
3 On-shell recursion relations at tree-level

Recursion relations provide a method for building higher-point amplitudes from lower-point
information. The 1988 off-shell recursion relations by Berends and Giele [12] construct
n-point parton amplitudes from building blocks that are lower-point amplitudes with one
leg off-shell (see the review articles [1, 3]). This off-shell method continues to be useful as
an algorithm for efficient numerical evaluation of scattering amplitudes. In this review, we
focus on the “modern” recursive methods whose building blocks are on-shell amplitudes.
These on-shell recursion relations are elegant in that they use input only from gauge-
invariant objects and they have proven very powerful for elucidating the mathematical
structure of scattering amplitudes.

In the on-shell approaches, a key idea is to use the power of complex analysis to exploit the
analytic properties of on-shell scattering amplitudes. The derivation of on-shell recursion
relations is a great example of this, as we shall see in Section 3.1. The most famous on-shell
recursion relations are the BCFW recursion relations of Britto, Cachazo, Feng, and Witten
[13, 14], but there are other versions based on the same idea as BCFW, namely the use
of complex deformations of the external momenta. We describe the idea here, first in a
very general formulation in Section 3.1, then specialize the results to derive the BCFW
recursion relations in Section 3.2. We illustrate the BCFW method with a selection of
examples, including an inductive proof of the Parke–Taylor formula (2.83). Section 3.3
contains a discussion of when to expect existence of recursion relations in general local
QFTs. Finally, in Section 3.4, we present the CSW construction (Cachazo-Svrcek-Witten
[15]), also called the MHV vertex expansion.

3.1 Complex shifts and Cauchy’s theorem

An on-shell amplitude An is characterized by the momenta of the external particles and their
type (for example a helicity label hi for massless particles). We focus here on massless par-
ticles so p2

i = 0 for all i = 1, 2, . . . , n. Of course, momentum conservation
∑n

i=1 pμ

i = 0
is also imposed.

Let us now introduce n complex-valued vectors rμ

i (some of which may be zero) such
that

(i)
n∑

i=1

rμ

i = 0 ,

(ii) ri · r j = 0 for all i, j = 1, 2, . . . , n. In particular r2
i = 0 , and

(iii) pi · ri = 0 for each i (no sum).
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3.1 Complex shifts and Cauchy’s theorem 51

These vectors ri are used to define n shifted momenta

p̂μ

i ≡ pμ

i + z rμ

i with z ∈ C . (3.1)

Note that

(A) By property (i), momentum conservation holds for the shifted momenta:
∑n

i=1 p̂μ

i = 0.
(B) By (ii) and (iii), we have p̂2

i = 0, so each shifted momentum is on-shell.
(C) For a non-trivial1 subset of generic momenta {pi }i∈I , define Pμ

I = ∑
i∈I pμ

i . Then P̂2
I

is linear in z:

P̂2
I =

(∑
i∈I

p̂i

)2

= P2
I + z 2 PI · RI with RI =

∑
i∈I

ri , (3.2)

because the z2 term vanishes by property (ii). We can write

P̂2
I = − P2

I

z I
(z − zI ) with zI = − P2

I

2PI · RI
. (3.3)

As a result of (A) and (B), we can consider our amplitude An in terms of the shifted
momenta p̂μ

i instead of the original momenta pμ

i . In particular, it is useful to study the
shifted amplitude as a function of z; by construction, it is a holomorphic function Ân(z).
The amplitude with unshifted momenta pμ

i is obtained by setting z = 0, An = Ân(z = 0).
We specialize to the case where An is a tree-level amplitude. In that case, the analytic

structure of Ân(z) is very simple. As discussed in Section 2.8, the tree amplitude does not
have any branch cuts – there are no logs, square-roots, etc. at tree-level. The tree amplitude
is a rational function of the kinematic variables. As such, its analytic structure is captured
by its poles and these are determined by the exchanges of physical particles. Thus, the
shifted amplitude Ân(z) is a rational function of z and, for generic external momenta, its
poles are all simple poles in the z-plane. To see that the poles are simple, consider the
Feynman diagrams: the only way we can get poles is from the shifted propagators 1/P̂2

I ,
where P̂I is a sum of a non-trivial subset of the shifted momenta. By (C) above, 1/P̂2

I gives
a simple pole at zI , and for generic momenta, P2

I �= 0 so zI �= 0. For generic momenta,
no Feynman tree diagram can have more than one power of a given propagator 1/P̂2

I ; and
poles of different propagators are at different locations in the z-plane. Hence, for generic
momenta, Ân(z) only has simple poles and they are all located away from the origin z = 0.
Note the underlying assumption of locality, i.e. that the amplitudes can be derived from
some local Lagrangian so that the propagators determine the poles.

Let us now study the holomorphic function Ân (z)
z in the complex z-plane. Pick a contour

that surrounds the simple pole at the origin. The residue at this pole is nothing but the
unshifted amplitude, An = Ân(z = 0). Deforming the contour to surround all the other

1 Non-trivial means at least two and no more than n−2 momenta such that P2
I �= 0.
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52 On-shell recursion relations at tree-level

poles, Cauchy’s theorem tells us that

An = −
∑

zI

Resz=zI

Ân(z)

z
+ Bn , (3.4)

where Bn is the residue of the pole at z = ∞. By taking z → 1/w it is easily seen that Bn

is the O(z0) term in the z → ∞ expansion of An .
Now, so what? Well, at a zI -pole the propagator 1/P̂2

I goes on-shell. In that limit, the
shifted amplitude factorizes into two on-shell parts,

Ân(z)
z near zI−−−−→ ÂL(zI )

1

P̂2
I

ÂR(zI ) = − zI

z − zI
ÂL(zI )

1

P2
I

ÂR(zI ) . (3.5)

In the second step we used (3.3). This makes it easy to evaluate the residue at z = zI :

−Resz=zI

Ân(z)

z
= ÂL(zI )

1

P2
I

ÂR(zI ) =
PI
^^

^

^

^
^

^

L R . (3.6)

Note that – as opposed to Feynman diagrams – the momentum of the internal line in (3.6)
is on-shell, P̂2

I = 0, and the vertex-blobs represent shifted on-shell amplitudes evaluated
at z = zI ; we call them subamplitudes. The rule for the internal line in the diagrammatic
representation (3.6) is to write the scalar propagator 1/P2

I of the unshifted momenta. Each
subamplitude necessarily involves fewer than n external particles, hence all the residues at
finite z can be determined in terms of on-shell amplitudes with less than n particles. This
is the basis of the recursion relations.

The contribution Bn from the pole at infinity has no similar general expression in terms
of lower-point amplitudes; there has been some work on how to compute Bn systematically
(see for example [16, 17]), but currently there is not a general constructive method. Thus,
in most applications, one assumes – or, much preferably, proves – that Bn = 0. This is most
often justified by demonstrating the stronger statement that

Ân(z) → 0 for z → ∞ . (3.7)

If (3.7) holds, we say that the shift (3.1) is valid (or good).
For a valid shift, the n-point on-shell amplitude is completely determined in terms of

lower-point on-shell amplitudes as

An =
∑

diagrams I

ÂL(zI )
1

P2
I

ÂR(zI ) =
∑

diagrams I

PI
^^

^

^

^
^

^

L R . (3.8)

The sum is over all possible factorization channels I . There is also implicitly a sum over
all possible on-shell particle states that can be exchanged on the internal line: for example,
for a gluon we have to sum the possible helicity assignments.
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The recursive formula (3.8) gives a manifestly gauge-invariant construction of scatter-
ing amplitudes. Thus (3.8) is the general “prototype” of the on-shell recursion relations
for tree-level amplitudes under a valid shift of the external momenta. We did not use
any special properties of 4d spacetime, so the general derivation of the recursion re-
lations is valid in D spacetime dimensions. In the following, we specialize to D = 4
again.

3.2 BCFW recursion relations

We shifted all external momenta democratically in (3.1), but with a parenthetical remark
that some of the light-like shift-vectors rμ

i might be trivial, rμ

i = 0. The BCFW shift is one
in which exactly two lines, say i and j , are selected as the only ones with non-vanishing
shift-vectors. In D = 4 spacetime dimension, the shift is implemented on angle and square
spinors of the two chosen momenta:

|î] = |i] + z | j] , | ĵ] = | j] , |î〉 = |i〉 , | ĵ〉 = | j〉 − z|i〉 . (3.9)

No other spinors are shifted. We call this a [i, j〉-shift. Note that [î k] and 〈 ĵ k〉 are lin-
ear in z for k �= i, j while 〈î ĵ〉 = 〈i j〉, [î ĵ] = [i j], 〈î k〉 = 〈ik〉, and [ ĵ k] = [ jk] remain
unshifted.

� Exercise 3.1
Use (2.15) to calculate the shift vectors rμ

i and rμ

j corresponding to the shift (3.9).
Then show that your shift vectors satisfy properties (i)–(iii) of Section 3.1.

With the two momenta i and j shifted according to (3.9), the BCFW recursion relation for
tree amplitudes takes the form

An =
∑

diagrams I

ÂL(zI )
1

P2
I

ÂR(zI ) =
∑

diagrams I

PI
^^ ^i jL R .

(3.10)

The sum is over all channels I such that the shifted lines i and j are on opposite sides of the
factorization diagram in (3.10). As in the general recursion relations (3.8), there is also an
implicit sum over all possible on-shell particle states that can be exchanged on the internal
line.

Before diving into applications of the BCFW recursion relations (such as proving the
Parke–Taylor formula), let us study the shifts a little further. As an example, consider the
Parke–Taylor amplitude

An

[
1−2−3+ . . . n+] = 〈12〉4

〈12〉〈23〉 · · · 〈n1〉 . (3.11)
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Explore the following properties:

� Exercise 3.2
Convince yourself that for large-z the amplitude (3.11) falls off as 1/z under a [−,−〉-
shift (i.e. choose i and j to be the two negative helicity lines). What happens under the
three other types of shifts? Note the difference between shifting adjacent/non-adjacent
lines.2

� Exercise 3.3
Consider the action of a [1, 2〉-shift of (3.11). Identify the simple pole. Calculate the
residue of Ân(z)/z at this pole. Compare with (3.4). What happens if you try to repeat
this for a [1, 3〉-shift?

� Exercise 3.4
The spin-1 polarization vectors (2.50) have denominators with 〈qp〉 and [qp] (with
q the reference spinor) which may shift under a BCFW shift (3.9) involving p. Why
are there no terms in the on-shell recursion relations (3.8) corresponding to poles at
〈q p̂〉 = 0 or [q p̂] = 0?

The validity of the BCFW recursion relations requires that the boundary term Bn in (3.4)
is absent. The typical approach is to show that the shifted amplitude vanishes in the limit
of large z, as in (3.7):

Ân(z) → 0 for z → ∞. (3.12)

In pure Yang–Mills theory, an argument [18] based on the background field method estab-
lishes the following large-z behavior of color-ordered gluon tree amplitudes under a BCFW
shift of adjacent gluon lines i and j of helicity as indicated:

[i, j〉 [−,−〉 [−,+〉 [+,+〉 [+,−〉

Ân(z) ∼ 1

z

1

z

1

z
z3

. (3.13)

If i and j are non-adjacent, one gains an extra power 1/z in each case. Thus any one of the
three types of shifts [−,−〉, [−,+〉, [+,+〉 gives valid recursion relations for gluon tree
amplitudes.

We are now going to use the BCFW recursion relations (3.10) to construct an inductive
proof of the Parke–Taylor formula (3.11). The formula (3.11) is certainly true for n = 3,
as we saw in Section 2.5, and this establishes the base of the induction. For given n,
suppose that (3.11) is true for amplitudes with less than n gluons. Then write down the
recursion relation for An[1−2−3+ . . . n+] based on the valid [1, 2〉-shift: adapting from

2 Of course, we cannot use the large-z behavior of formula (3.11) itself to justify the method to prove this formula!
A separate argument is needed and will be discussed shortly.
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(3.10), we have

An

[
1−2−3+ . . . n+] =

n∑
k=4

PI
^

L R

1̂−
2̂−

3+n+

k+
k−1+

=
n∑

k=4

∑
hI =±

Ân−k+3
[
1̂−, P̂hI

I , k+ . . . , n+] 1

P2
I

Âk−1
[ − P̂−hI

I , 2̂−, 3+ . . . , (k − 1)+
]
. (3.14)

The internal momentum is labeled PI , meaning that for a given k = 4, . . . , n we have
PI = p2 + p3 + · · · + pk−1 and P̂I = p̂2 + p3 + · · · + pk−1. There are no diagrams where
lines 1 and 2 belong to the same subamplitude, because in that case, the internal momentum
would not be shifted and then there is no corresponding residue in (3.4). Only diagrams
that preserve the color-ordering of the external states are included. Note that we are also
explicitly including the sum over the possible helicity assignments for the particle exchanged
on the on-shell internal line: if the exchanged gluon is outgoing from the left subamplitude
and has negative helicity, then it will be a positive helicity outgoing gluon as seen from the
right subamplitude.

Since one-minus amplitudes An[− + · · · +] vanish except for n = 3, (3.14) reduces to

An

[
1−2−3+ . . . n+] =

+ −

PI
^

L R

1̂− 2̂−

3+

n+
n−1+

+ +−
PI
^

L R

1̂−
2̂−

3+4+

n+

= Â3
[
1̂−,−P̂+

1n , n+] 1

P2
1n

Ân−1
[
P̂−

1n , 2̂−, 3+ . . . (n − 1)+
]

+ Ân−1
[
1̂−, P̂−

23 , 4+ . . . , n+] 1

P2
23

Â3
[ − P̂+

23 , 2̂−, 3+] . (3.15)

It is understood here that P̂I is evaluated at the residue value of z = zI such that P̂2
I = 0.

The notation Pi j means Pi j = pi + p j .
The next step is to implement special kinematics for the 3-point subamplitudes. In the

first diagram of (3.15), we have a 3-point anti-MHV amplitude

Â3
[
1̂−,−P̂+

1n , n+] = [P̂1n n]3

[n1̂][1̂P̂1n]
. (3.16)

Here we use the following convention for analytic continuation:

| − p〉 = −|p〉 , | − p] = +|p] . (3.17)
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56 On-shell recursion relations at tree-level

Since P̂μ

1n = p̂μ

1 + pμ
n , the on-shell condition is

0 = P̂2
1n = 2 p̂1 · pn = 〈1̂n〉[1̂n] = 〈1n〉[1̂n] . (3.18)

For generic momenta, the only way for the RHS to vanish is for z to take a value such that
[1̂n] = 0. This means that the denominator in (3.16) vanishes! But so does the numerator:
from

|P̂1n〉[P̂1n n] = −P̂1n|n] = −( p̂1 + pn)|n] = |1〉[1̂n] = 0 , (3.19)

we conclude that [P̂1nn] = 0 since |P̂1n〉 is not zero. Similarly, one can show that [1̂ P̂1n] = 0.
Thus, in the limit of imposing momentum conservation, all spinor products in (3.16) vanish;
with the three powers in the numerator versus the two in the denominator, we conclude that
special 3-point kinematics force Â3[1̂−, P̂+

1n , n+] = 0. So the contribution from the first
diagram in (3.15) vanishes.

In the second diagram of (3.15), the 3-point subamplitude is also anti-MHV, but it does
not vanish, since the shift of line 2 is on the angle spinor, not the square spinor. This way,
the big abstract recursion formula (3.10) reduces – for the case of the [−,−〉 BCFW shift of
an MHV gluon tree amplitude – to an expression with just a single non-vanishing diagram:

An

[
1−2−3+ . . . n+] =

+−
PI
^

L R

1̂−
2̂−

3+4+

n+

= Ân−1
[
1̂−, P̂−

23 , 4+, . . . , n+] 1

P2
23

Â3
[ − P̂+

23 , 2̂−, 3+] . (3.20)

Our inductive assumption is that (3.11) holds for (n − 1)-point amplitudes. That, together
with the result (2.81) for the 3-point anti-MHV amplitude, gives

An

[
1−2−3+ . . . n+] = 〈1̂P̂23〉4

〈1̂P̂23〉〈P̂23 4〉〈45〉 . . . 〈n1̂〉 × 1

〈23〉[23]
× [3P̂23]3

[P̂23 2̂][2̂3]
. (3.21)

We could now proceed to evaluate the angle and square spinors for the shifted momenta.
But it is more fun to introduce you to a nice little trick. Combine the factors from the
numerator:

〈1̂P̂23〉[3P̂23] = −〈1̂P̂23〉[P̂23 3] = 〈1̂|P̂23|3] = 〈1̂|( p̂2 + p3)|3] = 〈1̂| p̂2|3]

= −〈1̂2̂〉[2̂3] = −〈12〉[23] . (3.22)

In the last step we used 〈1̂2̂〉 = 〈12〉 and |2̂] = |2]. Playing the same game with the factors
in the denominator, we find

〈P̂23 4〉[P̂23 2̂] = 〈4|P̂23|2̂] = 〈4|3|2] = −〈43〉[32] = −〈34〉[23] . (3.23)
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Now use (3.22) and (3.23) in (3.21) to find

An

[
1−2−3+ . . . n+] = −〈12〉3[23]3(−〈34〉[23]

) 〈45〉 · · · 〈n1〉 〈23〉[23] [23]

= 〈12〉4

〈12〉〈23〉〈34〉〈45〉 · · · 〈n1〉 . (3.24)

This completes the inductive step. With the 3-point gluon amplitude A3
[
1−2−3+] fixed

completely by little group scaling and locality, we have then proven the Parke–Taylor
formula for all n. This is a lot easier than calculating Feynman diagrams!

You may at this point complain that we have only derived the Parke–Taylor formula
recursively for the case where the negative helicity gluons are adjacent. Try your own hands
on the proof for the non-adjacent case. In Chapter 4 we will use supersymmetry to derive
a more general form of the tree-level gluon amplitudes: it will contain all MHV helicity
arrangements in one compact expression.

We have now graduated from MHV-level and are ready to embark on the study of NMHV
amplitudes. It is worthwhile to consider the 5-point example A5[1−2−3−4+5+] even though
this amplitude is anti-MHV: constructing it with a [+,+〉-shift is a calculation very similar
to the MHV case – and that would by now be boring. So, instead, we are going to use a
[−,−〉-shift to illustrate some of the manipulations used in BCFW recursion.

� Example. Consider the [1, 2〉-shift recursion relations for A5
[
1−2−3−4+5+]: there are

two diagrams

A5
[
1−2−3−4+5+] = P̂15

2̂–

3–

4+

1̂–

5+
+−

diagram A

+ +−

P̂23
2̂–

3–

1̂ –

5+

4+

diagram B

.

(3.25)

We have indicated the required helicity for the gluon on the internal line. Had we chosen
the opposite helicity option for the internal gluon in diagram A, the righthand subam-
plitude would have helicity structure −− −+, so it would vanish. Diagram B also van-
ishes for the opposite choice of the helicity on the internal line. For the helicity choice
shown, the righthand subamplitude of diagram B is MHV, A3[−P̂+

23, 2̂−, 3−], and since
|2〉 is shifted, the special 3-particle kinematics actually makes A3[−P̂+

23, 2̂−, 3−] = 0,
just as we saw for the anti-MHV case in the discussion below (3.16). So diagram B
vanishes, and we can focus on diagram A. Using the Parke–Taylor formula for the
MHV subamplitudes, we get

A5
[
1−2−3−4+5+] = 〈1̂P̂〉3

〈P̂5〉〈51̂〉 × 1

〈15〉[15]
× 〈2̂3〉4

〈2̂3〉〈34〉〈4P̂〉〈P̂ 2̂〉 . (3.26)

Here P̂ stands for P̂15 = p̂1 + p5. We have three powers of |P̂〉 in the numerator and
three in the denominator. A good trick to simplify such expressions is to multiply
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(3.26) by [P̂ X ]3/[P̂ X ]3 for some useful choice of X such that [P̂ X ] �= 0. In this case,
it is helpful to pick X = 2. Grouping terms conveniently together, we get:

• 〈1̂P̂〉[P̂2] = −〈1̂|1̂+5|2] = 〈1̂5〉[52] = −〈15〉[25] (since |1̂〉 = |1〉).
• 〈5P̂〉[P̂2] = −〈5|1̂+5|2] = 〈51〉[1̂2] = 〈51〉[12] .
• 〈4P̂〉[P̂2] = −〈4|1̂ + 5|2] = 〈4|2̂+3+4|2] = 〈4|3|2] = −〈43〉[32] = −〈34〉[23].
• 〈2̂P̂〉[P̂2] = −2 p̂2 · P̂ = 2 p̂2 · ( p̂2 + p3 + p4) = ( p̂2 + p3 + p4)2 − (p3 + p4)2

= P̂2 − 〈34〉[34] = −〈34〉[34],
since the amplitude is evaluated at z such that P̂2 = 0.

Using these expressions in (3.26) gives

A5
[
1−2−3−4+5+] = [25]3〈2̂3〉3

[12][23][34][15]〈34〉3
. (3.27)

Despite the simplifications, there is some unfinished business for us to deal with: (3.27)
depends on the shifted spinors via 〈2̂3〉. This bracket must be evaluated at the residue
value of z = z15 which is such that P̂2

15 = 0:

0 = P̂2
15 = 〈15〉[1̂5] , i.e. 0 = [1̂5] = [15] + z15[25] , i.e. z15 = − [15]

[25]
. (3.28)

Use this and momentum conservation to write

〈2̂3〉 = 〈23〉 − z15〈13〉 = 〈23〉[25] + 〈13〉[15]

[25]
= 〈34〉[45]

[25]
. (3.29)

Inserting this result into (3.27) we arrive at the expected anti-MHV Parke–Taylor
expression

A5
[
1−2−3−4+5+] = [45]4

[12][23][34][45][51]
. (3.30)

As noted initially, the purpose of this example was not to torture you with a difficult
way to compute A5[1−2−3−4+5+]. The purpose was to illustrate the methods needed
for general cases in a simple context. �

You may not be overly impressed with the simplicity of the manipulations needed to reduce
the raw output of BCFW. Admittedly it requires some work. If you are unsatisfied, go ahead
and try the calculations in this section with Feynman diagrams. Good luck.

Now you have seen the basic tricks needed to manipulate the expressions generated by
BCFW. So you should get some exercise.

� Exercise 3.5
Let us revisit scalar-QED from the end of Section 2.4. Use little group scaling and
locality to determine A3(ϕ ϕ∗γ±) and compare with your result from Exercise 2.15.
Then use a [4, 3〉-shift to show that (see Exercise 2.16)

A4
(
ϕ ϕ∗γ+γ−) = g2 〈14〉〈24〉

〈13〉〈23〉 . (3.31)
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[Hint: this is not a color-ordered amplitude. See also Exercise 2.16.]
What is the large-z falloff of this amplitude under a [4, 3〉-shift?3

� Exercise 3.6
Calculate the 4-graviton amplitude M4(1−2−3+4+): first recall that little group scaling
& locality fix the 3-graviton amplitudes as in Exercise 2.34. Then employ the [1, 2〉-shift
BCFW recursion relations (they are valid [18, 20]).

Check the little group scaling and Bose-symmetry of your answer for
M4(1−2−3+4+).
[Hint: your result should match one of the amplitudes in Exercise 2.33.]

Show that M4(1−2−3+4+) obeys the 4-point “KLT relations” [21]

M4(1234) = −s12 A4[1234] A4[1243] , (3.32)

where A4 is your friend the Parke–Taylor amplitude with negative helicity states 1
and 2, and s12 = −(p1 + p2)2 is a Mandelstam variable. When you are done, look up
ref. [22] to see how difficult it is to do this calculation with Feynman diagrams.

Let us now take a look at some interesting aspects of BCFW for the split-helicity NMHV
amplitude A6[1−2−3−4+5+6+]. Let us first look at the recursion relations following from
the [1, 2〉-shift that we are now quite familiar with. There are two non-vanishing diagrams:

A6
[
1−2−3−4+5+6+] =

+−

P̂16

2̂–

3–
1̂ –

5+6+
4+

diagram A

+
+−

P̂156

2̂–

3–

1̂ –

5+
6+

4+
diagram B

. (3.33)

� Exercise 3.7
Show that the 23-channel diagram does not contribute in (3.33).

The first thing we want to discuss about the 6-gluon amplitude is the 3-particle poles in the
expression (3.33). Diagram B involves a propagator 1/P2

156, so there is a 3-particle pole at
P2

156 = 0. By inspection of the ordering of the external states in A6[1−2−3−4+5+6+] there
should be no distinction between the (− + +) 3-particle channels 561 and 345, so we would
expect the amplitude to have a pole also at P2

345 = P2
126 = 0. But the [1, 2〉-shift recursion

relation (3.33) does not involve any 126-channel diagram. How can it then possibly encode
the correct amplitude? The answer is that it does and that the P2

345 = P2
126 = 0 pole is

actually hidden in the denominator factor 〈2̂P̂16〉 of the righthand subamplitude of diagram
A in (3.33). Let us show how.

As in the 5-point example (3.26), we multiply the numerator and denominator both by
three powers of [P̂16 3]. Then write

〈2̂P̂16〉[P̂16 3] = 〈21〉[1̂3] + 〈2̂6〉[63] . (3.34)

3 Of course, we cannot use the BCFW result for the amplitude to validate the shift, only test self-consistency. The
independent demonstration of the large-z falloff under the shift used here is given in [19].
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It follows from P̂2
16 = 0 that z16 = −[16]/[26], and this is then used to show that 〈2̂6〉 =

(〈16〉[16] + 〈26〉[26])/[26] and [1̂3] = [12][36]/[26]. Plug these values into (3.34) to find

〈2̂P̂16〉[P̂16 3] = − [36]

[26]

(〈12〉[12] + 〈16〉[16] + 〈26〉[26]
) = − [36]

[26]
P2

126 . (3.35)

So there you have it: the 3-particle pole P2
126 is indeed encoded in the BCFW result (3.33).

The second thing we want to show you is the actual representation for the 6-gluon NMHV
tree amplitude, as it follows from (3.33):

A6
[
1−2−3−4+5+6+] = 〈3|1 + 2|6]3

P2
126[21][16]〈34〉〈45〉〈5|1 + 6|2]

+ 〈1|5 + 6|4]3

P2
156[23][34]〈56〉〈61〉〈5|1 + 6|2]

. (3.36)

The expression (3.36) may not look quite as delicious as the Parke–Taylor formula, but
remember that it contains the same information as the sum of 38 Feynman diagrams!

� Exercise 3.8
Check the little group scaling of (3.36). Fill in the details for converting the two
diagrams in (3.33) to find (3.36).

The third thing we would like to emphasize is that using the [1, 2〉-shift recursion relations
is just one way to calculate A6[1−2−3−4+5+6+]. What happens if we use the [2, 1〉-shift?
Well, now there are three non-vanishing diagrams:

A6
[
1−2−3−4+5+6+] =

diagram A′
anti−MHV × NMHV

–+

P̂16

2̂–

3–
1̂ –

5+6+
4+ +

diagram B′
MHV × MHV

+−

P̂156

2̂–

3–

1̂ –

5+

6+

4+

+
diagram C′

MHV × MHV

+−

P̂23

2̂–

3–

1̂ –

5+

6+

4+

.

(3.37)

Special 3-particle kinematics force the diagram A′ to have helicity structure anti-
MHV×NMHV, as opposed to the similar diagram A in (3.33) which has to be MHV×MHV.
It is the first time we see a lower-point NMHV amplitude show up in the recursion relations.
This is quite generic: the BCFW relations are recursive both in particle number n and in
NK MHV level K .

The two BCFW representations (3.33) and (3.37) look quite different. In order for both
to describe the same amplitude, there has to be a certain identity that ensures that diagrams
A+B = A′ + B′+ C′. To show that this identity holds requires a nauseating trip through
Schouten identities and momentum conservation relations in order to manipulate the angle
and square brackets into the right form: numerical checks can save you a lot of energy when
dealing with amplitudes with more than five external lines. It turns out that the identities
that guarantee the equivalence of BCFW expressions such as A+B and A′ +B′+C′ actually
originate from powerful residue theorems [23] related to quite different formulations of the
amplitudes. This has to do with the description of amplitudes in the Grassmannian – we get
to that in Chapters 9 and 10, but wanted to give you a hint of this interesting point here.

https://doi.org/10.1017/CBO9781107706620.004 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9781107706620.004


3.2 BCFW recursion relations 61

� Exercise 3.9
Show that the BCFW recursion relations based on the [2, 3〉-shift give the following
representation of the 6-point “alternating helicity” gluon amplitude:

A6
[
1+2−3+4−5+6−] = {M2} + {M4} + {M6} , (3.38)

where

{Mi } = 〈i, i +2〉4[i +3, i −1]4

P̃2
i 〈i |P̃i |i +3]〈i +2|P̃i |i −1]〈i, i +1〉〈i +1, i +2〉[i +3, i −2][i −2, i −1]

,

(3.39)

and P̃i = Pi,i+1,i+2. [Hint: {M4} is the value of the 12-channel diagram.]
In Chapter 9 we discover that each {Mi } can be understood as the residue associated

with a very interesting contour integral (different from the one used in the BCFW
argument).

The fourth thing worth discussing further is the poles of scattering amplitudes. Color-
ordered tree amplitudes can have physical poles only when the sum of momenta of adjacent
external lines go on-shell. We touched on this point already in Section 2.8. There we also
noted that MHV gluon amplitudes do not have multi-particle poles, only 2-particle poles.
Now you have seen that 6-gluon NMHV amplitudes have both 2- and 3-particle poles. But
as you stare intensely at (3.36), you will also note that there is a strange denominator-factor
〈5|1 + 6|2] in the result from each BCFW diagram. This does not correspond to a physical
pole of the scattering amplitude: it is a spurious pole. The residue of this unphysical pole
better be zero – and it is: the spurious pole cancels in the sum of the two BCFW diagrams
in (3.36). It is typical that BCFW packs the information of the amplitudes into compact
expressions, but the cost is the appearance of spurious poles; this means that in the BCFW
representation the locality of the underlying field theory is not manifest. Elimination of
spurious poles in the representations of amplitudes leads to interesting results [24] that we
discuss in Chapter 10.

Finally, for completeness, note that the color-ordered NMHV amplitudes
A6[1−2−3+4−5+6+] and A6[1−2+3−4+5−6+] are inequivalent to the split-helicity am-
plitude A6[1−2−3−4+5+6+]. More about this in Chapter 4.

Other comments:
1) In our study of the recursion relations, we kept insisting on “generic” momenta. However,
special limits of the external momenta place useful and interesting constraints on the
amplitudes: the behavior of amplitudes under collinear limits and soft limits is described
in Section 2.8.

2) In some cases, the shifted amplitudes have “better than needed” large-z behavior.
For example, this is the case for a BCFW shift of two non-adjacent same-helicity lines
in the color-ordered Yang–Mills amplitudes: Ân(z) → 1/z2 for large z. The vanishing
of the amplitude at large z implies the validity of a recursion relation for An . Let us
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briefly outline the reason. Start with
∮
C

Ân (z)
z = 0 with C a contour that surrounds all the

simple poles. The unshifted amplitude An , which is the residue of the z = 0 pole, is
therefore (minus) the sum of all the other residues. We write An = ∑

I dI , where dI is
the factorization diagram (3.8) associated with the residue at z = zI . This summarizes the
derivation of the recursion relations from Section 3.1. Now, an extra power in the large-z
falloff, Ân(z) ∼ 1/z2, means that there is also a bonus relation from

∮
C Ân(z) = 0 (with

C as before). It gives
∑

I dI z I = 0, because there is no residue at z = 0. Bonus relations
have practical applications, for example they have been used to demonstrate equivalence of
different expressions for graviton amplitudes [25].

3.3 When does it work?

In Section 2.6 we learned that 3-point amplitudes for massless particles are uniquely
determined by little group scaling, locality, and dimensional analysis. As we have just seen,
with the on-shell BCFW recursion relations, we can construct all higher-point gluon tree
amplitudes from the input of just the 3-point gluon amplitudes. That is a lot of information
obtained from very little input! It prompts suspicion: when can we expect on-shell recursion
to work? We will look at some examples now.

Yang–Mills theory and gluon scattering. The Yang–Mills Lagrangian (2.66) has two
types of interaction terms, the cubic A2∂ A and the quartic A4. Given the former, the latter
is needed for gauge invariance, and the quartic must be included along with the cubic
as interaction vertices in the Feynman rules. However, existence of valid BCFW recursion
relations indicates that the cubic term A2∂ A fully captures the information needed for all on-
shell gluon amplitudes, at least at tree-level, with no need for A4. The key distinction is that
the 3-vertex (and hence the Feynman rule cubic vertex) is an off-shell gauge non-invariant
object, while the 3-point on-shell amplitude is gauge invariant. Since A4 is determined from
A2∂ A by the requirement of off-shell gauge invariance of the Lagrangian, it contains no
new on-shell information. In a sense, that is why the recursion relations for on-shell gluon
amplitudes even have a chance to work with input only from the on-shell 3-point amplitudes.

We can rephrase the information contents of A2∂ A in a more physical way. The actual
input is then this: a 4d local theory with massless spin-1 particles (and no other dynam-
ical states) and a dimensionless coupling constant. With valid recursion relations, this
information is enough to fix the entire gluon tree-level scattering matrix!

Scalar-QED. As a second example, consider scalar-QED. The interaction between the
photons and the scalar particles created/annihilated by a complex scalar field ϕ is encoded
by the covariant derivatives Dμ = ∂μ − ieAμ in

L ⊃ −|Dϕ|2 = |∂ϕ|2 + ieAμ
[
(∂μϕ

∗)ϕ − ϕ∗∂μϕ
] − e2 Aμ Aμϕ

∗ϕ . (3.40)

In terms of Feynman diagrams, the tree amplitude A4(ϕ ϕ∗γ γ ) is constructed from the
sum of two pole diagrams and the contact term from the quartic interaction (Exercise 2.17).
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We have seen in Exercise 3.5 that this 4-point amplitude is constructible via BCFW. So it is
clear that only the information in the 3-point vertices is needed, and the role of Aμ Aμϕ∗ϕ
is just to ensure off-shell gauge invariance of the Lagrangian. Thus this case is just like the
Yang–Mills example above.

Thus emboldened, let us try to compute the 4-scalar tree amplitude A4(ϕ ϕ∗ϕ ϕ∗) using
BCFW recursion (3.10). Using a [1, 3〉-shift, there are two diagrams and their sum simplifies
to

ABCFW
4 (ϕ ϕ∗ϕ ϕ∗) = ẽ2 〈13〉2〈24〉2

〈12〉〈23〉〈34〉〈41〉 . (3.41)

If, however, we calculate this amplitude using Feynman rules from the interaction terms in
(3.40), we get

AFeynman
4 (ϕ ϕ∗ϕ ϕ∗) = ẽ2

(
1 + 〈13〉2〈24〉2

〈12〉〈23〉〈34〉〈41〉
)
. (3.42)

Ugh! So BCFW did not compute the amplitude we expected. So what did it compute?
Well, let us think about the input that BCFW knows about: 4d local theory with massless
spin-1 particles and charged massless spin-0 particles (and no other dynamical states) and
a dimensionless coupling constant. Note that included in this input is the possibility of
a 4-scalar interaction term λ|ϕ|4. So more generally, we should consider the scalar-QED
action from (2.64):

L = −1

4
Fμν Fμν − |Dϕ|2 − 1

4
λ|ϕ|4

= −1

4
Fμν Fμν − |∂ϕ|2 + ieAμ

[
(∂μϕ

∗)ϕ − ϕ∗∂μϕ
] − e2 Aμ Aμϕ

∗ϕ − 1

4
λ|ϕ|4 . (3.43)

In Exercise 2.19 you were asked to calculate A4
(
ϕ ϕ∗ϕ ϕ∗) in this model. The answer was

given in (2.65): it is

A4
(
ϕ ϕ∗ϕ ϕ∗) = − λ + ẽ2

(
1 + 〈13〉2〈24〉2

〈12〉〈23〉〈34〉〈41〉
)
. (3.44)

So it is clear now that we have a family of scalar-QED models, labeled by λ, and that
our BCFW calculation produced the very special case of λ = ẽ2. How can we understand
this? Validity of the recursion relations requires the absence of the boundary term Bn (see
Section 3.1). For the general family of scalar-QED models, there is a boundary term under
the [1, 3〉-shift, and its value is −λ + ẽ2 (as can be seen from (3.44) by direct computation).
The special choice λ = ẽ2 eliminates the boundary term, and that is then what BCFW
without a boundary term computes.

The lesson is that for general λ, there is no way the 3-point interactions can know the
contents of λ|ϕ|4: it provides independent gauge-invariant information. That information
needs to be supplied in order for recursion to work, so in this case one can at best expect
recursion to work beyond 4-point amplitudes. The exception is of course if some symmetry,
or other principle, determines the information in λ|ϕ|4 in terms of the 3-field terms. This
is what we find for λ = ẽ2. Actually, the expression (3.41) is the correct result for certain
4-scalar amplitudes in N = 2 and N = 4 super Yang–Mills theory (see Chapter 4), and in
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those cases the coupling of the 4-scalar contact term is fixed by the Yang–Mills coupling
by supersymmetry.

Scalar theory λφ4. The previous example makes us wary of λφ4 interaction in the context
of recursion relations – and rightly so. Suppose we consider λφ4 theory with no other
interactions. It is clear that one piece of input must be given to start any recursive approach,
namely in this case the 4-scalar amplitude A4 = λ. In principle, one might expect on-shell
recursion to determine all tree-level An amplitudes with n > 4 from A4 = λ – what else
could interfere? After all, this is the only interaction in the Feynman diagrams. However,
given that the 6-scalar amplitude is A6 = λ2( 1

s123
+ . . . ), it is clear that any BCFW shift

gives O(z0)-behavior for large z and hence there are no BCFW recursion relations without
boundary term for A6 in λφ4 theory. Inspection of the Feynman diagrams reveals that the
O(z0)-contributions are exactly the diagrams in which the two shifted lines belong to the
same vertex. The sum of such diagrams equals the boundary term Bn from (3.4). Thus,
in this case of λφ4 theory one can reconstruct Bn recursively.4 Hence A4 does suffice to
completely determine all tree amplitudes An for n > 4 in λφ4 theory; but it is (in more than
one sense) a rather trivial example.

N = 4 super Yang–Mills theory. This is the favorite theory of many amplitugicians. We
will review the theory in more detail in Section 4.4, for now we just comment on a few
relevant aspects. The spectrum consists of 16 massless states: gluons g± of helicity ±1,
four gluinos λa and λa of helicity ±1/2, and six scalars Sab. The indices a, b = 1, 2, 3, 4
are labels for the global SU (4) symmetry. The Lagrangian contains standard gluon self-
interactions, with standard couplings to the gluinos and the scalars. All fields transform
in the adjoint of the SU (N ) gauge group, so we consider color-ordered tree amplitudes
defined in the same way as the color-ordered gluon amplitudes. The Lagrangian includes
a scalar 4-point interaction term of a schematic form [S, S]2. It contains, for example,
the interaction S12S23S34S41. The result for the corresponding color-ordered amplitude is
(suppressing the gauge coupling constant):

A4
[
S12S23S34S41

] = 1. (3.45)

Since this amplitude has no poles, it cannot be obtained via direct factorization. Actually, the
amplitude (3.45) and its cousin 4-scalar amplitudes with equivalent SU (4) index structures
are the only tree amplitudes of N = 4 SYM that cannot be obtained from the BCFW
recursion formula (3.10); that may seem surprising, but it is true [27].

When supersymmetry is incorporated into the BCFW recursion relations, all tree ampli-
tudes of N = 4 SYM can be determined by the 3-point gluon vertex alone. The so-called
super-BCFW shift mixes the external states in such a way that even the 4-scalar ampli-
tude (3.45) can be constructed recursively. We will introduce the super-BCFW shift in
Section 4.5.

4 See [16]. Or avoid the term at infinity by using an all-line shift [26], to be defined in Section 3.4.
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Gravity. We have already encountered the 4-point MHV amplitude M4(1−2−3+4+): you
“discovered” it from little group scaling in Exercise 2.33 and constructed it with BCFW
in Exercise 3.6. The validity of the BCFW recursion relations for all tree-level graviton
amplitudes [18, 20] means that the entire on-shell tree-level S-matrix for gravity is deter-
mined completely by the 3-vertex interaction of three gravitons. In contrast, the expansion
of the Einstein–Hilbert action 1

2κ2

∫
d4x

√−gR around the flatspace Minkowski metric
gμν = ημν + κ hμν contains infinitely many interaction terms. It is remarkable that all these
terms are totally irrelevant from the point of view of the on-shell tree-level S-matrix;
their sole purpose is to ensure diffeomorphism invariance of the off-shell Lagrangian. For
on-shell (tree) amplitudes, we do not need them. Much more about gravity amplitudes in
Chapter 12.

Summary. We have discussed when to expect to have recursion relations for tree-level
amplitudes. The main lesson is that we do not get something for nothing: input must be
given and we can only expect to recurse that input with standard BCFW when all other
information in the theory is fixed by our input via gauge invariance. If another principle –
such as supersymmetry – is needed to fix the interactions, then that principle should
be incorporated into the recursion relations for a successful recursive approach. Further
discussion of these ideas can be found in [26], mostly in the context of another recursive
approach known as CSW, which we will discuss briefly next.

3.4 MHV vertex expansion (CSW)

We introduced recursion relations in Section 3.1 in the context of general shifts (3.1)
satisfying the set of conditions (i)–(iii). Then we specialized to the BCFW shifts in
Section 3.2. Now we would like to show you another kind of recursive structure.

Consider a shift that is implemented via a “holomorphic” square-spinor shift:

|î] = |i] + z ci |X ] and |î〉 = |i〉 . (3.46)

Here |X ] is an arbitrary reference spinor and the coefficients ci satisfy
∑n

i=1 ci |i〉 = 0.

� Exercise 3.10
Show that the square-spinor shift (3.46) gives shift-vectors ri that fulfill requirements
(i)–(iii) in Section 3.1.

The choice c1 = 〈23〉, c2 = 〈31〉, c3 = 〈12〉, and ci = 0 for i = 4, . . . , n implies that the
shifted momenta satisfy momentum conservation. This particular realization of the square-
spinor shift is called the Risager shift [28].

We consider here a situation where all ci �= 0 so that all momentum lines are shifted via
(3.46) – this is an all-line shift. It can be shown [29] that NK MHV gluon tree amplitudes
fall off as 1/zK for large z under all-line shift. So this means that all gluon tree-level
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amplitudes can be constructed with the all-line shift recursion relations; except the MHV
amplitudes (K = 0). It turns out that in this formulation of recursion relations, the tower of
MHV amplitudes constitutes the basic building blocks for the NK MHV amplitudes. Let us
see how this works for NMHV. The recursion relations give

ANMHV
n =

∑
diagrams I

^
^

^

^
^

^

L R
P̂I

. (3.47)

If you consider the possible assignments of helicity labels on the internal line, you will
see that there are two options: either the diagram is anti-MHV3×NMHV or MHV×MHV.
The former option vanishes by special kinematics of the 3-point anti-MHV vertex, just as
in the case of the first diagram in (3.15). So all subamplitudes in (3.47) are MHV. Let us
write down the example of the split-helicity NMHV 6-gluon amplitude:

An

[
1−2−3−4+5+6+] =

^ ^1 2
3

56

− −

+
+

−

+− 4+
^

^

^

^

+
+−

^ ^1 2

3

5

6

− −

+

+ −

4+

^ ^

^^

+ +−

^ ^1 2

3
5

6

−
−

+

+

−
4+

^ ^

^

^

+
−+

^

^

1

2 3

5

6
−

−

+

+

−

4+

^

^
^

^ +
−+

^

^

1

2 3

56

−

−

+
+

−

4+

^

^

^

^

+
−+

2̂ 3

5

6

−

+

+

−

4+

^

^

^^

1̂−

(3.48)

All six diagrams are non-vanishing and this may look a little daunting, especially compared
with the BCFW version where there were just two diagrams in the simplest version (3.36).
However, the diagrams in (3.48) are easier to evaluate than the BCFW diagrams: the MHV
amplitudes depend only on angle spinors, so the only way they know about the square-spinor
shift is through the internal line angle spinors |P̂I 〉, for example

+−

2̂–

3̂ –

4̂–

6̂+

5̂+

1̂ –

= 〈1P̂I 〉4

〈1P̂I 〉〈P̂I 5〉〈56〉〈61〉
1

P2
156

〈23〉4

〈23〉〈34〉〈4P̂I 〉〈P̂I 2〉 . (3.49)

We can write

|P̂I 〉 [P̂I X ]

[P̂I X ]
= P̂I |X ]

1

[P̂I X ]
= PI |X ]

1

[P̂I X ]
. (3.50)

In the last step we can drop the hat, because the shift of (P̂I )ȧb is proportional to the
reference spinor [X |b of the shift (3.46). Note that the diagrams are necessarily invariant
under little group scaling associated with the internal line. Therefore the factors 1

[P̂I X ]
in

(3.50) cancel out of each diagram and we can use the prescription

|P̂I 〉 → PI |X ] . (3.51)
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This gives

+−

2̂–

3̂ –

4̂–

1̂ –

6̂+

5̂+
= 〈1|P156|X ]4

〈1|P156|X ]〈5|P156|X ]〈56〉〈61〉
1

P2
156

〈23〉4

〈23〉〈34〉〈4|P156|X ]〈2|P156|X ]

(3.52)

and similarly for the other “MHV vertex diagrams” in (3.48). Note that we can drop the
indication ˆ of the shift on the external lines in the MHV vertex diagrams since the square-
spinor shift does not affect the MHV vertices and all that is needed is the prescription (3.51)
for the internal lines.

In general, each diagram depends explicitly on the reference spinor |X ], but of course
the full tree amplitude cannot depend on an arbitrary spinor: the Cauchy theorem argument
of Section 3.1 guarantees that the sum of all the diagrams will be independent of |X ] and
reproduce the correct tree amplitude. Numerically, it is not hard to verify independence
of |X ] and that the expressions (3.48) and (3.36) indeed produce the same scattering
amplitude.

The expansion of the amplitude in terms of MHV vertex diagrams generalizes beyond the
NMHV level. In general, the NK MHV tree amplitude is written as a sum of all tree-level
diagrams with precisely K +1 MHV vertices evaluated via the replacement rule (3.51).
This construction of the amplitude is called the MHV vertex expansion: it can be viewed as
the closed-form solution to the all-line shift recursion relations. However, it was discovered
by Cachazo, Svrcek, and Witten in 2004 [15] before the introduction of recursion relations
from complex shifts. The method is therefore also known as the CSW expansion and the
rule (3.51) is called the CSW prescription. The first recursive derivation of the MHV vertex
expansion was given by Risager [28] using the 3-line Risager shift mentioned above applied
to the three negative helicity line of NMHV amplitudes. The all-line shift formulation was
first presented in [29].

� Exercise 3.11
Construct A5[1−2−3−4+5+] from the CSW expansion. Make a choice for the reference
spinor |X ] to simplify the calculation and show that the result agrees with the anti-MHV
Parke–Taylor formula (2.115).

The MHV vertex expansion was the first construction of gluon amplitudes from on-shell
building blocks. The method is valid also in other cases, for example in super Yang–
Mills theory [27, 29] or Higgs amplitudes with gluons and partons [30, 31]. There are
also applications of the MHV vertex expansion at loop-level – for a review see [32] and
references therein.

The MHV vertex expansion can also be derived directly from a Lagrangian [33]: a field
redefinition and suitable light-cone gauge choice brings it to a form with an interaction
term for each MHV amplitude. The NK MHV amplitudes are then generated from the
MHV vertex Lagrangian by gluing together the MHV vertices. The reference spinor |X ]
arises from the light-cone gauge choice. There is also a twistor-action formulation of the
MHV vertex expansion [34].
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In the case of the BCFW shift, we have applied it to gluon as well as graviton amplitudes.
A version of the MHV vertex expansion was proposed for gravity in [35] based on the
Risager shift. However, the method fails for NMHV amplitudes for n ≥ 12: under the
Risager shift, Ân(z) ∼ z12−n for large-z, so for n ≥ 12 there is a boundary term obstructing
the recursive formula [36]. An analysis of validity of all-line shift recursion relations in
general 4d QFTs can be found in [26].

At this stage, you may wonder why tree-level gluon scattering amplitudes have so many
different representations: one from the MHV vertex expansion and other forms arising from
BCFW applied to various pairs of external momenta. The CSW and BCFW representations
reflect different aspects of the amplitudes, but they turn out to be closely related. We need
more tools to learn more about this. So read on.
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