

0 eθ�1 = ψ�(β + θ)− ψ�(β).

It is straightforward to check from the above formula that, under P̂
β

0 , � is spectrally negative,
with bounded variation paths and drift coefficient equal to δ�. Since on the stopped σ -field GB

we have (dP̂
β

0 /dP̂0)|GB = M
β
B , we may substitute

eβ�B = M
β
Beψ�(β)B

in (14) for H to obtain

H(α, β, x) = Ê0[Mβ
Beψ�(β)Be−αB 1(B < τx)] = Ê

β

0 [e−(α−ψ�(β))B 1(B < τx)].
Let

q := α − ψ�(β),

and assume that q ≥ 0. It follows from [10, Theorem 8.1(iii)] that

H(α, β, x) = Ê
β

0 [e−qB 1(B < τx)] = Z
(q)
β (0)− Z

(q)
β (x)

W
(q)
β (0)

W
(q)
β (x)

, (17)

where W(q)
β is the q-scale function for (�, P̂

β

0 ) and Z(q)β is given by

Z
(q)
β (x) = 1 + q

∫ x

0
W
(q)
β (t) dt.

It is easy to see [10, Lemma 8.4] that the Laplace transform ofW(q)
β (·) is the Laplace transform

of W(q)(·) shifted by β and this ensures that

W
(q)
β (x) = e−βxW(α)(x).

Moreover, since � still has drift coefficient δ� under P̂
β

0 , [10, Lemma 8.6] tells us that,
irrespective of the values of q and β, W(q)

β (0) = 1/δ�. Putting the pieces together, this

gives us the desired expression for α ≥ ψ�(β). However [10, Lemma 8.3], since W(q)(x) is
analytic in q, the condition on α can be relaxed to α ≥ 0 by using a straightforward analytic
extension argument. This completes the proof.
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In view of (8), (9), (11), and (13), we obtain the following corollary.

Corollary 1. (The joint law of typical B, I , and Q∗.) Assume that (A1)–(A5) hold. Then the
joint law of the length B of a typical busy period, the length I of a typical idle period, and the
maximum Q∗ of Q over the typical busy period are expressed by the formula

Ed [e−αB−βI 1(Q∗ ≤ x)] = 1 − 1

δ�

1 + (α − ψ�(β))
∫ x

0 e−βyW(α)(y) dy

e−βxW(α)(x)
, (18)

where α, β, x ≥ 0.

4. Marginal distributions

Clearly, (18) can be used to extract more detailed information about the typical behaviour
of Q. Let us first derive the distribution (Laplace transform) of the pair (B, I ) under the
measure Pd . We have

Ed [e−αBe−βI ] = Ê0[e−αBeβ�B ] = lim
x→∞H(α, β, x).

To derive the limit, let us temporarily assume that q = α − ψ�(β) > 0 and β ≥ 0. Consider
(16) in the form (17), and use the limiting result

lim
x→∞

Z
(q)
β (x)

W
(q)
β (x)

= q


β
�(q)

from [10, Exercise 8.5], where the function β� is the right inverse of ψβ�. That is,


β
�(q) = sup{θ ≥ 0 : ψβ�(θ) = q}

= sup{θ ≥ 0 : ψβ�(θ) = α − ψ�(β)}
= sup{θ ≥ 0 : ψ�(θ + β) = α}
= �(α)− β.

This gives

Ed [e−αBe−βI ] = 1 − 1

δ�

α − ψ�(β)

�(α)− β
. (19)

To remove the restriction that α > ψ�(β) in (19) and replace it instead by just α ≥ 0, we may
again proceed with an argument involving analytical extension, taking care to note that, for the
case where α = ψ�(β),

lim|α−ψ�(β)|→0

α − ψ�(β)

�(α)− β
= lim|α−ψ�(β)|→0

ψ
β
�(�(α)− β)

�(α)− β
= ψ

β
�

′
(0+) = ψ ′

�(β).

4.1. Busy period

Letting β = 0 in (19), we find the Pd -law of B. That is,

Ed [e−αB ] = 1 − 1

δ�

α

�(α)
.

This formula is consistent with the result of [8, Proposition 8] and, moreover, we see that the
mean duration of the busy period is given by

Ed [B] = 1

δ��(0)
. (20)
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4.2. Idle period

To find the Pd -law of I , we need to set α = 0. Recall, however, from the beginning of
Section 2 that Ed(�1) < 0. This implies that �(0) > 0 and, hence, we have

Ed [e−βI ] = 1 − 1

δ�

ψ�(β)

β −�(0)
. (21)

It follows that the mean idle period is thus equal to

Ed [I ] = −ψ ′
�(0+)

δ��(0)
, (22)

where ψ ′
�(0+) = Ed(�1) < 0.

4.3. Rates

A cycle of the processQ is defined as the interval from the beginning of a busy period until
the beginning of the next busy period. We therefore have

mean cycle length = Ed [B + I ] = 1 − ψ ′
�(0+)

δ��(0)
. (23)

We can express the common rate, λ, of Ng and Nd as the inverse of the mean cycle length:

λ := ENd(0, 1) = ENg(0, 1) = 1

Ed [B + I ] = δ��(0)

1 − ψ ′
�(0+) . (24)

4.4. The maximum over a busy period

We now derive the Pd -distribution of Q∗. Letting α = β = 0 in (16), we obtain

Pd(Q
∗ ≤ x) = 1 − 1

δ�W(x)
,

where W(x) ≡ W(0)(x) is defined through its Laplace transform∫ ∞

0
e−θxW(x) dx = 1

ψ�(θ)
for θ > �(0). (25)

An immediate observation is that limx→0 Pd(Q∗ ≤ x) = 0, sinceW(0) = limθ→0 θ/ψ�(θ) =
1/δ�. So, under Pd , the random variable Q∗ has no atom at 0—which is, of course, expected.

We now show that Q∗ has exponential tail under Pd and derive the precise asymptotics. To
do this, let

β∗ := �(0).

Then it follows from (25) that the Laplace transform of x �→ e−β∗xW(x) is θ �→ 1/ψ�(β∗+θ).
From the final value theorem for Laplace transforms,

lim
x→∞ e−β∗xW(x) = lim

θ→0

θ

ψ�(β∗ + θ)
= 1

ψ�
′(β∗)

,

where we have used the fact that ψ�(β∗) = 0. It follows that

Pd(Q
∗ > x) ∼ ψ ′

�(�(0))

δ�
e−�(0)x

as x → ∞.

https://doi.org/10.1239/jap/1318940457 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1318940457


88 T. KONSTANTOPOULOS ET AL.

5. Cycle formulae

We now show how the use of cycle formulae of Palm calculus enable us to find (see Theorem 2
below) the joint law of the endpoints of an idle period conditional on the event that the idle
period contains the origin of time. Also, we characterise (see Theorem 3 below) the joint law
of the endpoints of a busy period, together with the maximum of Q over this busy period,
conditional on the event that the busy period contains the origin of time.

Let (�,F ,P) be endowed with a P-preserving flow (θt , t ≥ 0) (see the end of Section 1).
Consider a random measure M with finite intensity λM , and a point process N with finite
intensity λN such that M(B, θtω) = M(B + t, ω) and N(B, θtω) = N(B + t, ω) for t ∈ R, a
Borel subset B of R, and ω ∈ �. (In other words, M and N are jointly stationary.) Then, for
any nonnegative measurable Z : � → R, we have

λM EM [Z] = λN EN

∫ Tk+1

Tk

Z ◦ θtM(dt), (26)

where PM , EM and PN , EN respectively denote the Palm probability and expectation with
respect to M and N , T0 is the first atom of N which is less than or equal to 0, and Tk and Tk+1
are any two successive atoms of N . (See [12] for a special case.)

The next result can be found for some special cases in [8] (Lévy processes) and [9] (diffu-
sions), and the general expression is derived in [13]. Here we offer a new proof in the general
case based on (26).

Theorem 2. (The joint law of the endpoints of the idle period.) Assume that (A1)–(A5) hold.
Then, conditional on Q0 = 0, the left endpoint, g(0), and the right endpoint, d(0), of the idle
period containing t = 0 have joint Laplace transform given by

E[e−αd(0)+βg(0) | Q0 = 0] = �(0)

−ψ ′
�(0+)

1

α − β
g

(
ψ�(α)

α −�(0)
− ψ�(β)

β −�(0)
g

)

for nonnegative α and β (α �= β).

Proof. Let MI be the restriction of the Lebesgue measure on the idle periods:

MI(A) =
∫
A

1(Qt = 0) dt, A ∈ B(R).

Then EMI
[Z] = E[Z | Q0 = 0] for all nonnegative random variables Z. Apply (26) with

M = MI , N = Nd , and Z = e−αd(0)+βd(0):

λMI
EMI

[e−αd(0)+βg(0)] = λEd

∫ d(0)

d(−1)
e−αd(0) ◦ θt+βg(0) ◦ θtMI (dt).

Here λ is the rate of Nd and is given by (24). The rate λMI
is given by

λMI
= Ed [I ]

Ed [B + I ] .

Hence,
λ

λMI

= 1

Ed [I ] = δ��(0)

−ψ ′
�(0+) ,
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where we have used (22) and (23). Now, Pd(d(0) = 0) = 1. To compute the integral above,
note that MI is 0 on the interval (d(−1), g(0)) and that, Pd -a.s., for g(0) ≤ t ≤ d(0) = 0, we
have d(0) ◦ θt = −t and g(0) ◦ θt = g(0)− t . So, Pd -a.s.,∫ d(0)

d(−1)
e−αd(0) ◦ θt+βg(0) ◦ θtMI (dt) =

∫ 0

g(0)
e(α−β)t−αg(1) dt = eβg(0) − eαg(0)

α − β
.

Combining the above we obtain

E[e−αd(0)+βg(0) | Q0 = 0] = �(0)

−ψ ′
�(0+)

Ed [eβg(0)] − Ed [eαg(0)]
α − β

.

Since Ed [eβg(0)] = Ed [e−βI ], the result is obtained by using (21).

Theorem 3. (The joint law of the endpoints of the busy period and the maximum over it.)
Assume that (A1)–(A5) hold. Then, conditional on Q0 > 0, the left endpoint, d(0), and the
right endpoint, g(1), of the busy period containing t = 0, together with the maximum ofQs for
s ranging over this busy period, have a joint law which is characterised by

E[e−αg(1)+βd(0) 1(Q∗ ≤ x) | Q0 > 0]

= �(0)

α − β
g

(
1 + α

∫ x
0 W

(α)(y) dy

W(α)(x)
− 1 + β

∫ x
0 W

(β)(y) dy

W(β)(x)
g

)
(27)

for nonnegative α and β (α �= β).

Proof. Let MB be the restriction of the Lebesgue measure on the busy periods:

MB(A) =
∫
A

1(Qt > 0) dt, A ∈ B(R).

Then EMB
[Z] = E[Z | Q0 > 0] for all random variables Z ≥ 0. Apply (26) to obtain

λMB
EMB

[e−αg(1)+βd(0) 1(Q∗ ≤ x)]

= λEd

∫ d(1)

d(0)
e−αg(1) ◦ θt+βd(0) ◦ θt 1(Q∗ ◦ θt ≤ x)MB(dt)

= λEd

∫ g(1)

0
e−α(g(1)−t)−βt 1(Q∗ ≤ x) dt

= λEd g

[
1(Q∗ ≤ x)e−αg(1) e(α−β)g(1) − 1

α − β
g

]

= λ

α − β
g(Ed [e−βg(1) 1(Q∗ ≤ x)] − Ed [e−αg(1) 1(Q∗ ≤ x)]g)

= λ

α − β
(H(β, 0, x)−H(α, 0, x)), (28)

where H(α, β, x) is the right-hand side of (18). Using (20), (23), and (24), we have

λ

λMB

= 1

Ed [B] = δ��(0).

Combining the above we obtain the announced formula.
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Theorem 3 yields Corollary 2, below, which recovers a result obtained in [13] using different
methods (for special cases, see [8] and [9]). Clearly, Corollary 2 could also be proved
analogously to Theorem 2.

Corollary 2. Assume that (A1)–(A5) hold. Then, conditional on Q0 > 0, the left endpoint,
d(0), and the right endpoint, g(1), of the busy period containing t = 0 have joint Laplace
transform given by

E[e−αg(1)+βd(0) | Q0 > 0] = �(0)

α − β
g

(
α

�(α)
− β

�(β)
g

)

for nonnegative α and β (α �= β).

Proof. The argument proceeds as in the proof of Theorem 3 by omitting the factor 1(Q∗ ≤ x),
i.e. by formally replacing x with +∞. The last line of (28) will give (λ/(α−β))(H(β, 0,∞)−
H(α, 0,∞)), where H(α, β,∞) is given by the right-hand side of (19).

Corollary 3. Assume that (A1)–(A5) hold. Then, conditional on Q0 > 0, the maximum of Q
over the busy period containing t = 0 has distribution

P(Q∗ ≤ x | Q0 > 0) = �(0)
W(x)

∫ x
0 W(y) dy − ∫ x

0 W(x − y)W(y) dy

W(x)2
(29)

for x ≥ 0.

Proof. Letting α, β → 0 in (27) yields

P(Q∗ ≤ x | Q0 > 0) = �(0) lim
α→0

∂Ĥ

∂α
(α, 0, x),

where

Ĥ (α, 0, x) = 1 − 1 + α
∫ x

0 W
(α)(y) dy

W(α)(x)
.

Next, recall that, for each x > 0,W(α)(x) is an entire function in the variableα and, in particular,

W(α)(x) =
∑
k≥0

αkW ∗(k+1)(x),

where W ∗(k+1)(x) is the (k + 1)th convolution of W (cf. [2]). From this we easily deduce that

∂

∂α
W(α)(x)

∣∣∣∣
α=0

=
∫ x

0
W(y)W(x − y) dy.

The result now follows from straightforward differentiation.

6. Example: local-time storage from reflected Brownian motion with negative drift

Let X = {Xt, t ∈ R} be a reflected Brownian motion with drift −c < 0 in stationary
state living on I = [0,∞), and let P0 denote the probability measure associated with X when
initiated from 0 at time 0. Its local time (at 0) for s < t is given by

L(s, t] := lim
ε↘0

1

2ε

∫ t

s

1[0,ε)(Xu) du. (30)
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It is a standard result that the law of (L(0, t], t ≥ 0) coincides with the law of (− inf0≤s≤t Xs,
t ≥ 0). (This is the reason we have the factor 1

2 in front of the integral in (30).) Let Q be the
stationary process defined as in (2):

Qt := sup
s≤t

{L(s, t] − (t − s)}.

This particular example of fluid queues was introduced and analysed in [11] and further studied
in [8] and [9].

Recall that E0 L(0, 1] = c, and, hence, Q is well defined if and only if 0 < c < 1. Here we
make this example more complete by finding the α-scale function associated with the process
�t := t − L−1

t , t ≥ 0, where

L−1
t := inf{s : L(0, s] > t}, t ≥ 0,

is the inverse local-time process. As seen from (16) and (29), the α-scale function is the key
ingredient needed for computing the distribution of the maximum ofQ over a busy period and
related random variables.

To begin with, we recall some basic formulae. When normalising as in (30) (see [4, p. 22]
and [7, p. 214]), it holds that

E0(exp{−θL−1
t }) = exp

{
−t

∫ ∞

0
(1 − e−θu) 1√

2πu3
e−c2u/2 du

}

= exp

{
− t

Gθ (0, 0)

}
,

where

Gθ(0, 0) := 1√
2θ + c2 − c

is the resolvent kernel (Green kernel) of X at (0, 0); see [4, p. 129]. Consequently, we have

E0(exp{θ�t }) = exp

{
t

(
θ − 1

Gθ(0, 0)

)}
= exp{tψ�(θ)},

where
ψ�(θ) := θ −

√
2θ + c2 + c, θ ≥ 0.

Recall (cf. (15)) that the α-scale function (α ≥ 0) associated with � is defined for x ≥ 0
via ∫ ∞

0
e−θxW(α)(x) dx = 1

ψ�(θ)− α
; (31)

for x < 0, we set W(α)(x) = 0. The 0-scale function is simply called the scale function and
denoted by W . For the next proposition, introduce

Erfc(x) := 2√
π

∫ ∞

x

e−t2 dt,

and note that Erfc(0) = 1, Erfc(+∞) = 0, and Erfc(−∞) = 2.
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Proposition 1. The α-scale function W(α) of � is, for x ≥ 0, given by

W(α)(x) = e−c2x/2

λ1 − λ2

(
λ1eλ

2
1x/2 Erfc

(
−λ1

√
x

2

)
− λ2eλ

2
2x/2 Erfc

(
−λ2

√
x

2

))
, (32)

where
λ1 := 1 +

√
(1 − c)2 + 2α, λ2 := 1 −

√
(1 − c)2 + 2α. (33)

In particular,

W(x) = e−c2x/2

2(1 − c)

(
(2 − c)e(2−c)2x/2 Erfc

(
−(2 − c)

√
x

2

)
− cec

2x/2 Erfc

(
−c

√
x

2

))
, (34)

and W(0) = 1.

Proof. From (31) we have∫ ∞

0
e−θxW(α)(x) dx = 1

θ − √
2θ + c2 + c − α

. (35)

To invert this Laplace transform, introduce λ := 2θ + c2. With this notation,

1

θ − √
2θ + c2 + c − α

= 2

λ− 2
√
λ+ 2(c − α)− c2

= 2

(
√
λ− λ1)(

√
λ− λ2)

= 2

λ1 − λ2

(
1√
λ− λ1

− 1√
λ− λ2

)
, (36)

where λ1,2 are the roots of the equation z2 − 2z + 2(c − α) − c2 = 0, i.e. as in (33). Next,
recall the following Laplace inversion formula (cf. [5, p. 233]) valid for λ− β2 > 0:

L−1
(

1√
λ+ β

)
= 1√

πx
− βeβ

2x Erfc(β
√
x). (37)

Since ∫ ∞

0
e−θxW(α)(x) dx =

∫ ∞

0
e−λyec

2yW(α)(2y)2 dy,

we obtain, using (37),

2ec
2yW(α)(2y) = 2

λ1 − λ2
(λ1eλ

2
1y Erfc(−λ1

√
y)− λ2eλ

2
2y Erfc(−λ2

√
y)),

which is (32). In particular, when α = 0, it holds that λ1 = 2 − c and λ2 = c, yielding (34).

Using the scale function W and the fact that

�(0) = sup{θ > 0 : ψ�(θ) = 0} = 2(1 − c),

(29) yields the distribution of the maximum Q∗ over an observed busy period (i.e. over a busy
period containing the origin of time).
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Figure 3: The density ofQ∗ conditional on {Q0 > 0} for the example corresponding to Brownian motion
with drift −c = − 1

2 .

Proposition 2. Let 0 < c < 1. The distribution of the maximum Q∗ over an observed busy
period of a local-time storage associated with a reflected Brownian motion with drift −c is
given by

P(Q∗ ≤ x | Q0 > 0) = 2(1 − c)

∫ x
0 W(y)(W(x)−W(x − y)) dy

W 2(x)
, (38)

where the scale function W is given by (34).

We plot the derivative of (38) for c = 1
2 in Figure 3.

We recall some formulae from [9]. First

E[eθd(0)−βg(1) | Q0 > 0] = 8(1 − c)√
2θ + (1 − c)2 + √

2β + (1 − c)2

× 1

(
√

2θ + (1 − c)2 + 1 + c)(
√

2β + (1 − c)2 + 1 + c)

=: F(θ, β; 1 − c) (39)

and
Ê[eθg(0)−βd(0) | Q0 = 0] = F(θ, β; c). (40)

Setting β = θ in the right-hand side of (39) and (40), respectively, we obtain

E[e−θ(g(1)−d(0)) | Q0 > 0] = 4(1 − c)√
2θ + (1 − c)2(

√
2θ + (1 − c)2 + 1 + c)2

(41)
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Figure 4: The density of the length of the busy period, given thatQ0 > 0, for three different values of c.

and

E[e−θ(d(0)−g(0)) | Q0 = 0] = 4c√
2θ + c2(

√
2θ + c2 + 2 − c)2

.

Taking the inverse Laplace transform of (41) (cf. [5, p. 234]), we obtain the density of the length
of the busy period g(1)− d(0), given Q0 > 0, as

fg−b(v) = 2(1 − c)e−(1−c)2v/2
(√

2v

π
− (1 + c)ve(1+c)2v/2 Erfc

(
(1 + c)

√
v

2

))
.

Note that the density of the length of the idle period d(0)−g(0), given thatQ0 = 0, is obtained
from fg−b(v) by substituting c for 1 − c. In Figure 4 we plot fg−b(v) for three different values
of c. We note also that the mean busy period length has a simple expression:

E[g(1)− d(0) | Q0 > 0] = 2 − c

(1 − c)2
.

The joint density of d(0) and g(1) is given by

P̂[−d(0) ∈ dx, g(1) ∈ dy | Q0 > 0]
= 2(1 − c)e−(1−c)2(x+y)/2

×
(√

2

π(x + y)
− (1 + c)e(1+c)2(x+y)/2 Erfc

(
(1 + c)

√
x + y

2

))

and, again, the density for (g(0), d(0)) is obtained by substituting c for 1 − c.
Next we find the density of g(1) (recall that −d(0) is identical in law to g(1)) by inverting

the Laplace transform (obtained from (39) by choosing θ = 0):

E[e−βg(1) | Q0 > 0] = 4(1 − c)

(
√

2β + (1 − c)2 + 1 − c)(
√

2β + (1 − c)2 + 1 + c)
. (42)
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Letting λ := 2β + (1 − c)2 we rewrite (42) as

E[e−βg(1) | Q0 > 0] = 2(1 − c)

c

(
1√

λ+ 1 − c
− 1√

λ+ 1 + c

)
. (43)

From (37),

L−1
(

1√
λ+ 1 − c

− 1√
λ+ 1 + c

)

= (1 + c)e(1+c)2x Erfc((1 + c)
√
x)− (1 − c)e(1−c)2x Erfc((1 − c)

√
x).

Consequently,

2e−(1−c)2xfg(1)(2x) = 2(1 − c)

c
((1 + c)e(1+c)2x Erfc((1 + c)

√
x)

− (1 − c)e(1−c)2x Erfc((1 − c)
√
x)), (44)

where fg(1) denotes the density of g(1) conditioned on {Q0 > 0}. From (44) we obtain

fg(1)(x) = (1 − c)e−(1−c)2x/2

c

(
(1 + c)e(1+c)2x/2 Erfc

(
(1 + c)

√
x

2

)

− (1 − c)e(1−c)2x/2 Erfc

(
(1 − c)

√
x

2

))
. (45)

Moreover, the density fd(0) of d(0) conditional on {Q0 = 0} is obtained from (45) by
substituting c with 1 − c:

fd(0)(x) = ce−c2x/2

1 − c

(
(2 − c)e(2−c)2x/2 Erfc

(
(2 − c)

√
x

2

)
− cec

2x/2 Erfc

(
c

√
x

2

))
. (46)

It is striking how similar formulae (34) and (46) are.

Remark 1. The scale function formulae (32) and (34) are clearly valid for all c ≥ 0. In the
c = 0 case the process {L(0, t]; t ≥ 0} is a version of the Brownian local time, and the α-scale
function W(α)

0 of the corresponding process � is given by

W
(α)
0 (x) = e(1+α)x

2
√

1 + 2α

(
(1 + √

1 + 2α)ex
√

1+2α Erfc

(
−(1 + √

1 + 2α)

√
x

2

)

− (1 − √
1 + 2α)e−x√1+2α Erfc

(
−(1 − √

1 + 2α)

√
x

2

))
.

In particular,
W0(x) = e2x Erfc(−√

2x). (47)

In the c = 1 case it holds that λ1,2 = 1 ± √
2α and, for α �= 0, (34) can be used directly. For

the 0-scale function, we need to take the limit as c → 1 in (34):

W1(x) = (1 + x)Erfc

(
−

√
x

2

)
+

√
2x

π
e−x/2. (48)
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Remark 2. Here we display some formulae for Laplace transforms apparent from above and
point out a misprint in [5].

First, from (35), (36), and (48), we have the following Laplace inversion formula valid for
λ > 1:

L−1
(

1

(
√
λ− 1)2

)
= (1 + 2x)ex Erfc(−√

x)+ 2
√
x√
π
.

This can be ‘extended’ (for a > 0) to

L−1
(

1

(
√
λ− a)2

)
= (1 + 2a2x)ea

2x Erfc(−a√x)+ 2a
√
x√
π
. (49)

Furthermore, it can be checked that (49) is valid for all a < 0 by evaluating the Laplace
transform of the right-hand side. This can be done term by term by using (see, e.g. [5, pp. 137,
177]) the well-known formulae:

L(
√
x) =

√
π

2
λ−3/2, L(ea

2x Erfc(a
√
x)) = λ−1/2(λ1/2 + a)−1,

and

L(xea
2x Erfc(a

√
x)) = − ∂

∂λ
L(ea

2x Erfc(a
√
x))

= − ∂

∂λ
λ−1/2(λ1/2 + a)−1

= 1

2a
(λ−3/2 − λ−1/2(λ1/2 + a)−2).

We remark that Formula (10) of [5, p. 234],

L−1
(

1

(
√
λ+ √

b)2

)
= 1 − 2

√
bx

π
+ (1 − 2bx)ebx(Erf(

√
bx)− 1), (50)

is not correct since it does not coincide with (49) (for a < 0). Indeed, because

Erf(x) := 2√
π

∫ x

0
e−t2 dt,

the right-hand side of (50) is 0 at 0, but the right-hand side of (49) is 1 at 0.

7. Further examples

In the previous example we derived a local-time process from a given Markov process.
However, it is also possible to consider examples where just the local-time process L, or,
equivalently, the subordinator L−1, is specified. Indeed, the subordinator that will play the role
of L−1 in this example has no drift and has Lévy measure given by

�(x,∞) = γ ν

�(ν)
xν−1e−γ x + ϕ

γ ν

�(ν)

∫ ∞

x

yν−1e−γy dy,

where the constants ϕ, γ > 0 and ν ∈ (0, 1). Note, in particular, that L−1 is the sum of
two independent subordinators, one of which is a compound Poisson process with gamma
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distributed jumps, and the other has infinite activity and is of the so-called tempered-stable
type. Clearly, � also describes the Lévy measure of −�.

According to [6], the process � belongs to the Gaussian tempered-stable convolution class
and, moreover,

ψ�(θ) = (θ − ϕ)

(
1 −

(
γ

γ + θ

)ν)
for θ ≥ 0.

In particular, δ� = 1 and �(0) = ϕ. It is a straightforward exercise to show that

Ê(�1) = ψ ′
�(0+) = −ϕ ν

γ
,

and this implies that

µ = 1

1 + ϕν/γ
< 1,

as required.
From [6] we also know that

W(x) = eϕx + γ νeϕx
∫ x

e−(γ+ϕ)yyν−1Eν,ν(γ
νyν) dy,

where

Eα,β(x) :=
∑
n≥0

zn

�(αn+ β)

is the two-parameter Mittag-Leffler function.
We may now deduce from the theory presented earlier that, for example,

Pd(Q
∗ ≤ x) = 1 − e−ϕx + γ ν

∫ x e−(γ+ϕ)yyν−1Eν,ν(γ
νyν) dy

1 + γ ν
∫ x e−(γ+ϕ)yyν−1Eν,ν(γ νyν) dy

and

Pd(Q
∗ > x) ∼

(
1 −

(
γ

γ + ϕ

)ν)
e−ϕx.
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