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SERRE CLASSES FOR TOPOSES

M. ADELMAN AND P.T. JOHNSTONE

We prove first that a logical fraction functor from a topos to a

topos must be a filter-power functor, then we prove that such

functors can have adjoints only when the filter is principal.

Finally we refine this so that we are able to prove that the

filter-power of a Grothendieck topos is Grothendieck if and only

if the filter is principal.

Introduction

If C is a category and Z a class of morphisms of C , it is well

known [4] that we may construct a category of fractions C [Z~ ] and a

functor Py : C •* C[Z J which is universal amongst functors T : C •+ V

sending all morphisms in Z to isomorphisms. If C has some categorical

structure, it is of interest to characterize those classes £ for which

C \J, J inherits the same kind of structure and Py preserves it: a well-

known example is the structure of finite limits, for which the correspond-

ing condition on £ is that it should admit a calculus of right fractions

14, I 3].

Again, if A is an abelian category, the fractions maps

Pj. : A ->• A[E~ ] for which A [z~ ] is abelian and P_ is exact correspond

to Serre classes in A [J], [5]; recall that a Serre class is a class C

of objects in A such that if 0 •* A' -*• A •*• A" •* 0 is an exact sequence

in A , then A € C if and only if both A' and A" are in C . The
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corresponding £ consists of all those f : A -*• B such that both Ker /

and Coker / are in C ; we recover C from E as the class of all

objects A such that Py(A) = 0 .

In this paper we investigate the analogous problem for (elementary)

toposes. We shall show that, for a topos E , the fractions maps

P • E ->• E[l ] for which E[E~ ] is a topos and Py is logical

correspond to filters of subobjects of 1 in E ; that is, they are the

filterpowers of E as defined in [7, 9.U3] or [I].

In the abelian case, one is particularly interested in the Serre

classes which give rise to localizations of A , that is, fractions maps

p : A -*- A[£~ ] having (full and faithful) right adjoints. In the topos

case, we shall see that the "localizing" filters are just the principal

ones, and that the corresponding localizations of E are the categories

E/U , where U is a subobject of 1 . (indeed, for a cocomplete topos E

we shall prove the stronger result that if a filterpower E/F is

cocomplete then already F must be principal.)

However, for toposes we have a more general (and more interesting)

notion of localization than the above, namely the notion of sheaf subtopos.

Because sheaf reflectors are merely exact and not normally logical, this

suggests that we should weaken the conditions on our original problem by

requiring only that the functor P_ be exact (while still, of course,

demanding that E [E~ ] be a topos) . Unfortunately we have been unable to

characterize the classes E which give rise to such fractions maps, though

we shall make a few remarks about the problem at the end of Section 2.

A few words are in order about our conventions regarding set theory.

Although our main Theorems 2.1 and 2.3 are completely elementary, elsewhere

we shall need to restrict ourselves to toposes which are locally small;

that is, have hom-functors taking values in some fixed topos Set of

constant sets. As usual, we say a topos E is defined over Set if there

is a geometric morphism E -*• Set ; it is well known that this happens if

and only if E is locally small and has small copowers [7, lt.Ul]. By a

subobject of X in a topos E we mean an isomorphism class of mono-

morphisms into X , though we shall commonly fail to distinguish
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notationally between a subobject of X and a monomorphism which represents

it. We write Sub(#) for the lattice of subobjects of X ; note that

this is small if E is locally small.

1. The axis of a morphism

THEOREM 1.1. Let E be a topos and let f : X ->• Y be a morphism in

E . Then the class

S(f) = {[/( Sub(l) \u*f: Ux-X+UxYisan isomorphism}

has a greatest member.

Proof. Suppose first that f is a monomorphism. Since the square

is a pullback, it is clear that U € S(f) if and only if U x Y < / in

Sub(y) , or equivalently U 5 Vy(/) in Sub(l) . So Vy(f) is the

required greatest element of S(f) . In the general case, form the diagram

x
f

9

where (a, b) is the kernel-pair of f , (q, g) its image factorization

and h the factorization of the diagonal X -> X x X through K . Since

q is the coequalizer of (a, b) and U x (-) is an exact functor

E -*• E/U , it is clear that we have

U x / iso <=» U x g and U x q ±so <=> y x g and U x h iso .

But g and h are both mono , so by the first part the greatest member

of 5(/) is Vy(?) n VK(h) . D

DEFINITION 1.2. Let / be a morphism in a topos. We call the

greatest member of S(f) the axis of f and denote it by A(f) .

Since the construction of A{f) involves only finite limits, image

factorizations and universal quantification, it is clear that we have
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PROPOSITION 1.3. Let F -. E + E' be a functor between toposes

preserving finite limits, images and universal quantification (for example

a logical functor). Then for any morphism f of E , we have

F{A{f)) = A[F(f)) . D

DEFINITION 1.4. Let F : E •* E' be a left exact functor between

finitely complete categories. We define the kernel of F , Ker F , to be

the class of all subobjects U of 1 in E such that

PROPOSITION 1.5. Let F : E + E' be a functor between toposes

satisfying the hypotheses of Proposition 1.3. Then

(i) F(f) is an isomorphism if and only if A(f) € Ker F ,

(ii) F is conservative (that is reflects isomorphisms) if and

only if Ker F = {l} .

Proof. (i) Clearly F(f) is an isomorphism if and only if

A[F(f)J = 1 , so this is immediate from Proposition 1.3 and the definition

of Ker F .

(ii) follows immediately from (i). •

2. Filters as Serre classes

Let E be a topos. By a filter on E we mean a filter of subobjects

of 1 , that is a collection F of subobjects of 1 such that 1 € F and

(£/ n V) € F if and only if both V and V are in F . It is clear that

if F is any left exact functor defined on E , Ker F is a filter on

E .

THEOREM 2.1. Let E be a topos, and I a saturated family of

morphisms of E . Then E\jT ] is a topos with P_ logical if and only

if there is a filter F on E such that I = if \ A{f) € F} .

Proof. If £ is of the specified form, then an argument due to

Lawvere and Tierney (see [7, 9-1*1*]) shows that E\j.~ J is a topos and P_

is logical. Conversely, suppose P- is logical. Since Z is saturated,

we have / € E if and only if Pj-(f) is an isomorphism, but, by

Proposition 1.5 (i) , this happens if and only if A(f) € Ker Py . So if we
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define F = Ker Py we have the required description of E . D

When E is induced by a filter F as above, we shall write E/F in

place of Epr1] , and call it the filterpOwer of E relative to F . We

shall find it convenient to use the following explicit description of

E/F , given in [/]: its objects are those of E , and morphisms are given

*y

E/FU, Y) = colim E(IMX, Y) .

The conditions which we imposed on the functor F in Proposition 1.5

are weaker than requiring it to be logical; so we obtain the following

immediate consequence of the proof of Theorem 2.1.

COROLLARY 2.2. Let Py : E ->• EfE"1] be an exact fractions map

between toposes. Then P_ is logical provided it preserves universal

quantification. •

In the case when Py has a right adjoint (so that it is the inverse

image of a geometric inclusion E[E~ ] -*• E J , this result is already known

(cf. [7, 3.55]).

From the description of E/F given above, it is clear that there is

no "saturation problem" for filters; that is, F consists precisely of

those subobjects of 1 in E whose image in E/F is isomorphic to 1 .

For if 1 = Py(U) in E/F , this isomorphism must be represented by a map

V ->• U in E with V € F ; then V cU in Sub(l) , and so U € F .

If F is a principal filter

(U) = {V (. Sub(l) I U 5 V)

for some U € Sub(l) , then E/F is equivalent to E/U ; more precisely,

the unique factorization through E -*• E/F of the functor

U x (-) : E •* E/U is an equivalence. In this case, therefore, the

canonical functor P : E -»• E/F has both left and right adjoints. Our next

result says that either of these conditions is sufficient to characterize

the filterpowers arising from principal filters.

THEOREM 2.3. Let ¥ be a filter on a topos E . The following
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conditions are equivalent:

(i) ¥ is principal;

(ii) P : E •* E/F is equivalent to U x (-) : E -*• E/U for some

U € Sub(l) ;

(iii) P : E -»• E/F has a right adjoint;

(iv) P : E -»• E/F has a left adjoint.

Proof. The implication (i) implies (ii) follows from the remarks

above; (H) implies (iii) follows from cartesian closedness of E [2,

1.31*]; and (iii) implies (iv) from the fact that P is logical [6]. So

it suffices to show that (iv) implies (i). Let L be left adjoint to P ,

and consider the image factorization

LP{1) -w U >—* 1

of the counit map e : LP(l) •*• 1 . Since P(e) is (split) epi , we have

P(U) S I and hence U € F . Now for any V € Sub(l) we have

E(LP(1), V) as E/F(p(l), P(V))

and hence

U c V *=»• there exists a map LP(l) -*• V in E

<=* there exists a map 1 = P(l) •* P( ̂ ) in E/F

«=• P( F) SS 1

«=* v e F .

So F is the principal filter generated by W . •

Theorems 2.1 and 2.3 tell us that the "Serre classes" which correspond

to fractions maps in the category of toposes and logical functors are just

the filters of subobjects of 1 , and that the "localizing Serre classes"

are principal filters. Because of this latter result, the theory of

localizations in this category will not be as rich as it is for abelian

categories and exact functors. It would therefore be of interest to

examine these questions in the larger category of toposes and exact

functors; for then the localizing Serre classes in a topos E would

correspond to reflective subcategories of E with exact reflector, which

by the "little Giraud theorem" [7, 1».15 (i)] correspond to Lawvere-Tierney

topologies in E .
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However, it is less clear how the (non-localizing) Serre classes

should be described in this case. By the argument of the second part of

the proof of Theorem 1.1, the class of all morphisms inverted by an exact

functor F : E •*• E' is determined as soon as one knows that class E of

monomorphisms inverted by F . This class has (at least) the following

properties:

(a) a composite fg of two monomorphisms is in E if and only

if both f and g are in Z ;

(b) pullbacks and pushouts of morphisms in £ are in £ ;

(c) if the pullback of f along some epimorphism is in E ,

then f € E .

If we add the hypothesis that E is representable by a subobject J of £2

(that is that it consists of all monos whose classifying maps factor

through J ), then it follows from [7, 3.18] that E is a localizing Serre

class, and in this case the category of fractions E[£ J is a topos [7,

3.U6L However, for a general E satisfying (a)-(c) above, there seems to

be no reason why E \JT J should be a topos - though we do not know of a

counterexample.

3. Cocompleteness of filterpowers

We begin this section with a result which (for cocomplete toposes)

refines the equivalence between (i) and (iii) of Theorem 2.3. Let K be

an infinite cardinal; we recall that a filter F is said to be K-

oomplete if every subset of F of cardinality K has a lower bound in

F .

THEOREM 3.1. Let E be a topos in which the K-fold copower of 1

exists, F a filter on E . Then F is K-complete if and only if the

canonical functor P : E •* E/F preserves coproducts of cardinality < .

Proof. Suppose F is K-complete, and let [X \ a € A] be a family

of objects of cardinality K having a coproduct J |_ x in E . We shall
a a

show directly that J |_ X is the coproduct of the X in E/F . Let
a a

[fa : Xa -»• I | a € A) be a family of maps in E/F ; we can represent them
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by maps g : U x X -*• Y in E , where U € F for each a . Let U be

a lower bound for the U in F ; then the composites

U x Xa W Ua X *a ̂  y

can be combined to form a map £/ x J_J_ X ^ J_|_ [u*X ) •*• Y in E . But
a a

this represents a map J |_ ̂ a "* % i-n ^/^ » which is clearly a factor-
a

ization of the family (/ ) through the maps P\x ->• ]_|_ AT . The

*• a '

uniqueness of this factorization is proved by a similar argument; so

J |_ Xa is a coproduct in E/F .
a

Conversely, suppose P preserves coproducts of cardinality K , and

let (U | a € A) be a family of elements of F of cardinality K .

Since each U is a subobject of 1 , the coproduct J [_ U exists in
a

E ; moreover, the inclusion J |_ U •* J |_ 1 is sent by P to an

a a

isomorphism in E/F , and so its axis must be in F . But it is easy to

see that the axis of this map must be a lower bound for the family [ll )

in Sub(l) . •

COROLLARY 3.2. Let E be a topos defined over Set , F a filter

on E . Then F is principal if and only if the canonical functor

P : E -*• E/F preserves (small) coproducts.

Proof. One direction follows from Theorem 2.3 (Hi). Conversely,

suppose P preserves coproducts. Applying Theorem 3.1 with K = card F

(which is possible since E is locally small and hence F is small), we

deduce that the family of all elements of F has a lower bound in F ;

that is, F has a least member. D

It is natural to ask whether a filterpower E/F might have infinite

coproducts in some "nonstandard" way; that is without their being

preserved by P : E ->• E/F . We devote the rest of this section to proving

that the answer is no, at least provided we assume the axiom of choice in

Set . First we need a "standard form" for copowers of 1 in E/F .
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LEMMA 3 .3 . Let E be a topos with small eopowers, F a filter on

E and A a small set. Suppose an A-indexed copower of 1 exists in

E/F . Then it may be taken to be (the image under P of) an A-indexed

ooproduot of members of F in E .

Proof. Let X be an A-indexed copower of 1 in E/F . For each

a € A , the octh coproduct inclusion 1 •+ X in E/F may be represented

by a map U -*• X in E , for some U € F . These maps may be combined

into a single map / : J |_ V "*" % i n ^ (we reserve the J [ symbol for

a

coproducts in E J. But since X is a coproduct in E/F of the objects

P[ua) , it follows that P(f) must be split epi in E/F ; that is,

there is a map g : V x x •*• J_|_ U^ (for some V € F ) such that the

a

composite fg represents the identity map X -*• X in E/F [and hence, if

we take V small enough, we actually have fg = v '• V x X •+ X ). Now g

is mono (since TT is), and hence if we pull back the coproduct

decomposition of J |_ U along it we obtain a decomposition
a

V x x S J_|_ Va , for some Va c ^ in Sub(l) . But V x X ̂  X in E/F ;

so it remains to show that the V are all in F .

From the definition of <7 , it is clear that the composite

V*f

represents the same map 1 -»• J \_ U in E/F as the ath coproduct
a

inclusion U -*• J \_ U ; so there is a W in F such that

W >- V
a a

a

commutes. But since V is defined to be the pullback of U along g ,

it follows that W^ c Va and hence V € F . D
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THEOREM 3.4. Let E be a topos defined over Set , and F a filter

on E . Then F is principal if and only if the filterpower E/F is

defined over Set .

Proof. If F is principal, then E/F has small copowers by

Corollary 3.2, and it clearly inherits local smallness from E . So

suppose F is not principal, and assume that an F-indexed copower of 1 ,

say X , exists in E/F . By Lemma 3.3, we may assume X = J [_ a(U) for

some function a : F •*• F . Since F is not principal, we can choose

g : F -+ F such that U n a(f/) <£ &(£/) for all U ; let Y be the

coproduct J [_ S(£/) in E . The coproduct inclusions in Y represent
F

maps 1 ->• Y in E/F , and so induce a map X -*• Y in E/F , which can be

represented by a map f : V *• X •+ Y in E for some V € F . Restricting

this map to the Ifth factor of the coproduct X gives us a map

f-. : V n a(U) -*• Y in E , which represents the same map 1 -*• Y in E/F

as the i/th coproduct inclusion £(£/) •+ J_|_ &(U) = Y . So if we define
U

y(U) = f?[MU)) ,U

then we have y(U) € F , y(^) E B(y) and Y(y) J_L $(£/) = ^ n

Now define maps g , g2 : V x x -*• Y JJ_ y in E by setting # = v /

(where v is the first coproduct inclusion) , and demanding that g^

should agree with V f and v / repsectively when restricted to the

complementary subobjects J |_Y(f) and J |_6(t/) of its domain. Since

U U

g and g~ agree on each Y(^) > it is clear that their composites with

the C/th coproduct inclusion represent the same map 1 -*• Y j_±_ Y in E/F .

So by uniqueness of maps out of coproducts, g and g represent the

same map X •*• Y J_J_ Y in E/F ; hence there must exist W c V in F such

that g and g^ agree (in E! ) when restricted to W x X . But since

g and g^ disagree on every &{U) , it follows that we must have

W n 6(y) S 0 for all U . Now V n a(W) S
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W n a(W) c. y(w) JJ_ (l? n 5(1?)) S y(W) c B(W) ,

contradicting the definition of 3 . Thus if F is non-principal, the

F-indexed copower of 1 cannot exist in E/F . D

It is easy to see that the property of possessing a small set of

generators is inherited by E/F from E ; and so we may if we wish

replace the phrase "defined over Set " by "Grothendieck" in the statement

of Theorem 3-h.

4. The filterpower factorization

Let Log denote the category of locally small toposes and logical

functors between them, and let Heyt denote the category of small Heyting

algebras and Heyting algebra homomorphisms. Then there is a functor

S •. Log •* Heyt

which sends a topos to its lattice of subobjects of 1 , and a logical

functor to its restriction to subobjects of 1 . It follows at once from

Proposition 1.5 (H) that a logical functor F is conservative if and only

if S(F) is a monomorphism; equivalently, if M denotes the class of

monos in Heyt , then S~ (M) is the class of conservative logical

functors.

Now there is a factorization system (M , M) on Heyt , where M is

the class of surjective homomorphisms (that is regular epimorphisms).

Also, the functor 5 has a left adjoint L : Heyt •+ Log . In this

situation, a theorem of Freyd and KeI Iy [3] tells us that S~ (M) is

generated by L(U ) . Unfortunately the functor L is not easy to

describe explicitly; however, the use of filterpowers enables us to give

-1 +
an alternative description of S (M)

We shall call a logical functor F : E ->• E' a filterpower functor if

there is a filter F on E and an isomorphism (under E ) between E'

and E/F . (it would perhaps be more natural to replace "isomorphism" by

"equivalence" in this definition; this change would not introduce any

serious extra difficulties, but it would force us to refer to the

2-categorical structure of Log in the statement of the theorem which

follows, and so for the sake of brevity we shall not make it.)
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THEOREM 4 . 1 . The classes {filterpower functors] and

{conservative functors] fbrm a factorization system on Log . Moreover,

the members of the first class are epimorphisms in Log , and Log is co-

well-powered with respect to them.

Proof. Given any logical functor F : E -»• E' , let F = Ker F . Then

by Proposition 1.5 d) we have a factorization

E - ^ E/F -£+ E'

of F , in which Ker G = P(Ker F) = {l} and so G is conservative. Now

suppose given a commutative diagram

E - >• E'

P U
E/F

where K is conservative. Then for any morphism / in E we have

P(f) iso => GP(f) = XF(/) iso => F(f) iso ,

and so there is a unique L : E/F -»• E' such that LP = F . It is clear

from the universal mapping property of fractions maps that they are epis

in Cat (and hence in Log ), and so we also have KL = G . Finally, the

isomorphism classes of filterpower functors with a fixed domain E are

parametrized toy the filters on E , which in turn are parametrized by a

subset of 2 ' . So Log is co-well-powered. •

By a standard Adjoint-Functor-Theorem argument, we may obtain the

following consequence of Theorem U.I.

COROLLARY 4.2. Let P be a property of toposes which is inherited

by products and reflected by conservative logical functors (for example,

Booleanness). Then the full subcategory of toposes with P is reflective

in Log . •
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