ON HOMOGENEOUS EXPANSIONS OF MIXED NORM SPACE FUNCTIONS IN THE BALL

E. G. KWON

AbSTRaCt. For f analytic in the complex ball having the homogeneous expansion $f(z)=\sum_{k=0}^{\infty} F_{k}(z)$, conditions for f to be of Hardy space H^{p} or of weighted Bergman spaces are expressed in terms of ℓ^{p} properties of the sequence $\left\{\left\|F_{k}\right\|_{p}\right\}$.

1. Introduction. Let $B=B_{n}$ be the open unit ball of \mathbf{C}^{n} and let σ be the rotation invariant probability measure on the boundary S of B. In case $n=1, U$ and T will stand for B and S respectively. For $0<p<\infty, 0<q \leq \infty$, and $\beta>-1$, the spaces H^{p} and $A^{p, q, \beta}$ are defined to consist of those f holomorphic in B respectively for which

$$
\|f\|_{q}=\sup _{0 \leq \rho<1} M_{q}(\rho, f)<\infty
$$

and

$$
\|f\|_{p, q, \beta}=\int_{0}^{1}(1-\rho)^{\beta} M_{q}(\rho, f)^{p} d \rho<\infty
$$

where

$$
M_{q}(\rho, f)=\left[\int_{S}|f(\rho \zeta)|^{q} d \sigma(\zeta)\right]^{1 / q}, \quad q<\infty
$$

and

$$
M_{\infty}(\rho, f)=\sup _{z \in \rho S}|f(z)| .
$$

Our concern in this note is in the growth rates of Taylor coefficients of H^{p} or $A^{p, q, \beta}$ functions defined on B. There are three types of results in general on the growth of the Taylor coefficients of H^{p} functions defined on U : Coefficients results of HardyLittlewood is the first, Hausdorff-Young theorem is the next, and Paley type results on gap series is the last (see [7], [8], [9], and [13]).

Concerning our results, Section 2 deals with Hardy-Littlewood type extensions to B, Section 3 deals with Hausdorff-Young types, and Section 4 deals with Paley types.

This research was partially supported by KOSEF.
Received by the editors September 4, 1991 .
AMS subject classification: Primary: 32A35; secondary: 32A05.
Key words and phrases: homogeneous expansion, Hardy spaces, mixed norm spaces.
(C) Canadian Mathematical Society 1993.
2. Extension of Hardy-Littlewood theorem. If $\alpha=\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}\right), \alpha_{j} \geq 0,1 \leq$ $j \leq n$, is the multi-index then we denote $|\alpha|=\alpha_{1}+\alpha_{2}+\cdots+\alpha_{n}$ and $\alpha!=\alpha_{1}!\alpha_{2}!\cdots \alpha_{n}!$. If f is holomorphic in B then f can be representable by

$$
f(z)=\sum_{k=0}^{\infty} F_{k}(z)
$$

where F_{k} are homogeneous polynomials of degree k. Let I_{m} denote the set $\left\{k: 2^{m-1} \leq\right.$ $\left.k<2^{m}\right\}$ of integers if $m \geq 0$ and $I_{0}=0$. D. Kwak [10] deduced the following, which generalizes a classical one variable result of Hardy-Littlewood [7. Theorem 6.2].

Theorem A [10. Theorem 2.1]. Let $0<p \leq 2, q \geq 0$. Let $f(z)=\sum a_{\alpha} z^{\alpha} \in$ $A^{p, p, q-1}$. Then

$$
\begin{equation*}
\sum(|\alpha|+1)^{(n+q / 2)(p-2)}\left(\frac{\alpha!}{\Gamma(n+|\alpha|+q)}\right)^{p / 2}\left|a_{\alpha}\right|^{p} \leq C| | f \|_{p, p, q-1}^{p} \tag{2.1}
\end{equation*}
$$

Here and throughout, $A^{p, p,-1}=H^{p}$ and C will denote a positive constant independent of particular function f. Note that $q=0$ is the only interesting case of this result, since the case $q>0$ easily obtained by integrating the estimates for $q=0$. We improve this theorem in this section. We abuse obvious notations such as $\frac{1}{q}=0$ if $q=\infty$ etc.

THEOREM 1. Let $0<p<\infty, 1 \leq q \leq 2, \beta>-1$, and $\delta_{2}=\frac{\beta+1}{p}+(n-1)\left(\frac{1}{q}-\frac{1}{2}\right)$. Let $f(z)=\sum a_{\alpha} z^{\alpha} \in A^{p, q, \beta}(B)$. Then

$$
\begin{equation*}
\sum_{m=0}^{\infty}\left[\sum_{|\alpha| \in I_{m}}\left(\frac{\alpha!}{\Gamma(n+|\alpha|)} \frac{\left|a_{\alpha}\right|^{2}}{(|\alpha|+1)^{2 \delta_{2}}}\right)^{q \prime / 2}\right]^{p / q \prime} \leq C\|f\|_{p, q, \beta}^{p} \tag{2.2}
\end{equation*}
$$

with the obvious understanding of (2.2) when $q=1$.
To see that Theorem 1 is an improvement of Theorem A, we need the following imbedding theorem.

Theorem B [6]. Let $0<p<r<\infty, p \leq s<\infty$, and $q \geq 0$. Iff $\in A^{p, p, q-1}$, then

$$
\begin{equation*}
\|f\|_{s, r, s \beta-1} \leq C\|f\|_{p, p, q-1} \tag{2.3}
\end{equation*}
$$

where $\beta=\frac{n+q}{p}-\frac{n}{r}$.
We now prove that Theorem 1 implies Theorem A: Suppose Theorem 1. Let $0<p \leq$ $2, q \geq 0$, and let $f(z)=\sum a_{\alpha} z^{\alpha} \in A^{p, p, q-1}$. Then by (2.2),

$$
\begin{equation*}
\sum_{m=0}^{\infty}\left(\sum_{|\alpha| \in I_{m}} \frac{\alpha!}{\Gamma(n+|\alpha|)} \frac{\left|a_{\alpha}\right|^{2}}{(|\alpha|+1)^{2 \delta_{2}}}\right)^{p / 2}<C\|f\|_{p, 2, \beta}^{p} \tag{2.4}
\end{equation*}
$$

where $\delta_{2}=\frac{\beta+1}{p}$. Set $\beta=p\left(\frac{n+q}{p}-\frac{n}{2}\right)-1$, so that by (2.3),

$$
\begin{equation*}
\|f\|_{p, 2, \beta} \leq C\|f\|_{p, p, q-1} \tag{2.5}
\end{equation*}
$$

Now since

$$
\frac{\Gamma(n+|\alpha|)}{\Gamma(n+|\alpha|+q)} \leq C(|\alpha|+1)^{-q}
$$

by the Stirling's formula, we have

$$
\begin{align*}
\sum_{|\alpha| \in I_{m}}(|\alpha|+1)^{(n+q / 2)(p-2)} & \left(\frac{\alpha!}{\Gamma(n+|\alpha|+q)}\right)^{p / 2}\left|a_{\alpha}\right|^{p} \\
& \leq C \sum_{|\alpha| \in I_{m}}(|\alpha|+1)^{n p-2 n-q}\left(\frac{\alpha!}{\Gamma(n+|\alpha|)}\right)^{p / 2}\left|a_{\alpha}\right|^{p}, \tag{2.6}
\end{align*}
$$

which is, by the Hölder's inequality, dominated by

$$
\begin{equation*}
C\left(\sum_{I_{m}} \frac{\alpha!}{\Gamma(n+|\alpha|)} \frac{\left|a_{\alpha}\right|^{2}}{(|\alpha|+1)^{2 \delta_{2}}}\right)^{p / 2}\left(\sum_{I_{m}} \frac{1}{(|\alpha|+1)^{n}}\right)^{1-p / 2} . \tag{2.7}
\end{equation*}
$$

Since

$$
\begin{equation*}
\sum_{|\alpha| \in I_{m}} \frac{1}{(|\alpha|+1)^{n}} \leq C<\infty, \tag{2.8}
\end{equation*}
$$

summation over m after combining (2.6), (2.7), and (2.8), we obtain

$$
\begin{align*}
\sum_{m}(|\alpha|+1)^{(n+q / 2)(p-2)} & \left(\frac{\alpha!}{\Gamma(n+|\alpha|+q)}\right)^{p / 2}\left|a_{\alpha}\right|^{p} \\
& \leq C \sum_{m=0}^{\infty}\left(\sum_{|\alpha| \in I_{m}} \frac{\alpha!}{\Gamma(n+|\alpha|)} \frac{\left|a_{\alpha}\right|^{2}}{(|\alpha|+1)^{2 \delta_{2}}}\right)^{p / 2} \tag{2.9}
\end{align*}
$$

From (2.4), (2.5), and (2.9), we obtain (2.1).
Theorem 1 is an easy consequence of the following
ThEOREM 2. Let $0<p<\infty, 1 \leq q \leq 2, q \leq r \leq \infty, \beta>-1$, and $\delta=$ $\frac{\beta+1}{p}+(n-1)\left(\frac{1}{q}-\frac{1}{r}\right)$. Let $f(z)=\sum_{k=0}^{\infty} F_{k}(z)$ be the homogeneous polynomial expansion of an f in $A^{p, q, \beta}(B)$. Then

$$
\begin{equation*}
\sum_{m=0}^{\infty}\left(\sum_{k \in I_{m}}\left\|(k+1)^{-\delta} F_{k}\right\|_{r}^{q^{\prime}}\right)^{p / q^{\prime}} \leq C\|f\|_{p, q, \beta}^{p}, \tag{2.10}
\end{equation*}
$$

with the obvious understanding of the left side when $q=1$.
Proof of Theorem 1 using Theorem 2. Suppose

$$
f(z)=\sum_{k=0}^{\infty} F_{k}(z)=\sum a_{\alpha} z^{\alpha} .
$$

Noting that

$$
\left\|F_{k}\right\|_{2}^{2}=\left\|\sum_{|\alpha|=k} a_{\alpha} z^{\alpha}\right\|_{2}^{2}=\sum_{|\alpha|=k}\left|a_{\alpha}\right|^{2}\left\|z^{\alpha}\right\|_{2}^{2}=\Gamma(n) \sum_{|\alpha|=k}\left|a_{\alpha}\right|^{2} \frac{\alpha!}{\Gamma(n+|\alpha|)}
$$

[14. Proposition 1.4.9], and taking $r=2$ in (2.10), we obtain (2.2).
Proof of Theorem 2. Let $f \in A^{p, q, \beta}(B), 1 \leq q \leq 2$. Let $f_{\zeta}(\lambda)=f(\zeta \lambda), \zeta \in S$, $\lambda \in U$. We first prove the case $q=r$. We confine ourselves to the case $q>1$ but the idea for the case $q=1$ is identical except for notations.

It follows from the Hausdorff-Young theorem (see [7. Theorem 6.1], for example) that

$$
\begin{equation*}
\left(\sum_{k=0}^{\infty}\left|F_{k}(\rho \zeta)\right|^{q^{\prime}}\right)^{1 / q^{\prime}} \leq\left(\int_{0}^{2 \pi}\left|f_{\zeta}\left(\rho e^{i \theta}\right)\right|^{q} \frac{d \theta}{2 \pi}\right)^{1 / q}, \quad \zeta \in S \tag{2.11}
\end{equation*}
$$

(note that the dominating constant is 1). Integrating the q-power of (2.11) with respect to $d \sigma(\zeta)$, and then applying the Minkowski's inequality to the resulting left hand side, we obtain

$$
\left[\sum_{k=0}^{\infty} M_{q}\left(\rho, F_{k}\right)^{q^{\prime}}\right]^{1 / q^{\prime}} \leq M_{q}(\rho, f)
$$

Therefore we have

$$
\int_{0}^{1}(1-\rho)^{\beta} M_{q}(\rho, f)^{p} d \rho \geq \int_{0}^{1}(1-\rho)^{\beta}\left[\sum_{k=0}^{\infty} M_{q}\left(\rho, F_{k}\right)^{q^{\prime}}\right]^{p / q^{\prime}} d \rho .
$$

Now, the last quantity is at least

$$
\sum_{m=0}^{\infty} \int_{1-2^{-m}}^{1-2^{-(m+1)}}(1-\rho)^{\beta}\left(\sum_{k \in I_{m}}\left\|F_{k}\right\|_{q}^{\|^{\prime}} \rho^{k q^{\prime}}\right)^{p / q^{\prime}} d \rho
$$

which is, in turn, at least a positive constant times

$$
\sum_{m=0}^{\infty}\left(\sum_{k \in I_{m}}\left\|(k+1)^{(\beta+1) / p} F_{k}\right\|_{q}^{q^{\prime}}\right)^{p / q^{\prime}}
$$

This completes the proof of Theorem 2 when $q=r$. The case $q<r$ is an easy combination of the following lemma with what we have just proven.

LEMMA. Let $0<p \leq r \leq \infty$. Let π be a homogeneous polynomial of degree k. Then there is a constant C depending only on p and n such that

$$
\begin{equation*}
\|\pi\|_{r} \leq C(k+1)^{(n-1)(1 / p-1 / n)}\|\pi\|_{p} \tag{2.12}
\end{equation*}
$$

Proof. See [2] and [5. pp. 8-9] for ideas similar to the following proof. Note first that it suffices to prove (2.12) for $r=\infty$. In fact, if we suppose (2.12) for $r=\infty$ then for $r<\infty$

$$
\begin{aligned}
\|\pi\|_{r} & =\left[\int_{S}|\pi(\zeta)|^{r} d \sigma(\zeta)\right]^{1 / r} \\
& \leq\left[\int_{S}|\pi(\zeta)|^{p} d \sigma(\zeta)\right]^{1 / r}\|\pi\|_{\infty}^{(r-p) / r} \\
& \leq\|\pi\|_{p}^{p / r}\left[C(k+1)^{(n-1) / p}\|\pi\|_{p}\right]^{1-p / r} \\
& =C(k+1)^{(n-1)(1 / p-1 / r)}\|\pi\|_{p} .
\end{aligned}
$$

Now we prove (2.12) for $r=\infty$. We may assume $\|\pi\|_{\infty}=|\pi(1,0, \ldots, 0)|$. If we denote by ν_{n} the normalized Lebesgue measure on B_{n}, then by subharmonicity (see [14. 1.5.4])

$$
\begin{align*}
\int_{S}|\pi(\zeta)|^{p} d \sigma(\zeta) & =\int_{B^{n-1}} d \nu_{n-1}\left(\zeta^{\prime}\right) \int_{T}\left|\pi\left(\zeta^{\prime}, \sqrt{1-\left|\zeta^{\prime}\right|^{2}} \lambda\right)\right|^{p} \frac{|d \lambda|}{2 \pi} \tag{2.13}\\
& \geq \int_{B^{n-1}}\left|\pi\left(\zeta^{\prime}, 0\right)\right|^{p} d \nu_{n-1}\left(\zeta^{\prime}\right)
\end{align*}
$$

If we set $\zeta^{\prime \prime}=\left(\zeta_{2}, \ldots, \zeta_{n-1}\right)$ then by subharmonicity again

$$
\int_{\left|\zeta^{\prime \prime}\right|^{2}<1-\left|\zeta_{1}\right|^{2}}\left|\pi\left(\zeta^{\prime}, 0\right)\right|^{p} d \nu_{n-2}\left(\zeta^{\prime \prime}\right) \geq\left(1-\left|\zeta_{1}\right|^{2}\right)^{n-2}\left|\pi\left(\zeta_{1}, 0, \ldots, 0\right)\right|^{p},
$$

so that the last integral of (2.13) is at least

$$
\begin{aligned}
\int_{\left|\zeta_{1}\right|<1}\left(1-\left|\zeta_{1}\right|^{2}\right)^{n-2}\left|\pi\left(\zeta_{1}, 0, \ldots, 0\right)\right|^{p} d \nu_{1}\left(\zeta_{1}\right) & =\|\pi\|_{\infty}^{p} \int_{0}^{1} 2\left(1-r^{2}\right)^{n-2} r^{k p+1} d r \\
& \geq C(k+1)^{-(n-1)}\|\pi\|_{\infty}^{p}
\end{aligned}
$$

The case $n=1, p \geq 1$ of Theorem 2 already appeared at [11]. We now turn our attention to H^{p} case.

Theorem 3. Let $0<p \leq 2, p<q, 1 \leq q \leq r \leq \infty, \delta=n\left(\frac{1}{p}-\frac{1}{r}\right)-\left(\frac{1}{q}-\frac{1}{r}\right)$ and let $\delta_{2}=n\left(\frac{1}{p}-\frac{1}{2}\right)-\left(\frac{1}{q}-\frac{1}{2}\right)$. Then there is a C such that

$$
\begin{equation*}
\sum_{m=0}^{\infty}\left(\sum_{k \in I_{m}}\left\|(k+1)^{-\delta} F_{k}\right\|_{r}^{q \prime}\right)^{p / q \prime} \leq C\|f\|_{p}^{p} \tag{2.14}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{m=0}^{\infty}\left[\sum_{k \in I_{m}}\left(\frac{\alpha!}{\Gamma(n+|\alpha|)} \frac{\left|a_{\alpha}\right|^{2}}{(|\alpha|+1)^{2 \delta_{2}}}\right)^{q 1 / 2}\right]^{p / q 1} \leq C\|f\|_{p}^{p} \tag{2.15}
\end{equation*}
$$

for all $f(z)=\sum_{k=0}^{\infty} F_{k}(z)=\sum a^{\alpha} z^{\alpha} \in H^{p}$, with the obvious understanding of (2.14) and (2.15) when $q=1$.

Proof. By an application of Hölder's inequality (fixing p and r) to the quantity on the left hand side of (2.14), we can see we may assume that $q \leq 2$ in proving (2.14). By Theorem B with $\beta=n\left(\frac{1}{p}-\frac{1}{q}\right)$, we have

$$
\begin{equation*}
\|f\|_{p, q, p \beta-1} \leq C\|f\|_{p} . \tag{2.16}
\end{equation*}
$$

By Theorem 2,

$$
\begin{equation*}
\sum_{m=0}^{\infty}\left(\sum_{k \in I_{m}}\left\|(k+1)^{-\delta} F_{k}\right\|_{r}^{q \prime}\right)^{p / q \prime} \leq C\|f\|_{p, q, p \beta-1}^{p} \tag{2.17}
\end{equation*}
$$

where $\delta=\frac{\beta+1}{p}+(n-1)\left(\frac{1}{q}-\frac{1}{r}\right)=n\left(\frac{1}{p}-\frac{1}{r}\right)-\left(\frac{1}{q}-\frac{1}{r}\right)$. Combining (2.16) and (2.17) we obtain (2.14). (2.15) is an easy consequence of (2.14) with $r=2$ and [14. Proposition 1.4.9].

Theorem 3 breaks down when $p=q$. We shall see this in the last section. $n=1$ case of (2.14) appeared at [11].
3. More on H^{p} coefficients. We will consider the limiting case, that is, $q \rightarrow p$, of Theorem 3.

Theorem 4. Let $1 \leq p \leq 2, p \leq r \leq \infty$, and $\beta=(n-1)\left(\frac{1}{p}-\frac{1}{r}\right)$. Then there is a C such that

$$
\begin{equation*}
\sum_{m=0}^{\infty}\left(\sum_{k \in I_{m}}\left\|(k+1)^{-\beta} F_{k}\right\|_{r}^{\prime \prime}\right)^{2 / p \prime} \leq C\|f\|_{p}^{2} \tag{3.1}
\end{equation*}
$$

for all $f=\sum_{k=0}^{\infty} F_{k} \in H^{p}(B)$, with the obvious understanding of the left hand side norm when $p=1$.

Proof. For notational convenience, we prove only when $1<p \leq 2$. Let $\operatorname{Rf}(z)$ denote the radial derivative of holomorphic $f: R f(z)=f(z)+\sum_{j} z_{j} \frac{\partial f}{\partial z_{j}}(z), z \in B$. Then, for a fixed $\zeta \in S$, it follows from the Hausdorff-Young theorem applied to

$$
R f(\lambda \zeta)=\sum_{k}(k+1) F_{k}(\zeta) \lambda^{k}, \quad \lambda \in U
$$

that

$$
\begin{equation*}
\int_{T}|R f(\lambda \zeta)|^{p} \frac{|d \lambda|}{2 \pi} \geq\left[\sum_{k}(k+1)^{p^{\prime}}\left|F_{k}(\rho \zeta)\right|^{\mid p^{\prime}}\right]^{p / p^{\prime}} \tag{3.2}
\end{equation*}
$$

where $|\lambda|=\rho$. Now integrate (3.2) with respect to $d \sigma(\zeta)$ and apply the Minkowski's inequality to get

$$
\begin{equation*}
\int_{S}|R f(\rho \zeta)|^{p} d \sigma(\zeta) \geq\left[\sum_{0}^{\infty}(k+1)^{p^{\prime}} \rho^{k p^{\prime}}\left\|F_{k}\right\|_{p}^{p^{\prime}}\right]^{p / p^{\prime}} \tag{3.3}
\end{equation*}
$$

On the other hand, the g-function

$$
\begin{equation*}
g(\zeta)=\left(\int_{0}^{1}(1-\rho)|R f(\rho \zeta)|^{2} d \rho\right)^{\frac{1}{2}}, \quad \zeta \in S \tag{3.4}
\end{equation*}
$$

satisfies the inequality [1. Theorem 3.1]

$$
\begin{equation*}
C\|f\|_{p}^{p} \geq \int_{S} g(\zeta)^{p} d \sigma(\zeta) \tag{3.5}
\end{equation*}
$$

Therefore combining (3.3), (3.4), and (3.5), we have

$$
\begin{equation*}
C\|f\|_{p}^{2} \geq \int_{0}^{1}(1-\rho)\left[\sum_{k}(k+1)^{p^{\prime}} \rho^{k p^{\prime}}\left\|F_{k}\right\|_{p}^{\prime \prime}\right]^{2 / p \prime} d \rho \tag{3.6}
\end{equation*}
$$

By the same way as in the proof of Theorem 2, the right hand side of (3.6) is at least a constant times

$$
\sum_{m=0}^{\infty}\left[\sum_{k \in I_{m}}\left\|F_{k}\right\|_{p}^{p \prime}\right]^{2 / p \prime}
$$

and, by Lemma, this last quantity is at least a constant multiple of the left side of (3.1). This completes the proof.

When $n=1$, (3.1) is known as C. N. Kellog's version of the classical HausdorffYoung inequality [9]. By considering H^{p} as the dual of $H^{p^{\prime}}, 1 / p+1 / p^{\prime}=1$ (see [4. 1.4] for example), we can easily deduce (by the standard duality argument as in [4.5.9]) dual results of Theorem 3 and Theorem 4 when $2 \leq p<\infty$. Also, Theorem 2 (so that Theorem 1 also) has its dual when $2 \leq q \leq \infty$. To prove this, first use the Hausdorff-Young theorem to reverse the inequality in (2.11). Then integrate both sides with respect to $d \sigma$ and use the Minkowski's inequality to dominate $M_{q}(\rho, f)$. Finally, use [12. Theorem 1] to dominate $A^{p, q, \beta}$ norm of f by the left side of (2.10) (with $r \leq q \leq \infty$).
4. On Paley sets. By definition, a set E of nonnegative integers is called a Paley set if the cardinality of the set $E_{N}=E \bigcap\{k: N \leq k<2 N\}$ remains bounded as $N \rightarrow \infty$. P. Ahern and W. Rudin ([3], [4]) fixed a certain type of homogeneous polynomials π and derived Paley type gap theorems of H^{p} functions on B that cannot happen on U :

Theorem C [4. Theorem 3.1 and Theorem 4.1]. Let $1 \leq p<2$. Then the following are equivalent.
(a) E is a Paley set.
(b) $\sum_{m \in E}\left\|f_{m}\right\|_{p}^{p}<\infty$ for every $f \in H^{p}(B)$, where f_{m} is the projection of f into the one-dimensional space spanned by π^{m}, that is,

$$
f_{m}(z)=\left(\int_{S} f \bar{\pi}^{m} d \sigma\right) \frac{\pi^{m}}{\left\|\pi^{m}\right\|_{2}^{2}}(z), \quad z \in B .
$$

We shall see below that this result is no longer true for general setting. Also in connection with this, one may ask if the exponent 2 in Theorem 4 can be improved. Our example shows that (3.1) breaks down when we replace the exponent 2 by a smaller one.

EXAMPLE. There is a sequence $\left\{P_{k}\right\}$ of homogeneous polynomials with $\operatorname{deg} P_{k}=k$ such that $\left\|P_{k}\right\|_{\infty}=1$ and $\left\|P_{k}\right\|_{2} \geq 2^{-n} \sqrt{\pi}$ for all k (see [16] or [15. p. 72]), so that if we take $f(z)=\sum_{k} F_{k}(z)=\sum_{m} a_{m} P_{2^{m}}(z), z \in B$, with $\left\{a_{m}\right\} \in \ell^{2}-\bigcup_{t<2} \ell^{t}$, then we have, by [16. Proposition 1.6],

$$
\|f\|_{p} \leq C\left(\sum_{m}\left|a_{m}\right|^{2}\right)^{\frac{1}{2}}<\infty,
$$

but

$$
\sum\left\|F_{2^{m}}\right\|_{p}^{t} \geq C \sum_{m}\left|a_{m}\right|^{t}=\infty
$$

for all $t<2$.
The following result characterizies Paley sets in the same vein.
Theorem 5. Let $0<p<\infty, 0<q<1$, and $\beta>-1$. Then the following are equivalent.
(a) E is a Paley set.
(b) There is a C such that

$$
\begin{equation*}
\sum_{k \in E}\left\|(k+1)^{-(\beta+1) / p} F_{k}\right\|_{1}^{p} \leq C\|f\|_{p, 1, \beta}^{p} \tag{4.1}
\end{equation*}
$$

for all $f=\sum F_{k} \in A^{p, 1, \beta}$.
(c) There is a C such that

$$
\sum_{E}\left\|F_{k}\right\|_{1}^{2} \leq C\|f\|_{1}^{2}
$$

for all $f=\sum_{k=0}^{\infty} F_{k} \in H^{1}(B)$.
(d) There is a C such that

$$
\sum_{E}\left\|(k+1)^{1-1 / q} F_{k}\right\|_{q}^{q} \leq C\|f\|_{q}^{q}
$$

for all $f=\sum_{k=0}^{\infty} F_{k} \in H^{q}(B)$.
Proof (a) \Rightarrow (b). Suppose E is a Paley set. Then the cardinal number of $E \cap I_{m}$, $\left|E \cap I_{m}\right|$, remains bounded as $m \rightarrow \infty$. Since

$$
\begin{aligned}
\sum_{k \in E}\left\|(k+1)^{-(\beta+1) / p} F_{k}\right\|_{1}^{p} & =\sum_{m} \sum_{k \in E \cap \Omega_{m}}\left\|(k+1)^{-(\beta+1) / p} F_{k}\right\|_{1}^{p} \\
& \leq \sup _{m}\left|E \cap I_{m}\right| \sum_{m} \sup _{k \in I_{m}}\left\|(k+1)^{-(\beta+1) / p} F_{k}\right\|_{1}^{p},
\end{aligned}
$$

follows (b) from Theorem 2.
(b) \Rightarrow (a). Let us fix $\rho: 0<\rho<1$ and let

$$
f(z)=\left(1-\rho z_{1}\right)^{-\gamma}, \quad \gamma=\frac{\beta+2}{p}+n, \quad z \in B .
$$

Then by [14. Proposition 1.4.10]

$$
\int_{S}|f(r \zeta)| d \sigma(\zeta)=O(1-\rho r)^{-(\beta+2) / p}
$$

so that

$$
\begin{equation*}
\|f\|_{p, 1, \beta}^{p}=O(1-\rho)^{-1} \tag{4.2}
\end{equation*}
$$

On the other hand,

$$
f(z)=\sum F_{k}(z)=\sum_{k=0}^{\infty} \frac{\Gamma(k+\gamma)}{\Gamma(\gamma) \Gamma(k+1)} \rho^{k} z_{1}^{k},
$$

so that, by the Stirling's formula,

$$
\begin{equation*}
\left\|(k+1)^{-(\beta+1) / p} F_{k}\right\|_{1} \sim k^{n-1+1 / p} \rho^{k}\left\|z_{1}^{k}\right\|_{1} . \tag{4.3}
\end{equation*}
$$

Since $\left\|z_{1}^{k}\right\|_{1} \sim(k+1)^{-(n-1)}$ (see, for example [4]), the last quantity of (4.3) is of $O\left(k^{1 / p} \rho^{k}\right)$. Now fix a large enough N and set $\rho=1-\frac{1}{N}$ then it follows from (4.2), (4.3) and the hypothesis (4.1) that

$$
N\left|E_{N}\right|=O(N)
$$

Therefore E is a Paley set.
The proof that (a) \Longleftrightarrow (c) and (a) \Longleftrightarrow (d) is almost same to what we have just proven by the aid of Theorem 4 and (2.14) respectively. We omit rather obvious imitations.

References

1. P. Ahern and J. Bruna, Maximal and area characterization of Hardy-Sobolev spaces in the unit ball of \mathbf{C}^{n}, Revista Mathemática Iberoamericana 4(1988), 123-153.
2. \qquad On the holomorphic functions in the ball with absolutely continuous boundary values, Duke Math. J., to appear
3. P. Ahern and W Rudin, Bloch functions, BMO, and boundary zeros, Indiana Univ. Math. J. 36(1987), 131-148.
4. Paley type gap theorems for H^{p} functions on the ball, Indiana Univ. Math. J. 37(1988), 255-275.
5. H. Alexander, Projective Capacity, Recent Developments in Several Complex Variables, Annals of Math. Studio 100, 1981
6. F. Beatrous and J. Burbea, Holomorphic Sobolev spaces in the ball, Dissertationes Math. 276(1989), 1-57.
7. P. L. Duren, Theory of H^{p} spaces, Academic Press, New York, 1970
8. G. H. Hardy and J. E. Littlewood, Theorems concerning mean values of analytic functions or harmonic functions, Quart J. Math. Oxford Ser. 12(1941), 221-256.
9. C. N. Kellog, An extension of the Hausdorff-Young Theorem, Michigan Math. J. 8(1971), 121-127.
10. Do Young Kwak, Hardy-Littlewood inequalities for weighted Bergman spaces, Communications of the Korean Mathematical Society 2(1987), 33-37.
11. E. G. Kwon, A note on the Taylor coefficients of mixed normed spaces, Bull. Austral. Math. Soc. 33(1986), 253-260.
12. M. Mateljevic' and M. Pavlovic', L^{p}-behavior of power series with positive coefficients and Hardy spaces, Proc. Amer. Math. Soc. 87(1983), 309-316.
13. R. E. A. C. Paley, On the lacunary coefficients of power series, Ann of Math 34(1933), 615-616.
14. W. Rudin, Function theory in the unit ball of \mathbf{C}^{n}, Springer-Verlag, New York, 1980
15. New constructions of functions holomorphic in the unit ball of \mathbf{C}^{n}, Conference Board of the Mathematical Science by AMS, 1985
16. J. Ryll and P. Wojtaszczyk, On homogeneous polynomials on a complex ball, Trans. Amer. Math. Soc. 276(1983), 107-116.

Department of Mathematics Education
Andong National University
Andong 760-749
Korea

