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ON HOMOGENEOUS EXPANSIONS 
OF MIXED NORM SPACE FUNCTIONS IN THE BALL 

E. G. KWON 

ABSTRACT. For / analytic in the complex ball having the homogeneous expan
sion/(z) = Y%LQFkiz), conditions fo r / to be of Hardy space Hp or of weighted 
Bergman spaces are expressed in terms of £p properties of the sequence {H^ll/?}-

1. Introduction. Let B = Bn be the open unit ball of C" and let a be the rotation 
invariant probability measure on the boundary S of B. In case n = \,U and T will stand 
for B and S respectively. For 0 < p < oo, 0 < q < oo, and /? > — 1, the spaces W and 
Ap,q'P are defined to consist of those/ holomorphic in B respectively for which 

\\f\\q = sup Mq(p9f) < oo 
0<p<l 

and 

II/1U/3 = £d " pfMq(PJfdp < 00, 

where 

Mq(pJ) = [Js {f(K)\qdcT(0]l/\ q<œ, 

and 

M00(p,/) = sup[f(z)|. 
zepS 

Our concern in this note is in the growth rates of Taylor coefficients of Hp or ApA^ 
functions defined on B. There are three types of results in general on the growth of 
the Taylor coefficients of Hp functions defined on U: Coefficients results of Hardy-
Littlewood is the first, Hausdorff-Young theorem is the next, and Paley type results on 
gap series is the last (see [7], [8], [9], and [13]). 

Concerning our results, Section 2 deals with Hardy-Littlewood type extensions to B, 
Section 3 deals with Hausdorff-Young types, and Section 4 deals with Paley types. 

This research was partially supported by KOSEF. 

Received by the editors September 4, 1991 . 

AMS subject classification: Primary: 32A35; secondary: 32A05. 

Key words and phrases: homogeneous expansion, Hardy spaces, mixed norm spaces. 

© Canadian Mathematical Society 1993. 

78 

https://doi.org/10.4153/CMB-1993-012-8 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-1993-012-8


MIXED NORM SPACE FUNCTIONS 79 

2. Extension of Hardy-Little wood theorem. If a = (a\, ai,..., an), ay > 0,1 < 
j < n, is the multi-index then we denote \a\ — ai+a2+- • -+a„anda! = OL\\ a^! • • -an\. 
Iff is holomorphic in B then/ can be representable by 

OO 

/(z) =£**(*), 

where Fk are homogeneous polynomials of degree k. Let Im denote the set {k : 2m~l < 
k < 2m} of integers if m > 0 and /o = 0. D. Kwak [10] deduced the following, which 
generalizes a classical one variable result of Hardy-Littlewood [7. Theorem 6.2]. 

THEOREM A [10. THEOREM 2.1]. Let 0 < p < 2, q > 0. Letf(z) = Eaaz
a G 

AP*«-\ Then 

(2. i) Ed«i+^ / 2 ) ^ \ ( n + \ a l + q ) ) H ' * wr^-v 

Here and throughout, Ap,p~l = / F and C will denote a positive constant independent 
of particular function/. Note that q = 0 is the only interesting case of this result, since 
the case q > 0 easily obtained by integrating the estimates for q = 0. We improve this 
theorem in this section. We abuse obvious notations such as - = 0 if q = oo etc. 

q n 

THEOREM 1. Let 0 < p < oo, 1 < q < 2, /? > - 1 , and h = ^ + (n - 1)(± - \). 

Letf(z) = Eaaz
a G AP^(B). Then 

(2.2) £ 
2 \<7'/2 

, a ^ l r ( / i + H)(|or| + l)2«2j =0L 

with the obvious understanding of (2.2) when q — 1. 

p/qf 

<c 11/11̂  

To see that Theorem 1 is an improvement of Theorem A, we need the following imbed
ding theorem. 

THEOREM B [6]. Let 0 < p < r < oo, p < s < oo, and q > 0. / / / G Ap^q~\ then 

(2.3) 11/11 w/*-i < C\\f\\p4>4-h 

where /J = *f - *. 

We now prove that Theorem 1 implies Theorem A: Suppose Theorem 1. Let 0 < p < 
2, q > 0, and let/(z) = YLaaz

a G Ap^~l. Then by (2.2), 

where 62 = &£-. Set /? = />(£* - f ) - 1, so that by (2.3), 

(2-5) |iflU2,/3<C|l/|U,-i. 
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Now since 

by the Stirling's formula, we have 

V (\a\ + 1 ) W ? K P - 2 ) ( ^ _ Y,2\aa\P 

Me/. 
(2.6) 

i„7^ vr(n+ a ) / 

which is, by the Holder's inequality, dominated by 

f a\ \aa\
2 \p/2f 1 \l~p/2 

( 2 , 7 ) C i Ç r ( n + | a | ) ( | a | + l ) ^ J l Ç ( | a | + l)"J ' 

Since 

( 2 - 8 ) £ d ^ - c < o û ' 

summation over m after combining (2.6), (2.7), and (2.8), we obtain 

£ ( M + i)W2)(,-2)/ «! J»/*, |p 

V \r(n + \a\+q)J 
( 2 * 9 ) o o f a , ifl 12 y 12 

- ^ o l i a f e . n n + l a ^ O a l + l ) ^ ; " 

From (2.4), (2.5), and (2.9), we obtain (2.1). 
Theorem 1 is an easy consequence of the following 

THEOREM 2. Let 0 < p < oo, 1 < q < 2, q < r < oo, (5 > — 1, am/ 6 = 
^ - + (n — 1)(- — -). Letf{z) — X^o /^(z) &£ ^ homogeneous polynomial expansion 
ofanfinAP^(B). Then 

0 0 / ,\P/Q' 

(2-10) E f E l l t f + i r ^ t l l ? ) < O f l l ^ ||(A:+l)-un|| 
m = 0 vfc<E/w 

vv/r/i f/ie obvious understanding of the left side when q — \. 

PROOF OF THEOREM 1 USING THEOREM 2. Suppose 

oo 

Noting that 

i l ^ l l l -
\a\=k 

2|Uai|2 _ TV M \ V^ U |2 a ! 

E OaZi = E l««liza||2 = Rn) E K 2 M=* |a|=* n » + | a | ) 
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[14. Proposition 1.4.9], and taking r = 2 in (2.10), we obtain (2.2). 

PROOF OF THEOREM 2. Let / G A ^ ( £ ) , 1 < q < 2. Let/C(A) = /((A), ( G 5 , 
A G U. We first prove the case q — r. We confine ourselves to the case q > 1 but the 
idea for the case q = 1 is identical except for notations. 

It follows from the Hausdorff-Young theorem (see [7. Theorem 6.1], for example) 
that 

(2.1D (ël^wT^^r^9)^)1^ Ces 

(note that the dominating constant is 1 ). Integrating the g-power of (2.11) with respect to 
da(Q, and then applying the Minkowski's inequality to the resulting left hand side, we 
obtain 

\ZMq<j>,Fky>\ <Mq(pJ). 
lk=o J 

Therefore we have 

APII' 
(\-PfMq{pJfdp> A\-pf\YJMq^Fkf\ dp. 

Ji) JU ik=0 J 

y is at least 

oo r\^~{m+]) / , \P/Q' 

E / A , v-pf(Eii^iirA) rfA. 

Now, the last quantity is at least 

oo r\^~{m+]) / , \P/Q' 

m=0 J 1 ~ 2 \te/m 

which is, in turn, at least a positive constant times 

£(z\\(k+iy»i>"Fk\\<)'". 

This completes the proof of Theorem 2 when q = r. The case q < r is an easy combina
tion of the following lemma with what we have just proven. 

LEMMA. Let 0 < p < r < oo. Let n be a homogeneous polynomial of degree k. 
Then there is a constant C depending only on p and n such that 

(2.12) |M|r < C(*+ l)(n-1)(1/ | ,-1/,)||7r|L. 

PROOF. See [2] and [5. pp. 8-9] for ideas similar to the following proof. Note first 
that it suffices to prove (2.12) for r = oo. In fact, if we suppose (2.12) for r — oo then 
for r < oo 

<[j>(C)M<r(C) 

•A 

X'r\\„\\('-p)lr 

UP I (»-!)//> II <||7C r[C(*+l)' 
= C(*+l) ( ' ,- | ) ( 1/ ' ' -1/ r ) | |7r | |p-

, 1 - p / r 
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Now we prove (2.12) for r — oo. We may assume ||7r||oo — |7r(l, 0 , . . . , 0)|. If we denote 
by vn the normalized Lebesgue measure on Bn, then by subharmonicity (see [14. 1.5.4]) 

(2.13) L^doio = t , d^ic')jTHc^^W A)|p^ 
^J^.KC. 0)1" di/„_,(0. 

If we set £" = (£,.. . ,£,_1 ) then by subharmonicity again 

L . , „ ,2 K.0)|"d«'n-2(C") > a - lCil2)"-2kCi.o, • • • ,0)|", 
•'Is I < i — lsil 

so that the last integral of (2.13) is at least 

L ^,(i - ioi2r2k<i,o, . . . ,0)1^,(0) - iMik £ 2d - ^ )» -v + i dr 

The case n — 1, p > 1 of Theorem 2 already appeared at [11]. We now turn our 
attention to W case. 

THEOREM 3. Let 0 < p < 2, /? < 4, 1 < q < r < oo, 5 = n(± - \) - ( i - ±) am/ 

to 2̂ — w(̂  — \) — (-; — 4). Then there is a C such that 

(2.i4) Ë ( £ I K * + i r W ) P / * < a/112. 
\P/<7' 

ii(^+iru^iir 
m=0 vfc€/m 

ara/ 

(2.15) £ 
m=0 ^ l r ( n + |a|)(|a| + l)M2J 

9'/2- P/V 

< c\m 
forallf(z) = T%L0Fk(z) = E« a z a G / ^ , vv/f/i f/ze obvious understanding of (2.14) and 
(2.15) when q= 1. 

PROOF. By an application of Holder's inequality (fixing p and r) to the quantity on 
the left hand side of (2.14), we can see we may assume that q < 2 in proving (2.14). By 
Theorem B with j3 = n(^ — jh, we have 

(2.16) 

By Theorem 2, 

(2.17) 

llflL^-i < cru,. 

E(EIK* + i)"*nll?') << 
m=0 ykelm

 J wv-v 

where<$ = ^-+(n-l)(^—f) = n ( ^ - i ) - ( i - ^ ) . Combining (2.16) and (2.17) we obtain 
(2.14). (2.15) is an easy consequence of (2.14) with r = 2 and [14. Proposition 1.4.9]. 

Theorem 3 breaks down when/? = q. We shall see this in the last section, n = 1 case 
of (2.14) appeared at [11]. 
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3. More on HP coefficients. We will consider the limiting case, that is, q —-> p, of 
Theorem 3. 

THEOREM 4. Let 1 < p < 2, p < r < oo, and f3 = (n- 1)(± - -r). Then there is a 
C such that 

(3.1) 
2/pf 

E(EII(*+ir^r) < ciirii 
m=0 xkelr 

for allf = Eĵ Lo Fk € HP(B), with the obvious understanding of the left hand side norm 
whenp = 1. 

PROOF. For notational convenience, we prove only when 1 < p < 2. Let Rf(z) 
denote the radial derivative of holomorphic/: Rf(z) =f(z) + E/Z/;£-(z), z^B. Then, for 
a fixed £ G 5, it follows from the Hausdorff-Young theorem applied to 

*/(AO = £ ( * + l)^(C)A*, AGI/, 

that 

(3.2) / r i * / w ^ > [z<*+imoorf/p/. 
where |A| = p. Now integrate (3.2) with respect to da(Q and apply the Minkowski's 
inequality to get 

(3.3) 
r r °° 

/ \Rf((K)\pda(Q > £ ( * + \f'pkf"\\Fk\ 
Jb L n 

PIP' 

On the other hand, the g-function 

(3.4) g(0 = (/o '(l -p)\Rf{pQ\2dp)\ 

satisfies the inequality [1. Theorem 3.1] 

(3.5) C\\f\\p
P> jsg(Çf do(Q. 

Therefore combining (3.3), (3.4), and (3.5), we have 

tes, 

(3.6) 
2/pf 

ci^>/o(i-p)[E(^irvni^iir] ^. 

2/pf 

By the same way as in the proof of Theorem 2, the right hand side of (3.6) is at least a 
constant times 

OO r 

£ £l«| 
m=0lkelm

 J 

and, by Lemma, this last quantity is at least a constant multiple of the left side of (3.1). 
This completes the proof. 
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When n — 1, (3.1) is known as C. N. Kellog's version of the classical Hausdorff-
Young inequality [9]. By considering W as the dual ofHp, 1 jp + 1 /p' = 1 (see [4. 1.4] 
for example), we can easily deduce (by the standard duality argument as in [4. 5.9]) dual 
results of Theorem 3 and Theorem 4 when 2 < p < oo. Also, Theorem 2 (so that Theo
rem 1 also) has its dual when 2 < q < oo. To prove this, first use the Hausdorff-Young 
theorem to reverse the inequality in (2.11). Then integrate both sides with respect to da 
and use the Minkowski's inequality to dominate Mq(p,f). Finally, use [12. Theorem 1] 
to dominate Ap,q,P norm off by the left side of (2.10) (with r <q < oo). 

4. On Paley sets. By definition, a set E of nonnegative integers is called a Paley set 
if the cardinality of the set EN — Ef]{k : N < k < IN] remains bounded as TV —• oo. 
P. Ahern and W. Rudin ([3], [4]) fixed a certain type of homogeneous polynomials IT and 
derived Paley type gap theorems of Hp functions on B that cannot happen on U: 

THEOREM C [4. THEOREM 3.1 AND THEOREM 4.1]. Let 1 < p < 2. Then the 
following are equivalent. 

(a) E is a Paley set. 
(b) HmeE \[fm\\p < oo for every f G HP(B), where fm is the projection off into the 

one-dimensional space spanned by if1, that is, 

Uz) = ( / / * » dcr)^(z), z£B. 

We shall see below that this result is no longer true for general setting. Also in con
nection with this, one may ask if the exponent 2 in Theorem 4 can be improved. Our 
example shows that (3.1) breaks down when we replace the exponent 2 by a smaller one. 

EXAMPLE. There is a sequence {Pk} of homogeneous polynomials with deg Pk=k 
such that ||P*||oo = 1 and \\Pk\\2 > 2"n^ for all k (see [16] or [15. p. 72]), so that if we 
take/(z) - E* Fk(z) = Em amP2m(z\ z G fi, with {am} el2- \Jt<2 V, then we have, by 
[16. Proposition 1.6], 

mP<cfew2)'<cx), 

but 

m 

for all t < 2. 

The following result characterizies Paley sets in the same vein. 

THEOREM 5. Let 0 < p < oo, 0 < q < 1, and f3 > - 1 . Then the following are 
equivalent. 

(a) E is a Paley set. 
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(b) There is a C such that 

forallf=EFk eApX^ 
(c) There is a C such that 

£IM<0/1|? 
£ 

(d) There is a C such that 

Elltf+D'-'^ll^cii/^ 
E 

forallf=ZtLoFk^^(B). 

PROOF (a) => (b). Suppose E is a Paley set. Then the cardinal number of E Pi /w, 
\ED Im\, remains bounded as m —> oo. Since 

£e£ m keEnim 

< suP|£n/m|i;sup||(ft+lr^'^Ftii?, 
m m kelm 

follows (b) from Theorem 2. 
(b) => (a). Let us fix p : 0 < p < 1 and let 

f(z) = (1 - pzir 7 , 7 = ~ + n, z G A 

Then by [14. Proposition 1.4.10] 

Js\f(rO\da(0=0(l-prr^2)fP9 

so that 

(4-2) \\f\\p
pX0 = o{\-Pyl. 

On the other hand, 

so that, by the Stirling's formula, 

(4.3) iKt+ir^1^»! -*"-1+1Vll4lli. 
Since ||4l|i ~ (^+l)~(n_1)(see, for example [4]), the last quantity of (4.3) is of 0(kxlppk). 
Now fix a large enough N and set p — 1 — ^ then it follows from (4.2), (4.3) and the 
hypothesis (4.1) that 

N\EN\ = 0(N). 

Therefore E is a Paley set. 
The proof that (a) 4=> (c) and (a) <̂ => (d) is almost same to what we have just proven 

by the aid of Theorem 4 and (2.14) respectively. We omit rather obvious imitations. 
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