SPECTRAL PROPERTIES OF p-HYPONORMAL OPERATORS by MUNEO CHŌ

(Received 29 July, 1992)

- **1. Introduction.** Let \mathcal{H} be a complex Hilbert space and $B(\mathcal{H})$ be the algebra of all bounded linear operators on \mathcal{H} . An operator $T \in B(\mathcal{H})$ is said to be p-hyponormal if $(T^*T)^p (TT^*)^p \ge 0$. If p = 1, T is hyponormal and if $p = \frac{1}{2}$, T is semi-hyponormal. It is well known that a p-hyponormal operator is q-hyponormal for $q \le p$. Hyponormal operators have been studied by many authors. The semi-hyponormal operator was first introduced by D. Xia in [7]. The p-hyponormal operators have been studied by A. Aluthge in [1]. Let T be a p-hyponormal operator and T = U|T| be a polar decomposition of T. If U is unitary, Aluthge in [1] proved the following properties.
 - (A1) The eigenspaces of U reduce T.
- (A2) If $\sigma(U) \neq \mathbb{T}$, then the eigenspaces of |T| reduce U, where $\sigma(T)$ is the spectrum of T and $\mathbb{T} = \{z \in \mathbb{C} : |z| = 1\}$.
- (A3) r(T) = ||T||, where r(T) and ||T|| are the spectral radius and the operator norm of T, respectively.

Other related properties of a semi-hyponormal operator T are the following (see Xia's book [8]):

- (X1) $\sigma(T) = \{z : \bar{z} \in \sigma_{\pi}(T^*)\};$
- (X2) $\sigma(|T|) \subset \pi_{\rho}(\sigma(T))$, where π_{ρ} is the mapping $\mathbb{C} \to \mathbb{R}^+$ such that $\pi_{\rho}(z) = |z|$ $(z \in \mathbb{C})$; i.e., Putnam's theorem holds.

The set of all p-hyponormal operators in $B(\mathcal{H})$ is denoted by p-H. Let p-HU denote the set of all operators in p-H with equal defect and nullity. Hence for $T \in p$ -HU we may assume that the operator U in a polar decomposition T = U |T| is unitary. We say that an operator T is a p-HU-operator if $T \in p$ -HU.

In this paper we prove that (X1) and weakly Putnam's theorem hold for p-HU-operators. Let T be a p-HU-operator. If $r \in \sigma(T^*T) \cup \sigma(TT^*)$, then there exists $z \in \sigma(T)$ such that $|z|^2 \ge r$. Also we prove that doubly commuting n-tuples of p-HU-operators are jointly normaloid.

We need the following results.

THEOREM A (Th. 2 in [1]). Let T = U|T| be a p-Hu-operator. Then $\tilde{T} = |T|^{1/2}$. $U \cdot |T|^{1/2}$ is $(p + \frac{1}{2})$ -hyponormal. Hence \tilde{T} is semi-hyponormal.

THEOREM B (Th. 2.3 of p. 10 in [8]). Let T = U |T| be a semi-hyponormal operator on \mathcal{H} . If $Tx = r \cdot e^{i\theta}x$ for a non-zero vector $x \in \mathcal{H}$, then |T|x = rx, $Ux = e^{i\theta}x$ and $T^*x = r \cdot e^{-i\theta}x$.

Also we need the following technique of Berberian.

THEOREM C. Let \mathcal{H} be a complex Hilbert space. Then there exist a Hilbert space $\mathcal{H} \supset \mathcal{H}$ and a map $\tau: B(\mathcal{H}) \to B(\mathcal{H})$ such that (1) τ is an isometric algebraic *-isomorphism preserving the order; i.e.,

$$\tau(A^*) = \tau(A)^*, \qquad \tau(I) = I, \qquad \tau(\alpha A + \beta B) = \alpha \tau(A) + \beta \tau(B),$$

 $\tau(AB) = \tau(A)\tau(B), \ \|\tau(A)\| = \|A\| \ and \ \tau(A) \le \tau(B) \ whenever \ A \le B, \ for \ all \ A, \ B \in \mathcal{B}(\mathcal{H}) \ and \ \alpha, \beta \in \mathbb{C};$

Glasgow Math. J. 36 (1994) 117-122.

(2) $\sigma(\tau(A)) = \sigma(A)$ and $\sigma_{\pi}(A) = \sigma_{\pi}(\tau(A)) = \sigma_{p}(\tau(A))$ for all $A \in B(\mathcal{H})$, where $\sigma(A)$, $\sigma_{\pi}(A)$ and $\sigma_{p}(A)$ are the spectrum, the approximate point spectrum and the point spectrum of A, respectively.

See p. 15 in [8] for details. Hence, T is p-hyponormal if and only if $\tau(T)$ is. For an operator $T \in B(\mathcal{H})$, $z \in \mathbb{C}$ is in the normal approximate point spectrum $\sigma_{n\pi}(T)$ of T if there exists a sequence $\{x_k\}$ of unit vectors such that $(T-z)x_k \to 0$ and $(T-z)^*x_k \to 0$ as $k \to \infty$.

Though in Xia's book [8] this spectrum is called the joint approximate point spectrum, we use this word for n-tuples of operators.

2. p-Hyponormal operators. Throughout this paper, let p be 0 .

LEMMA 1. Let T be a p-HU-operator. If $z \in \sigma_n(T)$, then $\bar{z} \in \sigma_n(T^*)$.

Proof. Assume that $0 \in \sigma_p(T)$. Then there exists a non-zero vector $x \in \mathcal{H}$ such that Tx = 0. Since $|T|^2 x = T^*Tx = 0$ and $|T| \ge 0$, we have $(T^*T)^{1/2^k} x = 0$ (k = 1, 2, ...). For m in \mathbb{N} such that $\frac{1}{m} < p$, we have $(T^*T)^{1/2^m} x = 0$. It follows that $(T^*T)^p x = 0$. Since T is p-hyponormal, it follows that $(TT^*)^p x = 0$. Therefore $T^*x = 0$.

Next assume that $z \in \sigma_p(T)$ for a non-zero $z \in \mathbb{C}$. Then there exists a non-zero vector $y \in \mathcal{H}$ such that Ty = zy. Let $T = U \mid T \mid$ be a polar decomposition of T with unitary operator U. Since $U \mid T \mid y = zy$, it follows that $|T|^{1/2} U \mid T|^{1/2} |T|^{1/2} y = z \mid T|^{1/2} y$. By Theorem A the operator $\tilde{T} = |T|^{1/2} U \mid T|^{1/2}$ is semi-hyponormal. Hence by Theorem B we have $\tilde{T}^*(|T|^{1/2}y) = |T|^{1/2} U^* \mid T \mid y = \bar{z} \cdot |T|^{1/2} y$. Therefore $T^*(|T|y) = \bar{z} \cdot |T|y$. Since $|T|y \neq 0$, we have $\bar{z} \in \sigma_p(T^*)$.

THEOREM 2. Let T be a p-HU-operator. Then

$$\sigma(T) = \{z : \bar{z} \in \sigma_{\pi}(T^*)\}.$$

Proof. Since we have $\sigma(T) = \sigma_{\pi}(T) \cup \{z : \bar{z} \in \sigma_{p}(T^{*})\}$, we need only prove that $\sigma_{\pi}(T) \subset \{z : \bar{z} \in \sigma_{\pi}(T^{*})\}$.

Assume that $z \in \sigma_{\pi}(T)$. Consider the mapping τ of Theorem C. Then we have $z \in \pi_p(\tau(T))$. Since $\tau(T)$ is a p-HU-operator, by Lemma 1 we have $\bar{z} \in \sigma_p(\tau(T)^*)$. Also since, by Theorem C, $\sigma_p(\tau(T)^*) = \sigma_{\pi}(T^*)$, it follows that $\bar{z} \in \sigma_{\pi}(T^*)$.

Next we prove that the weak form of Putnam's theorem holds for p-hyponormal operators. First we prove the following result.

LEMMA 3. Let $T = UP \in B(\mathcal{H})$, U be unitary, $P \ge 0$ and $T^*T = P^2$. Let r > 0, $|e^{i\theta}| = 1$. Then $r \cdot e^{i\theta} \sigma_{n\pi}(T)$ if and only if there exists a sequence $\{x_k\}$ of unit vectors in \mathcal{H} such that

$$\lim_{k \to \infty} \| (P - r) x_k \| = 0 \quad and \quad \lim_{k \to \infty} \| (U - e^{i\theta}) x_k \| = 0. \tag{*}$$

Proof. If $z \in \sigma_{n\pi}(T)$, then there exists a sequence $\{x_k\}$ of unit vectors in \mathcal{H} such that $(T-r.e^{i\theta})x_k \to 0$ and $(T-r.e^{i\theta})^*x_k \to 0$ as $k \to \infty$. Since $T^*T = P^2$, $(P^2 - r^2)x_k \to 0$ and $(P-r)x_k \to 0$ ($k \to \infty$). Hence it follows that $(U-e^{i\theta})x_k \to 0$, because $r \neq 0$.

Conversely, suppose that (*) holds. Since then U is unitary, we have $(U^* - e^{-i\theta})x_k \to 0$ $(k \to \infty)$. Hence $r \cdot e^{i\theta} \in \sigma_{n\pi}(T)$.

THEOREM 4. Let T = U|T| be a p-HU-operator. If $r \in \sigma(T^*T)$, then there exist r' and θ such that $r \le r'$ and $\sqrt{r'}$. $e^{i\theta} \in \sigma(T)$.

Proof. We need only prove that $p = \frac{1}{2^n}$. If r = 0, then it is clear that $0 \in \sigma(T)$. So let $r \neq 0$. Then $r \in \sigma(T^*T)$ and $r^p \in \sigma((T^*T)^p)$. Here put $S = U|T|^p$. Since then

$$S^*S = |T|^{2p} = (T^*T)^p$$
 and $SS^* = U(T^*T)^p U^* = (TT^*)^p$,

S is a hyponormal operator. Since $S = U |T|^p$ is a polar decomposition of S and $r^p \in \sigma(S^*S)$, by Putnam's theorem there exists θ such that $\sqrt{r^p} \cdot e^{i\theta} \in \sigma(S)$. Hence there exists r_0 such that $\sqrt{r^p} \le r_0$ and $r_0 \cdot e^{i\theta} \in \partial \sigma(S) \subset \sigma_n(S) \subset \sigma_{nn}(S)$, where $\partial \sigma(S)$ is the boundary of $\sigma(S)$. By Lemma 3 it follows that there exists a sequence $\{x_k\}$ of unit vectors in \mathcal{H} such that

$$(|T|^p - r_0)x_k \rightarrow 0$$
 and $(U - e^{i\theta})x_k \rightarrow 0$ as $k \rightarrow \infty$.

Since $p = \frac{1}{2^n}$, we have $(|T| - r_0^{2^n})x_k \to 0$ as $k \to \infty$. Let $r' = r_0^{2^{n+1}}$. Then $r' \cdot e^{i\theta}$ is the desired number, and so the proof is complete.

REMARK. With the same assumption as in Theorem 4, we have: if $r \in \sigma(TT^*)$, then there exists $z \in \sigma(T)$ such that $|z|^2 = r$.

We have the following corollary.

COROLLARY 5. Let T be a p-HU-operator. Then r(T) = ||T||.

Proof. Since $r(T^*T) = ||T||^2$, the result follows from Theorem 4.

3. N-tuples of p-Hyponormal operators. In this section, we study doubly commuting n-tuples of p-hyponormal operators. First we will give some definitions. An n-tuple $\mathbb{T} = (T_1, \ldots, T_n)$ of operators is said to be a doubly commuting n-tuple if $T_i \cdot T_j = T_j \cdot T_i$ and $T_i^* \cdot T_j = T_j \cdot T_i^*$, for every $i \neq j$. Let $\mathbb{T} = (T_1, \ldots, T_n)$ be a commuting n-tuple of operators on \mathcal{H} . We denote the Taylor spectrum of \mathbb{T} by $\sigma(\mathbb{T})$ (see Taylor [6]). $z = (z_1, \ldots, z_n)$ is in the joint approximate point spectrum $\sigma_{\pi}(\mathbb{T})$ of \mathbb{T} is there exists a sequence $\{x_k\}$ of unit vectors in \mathcal{H} such that

$$||(T_i - z_i)x_k|| \to 0$$
 as $k \to \infty$,

for every $i=1,2,\ldots,n$. Further $z=(z_1,\ldots,z_n)$ is in the joint point spectrum $\sigma_p(\mathbb{T})$ of \mathbb{T} if there exists a non-zero vector x such that $T_ix=z_ix$ for every $i=1,2,\ldots,n$. By Berberian's technique, we have the following result.

THEOREM D. Let $\mathbb{T} = (T_1, \ldots, T_n)$ be an n-tuple of operators on \mathcal{H} . Let τ be the mapping of Theorem C. Then

$$\sigma_{\pi}(\mathbb{T}) = \sigma_{\pi}(\tau(\mathbb{T})) = \sigma_{p}(\tau(\mathbb{T})),$$

where $\tau(\mathbb{T}) = (\tau(T_1), \ldots, \tau(T_n))$.

If an *n*-tuple $\mathbb{T} = (T_1, \ldots, T_n)$ is a doubly commuting *n*-tuple of *p-HU*-operators, then by Theorems 2 and 4 in Furuta [4] there exists unitary operators U_1, \ldots, U_n with a polar decomposition $T_i = U_i |T_i|$ $(i = 1, \ldots, n)$ such that U_i and $|T_i|$ commute with U_j and $|T_i|$ for every $i \neq j$.

LEMMA 6. Let $\mathbb{T} = (T_1, \ldots, T_n)$ be a doubly commuting n-tuple of p-HU-operators on \mathcal{H} . If $z = (z_1, \ldots, z_n) \in \sigma_p(\mathbb{T})$, then $\bar{z} = (\bar{z}_1, \ldots, \bar{z}_n) \in \sigma_p(\mathbb{T}^*)$, where $\mathbb{T}^* = (T_1^*, \ldots, T_n^*)$.

Proof. There exists a non-zero vector x in \mathcal{H} such that $T_i x = z_i x$ (i = 1, ..., n). We may assume that $z_1, ..., z_k$ are non-zero and $z_{k+1} = ... = z_n = 0$. From the proof of Lemma 1, we obtain

$$T_{k+1}^*x = \ldots = T_n^*x = 0.$$

Also from the proof of Lemma 1, we obtain $T_i^*(|T_i|x) = \bar{z}_i \cdot |T_i|x$, where $|T_i|$ is the positive operator in a polar decomposition $T_i = U_i |T_i|$ (i = 1, ..., k). Assume that $|T_1| \dots |T_k| = 0$. Since then (T_1, \dots, T_k) is a doubly commuting k-tuple of p-HU-operators, U_i and $|T_i|$ commute with U_i and $|T_i|$ for every $i \neq j$. Hence we have

$$T_1 \cdot T_2 \cdot \cdot \cdot T_k x = 0.$$

It follows that $z_1 ldots z_k = 0$. Since every $z_i \neq 0$ $(i = 1, \ldots, k)$, this is a contradiction. Therefore we have $|T_1| ldots |T_k| x \neq 0$. For i $(i = 1, \ldots, k)$, we have

$$T_i^*(|T_1| \dots |T_k| x) = |T_1| \dots |T_{i-1}| \dots |T_{i+1}| \dots |T_k| \dots |T_i| x$$

= $\bar{z}_i(|T_1| \dots |T_k| x)$.

Since also T_i commutes with $|T_1| \dots |T_k|$, we have

$$T_i^*(|T_1|...|T_k|x) = 0$$
 $(i = k+1,...,n).$

Therefore it follows that $\bar{z} = (\bar{z}_1, \dots, \bar{z}_n) \in \sigma_n(\mathbb{T}^*)$.

THEOREM 7. Let $\mathbb{T} = (T_1, \ldots, T_n)$ be a doubly commuting n-tuple of p-HU-operators on \mathcal{H} . Then

$$\sigma(\mathbb{T}) = \{(z_1, \ldots, z_n) \in \mathbb{C}^n : (\bar{z}_1, \ldots, \bar{z}_n) \in \sigma_{\pi}(\mathbb{T}^*)\}.$$

Proof. Since \mathbb{T} is a doubly commuting *n*-tuple, by Corollary 3.3 in [3] it follows that if $(z_1, \ldots, z_n) \in \sigma(\mathbb{T})$, then there exist some partition $\{i_1, \ldots, i_m\} \cup \{j_1, \ldots, j_s\} = \{1, \ldots, n\}$ and a sequence $\{x_k\}$ of unit vectors in \mathcal{H} such that

$$(T_{i_{\mu}}-z_{i_{\mu}})x_k \rightarrow 0$$
 and $(T_{j_{\nu}}-z_{j_{\nu}})^*x_k \rightarrow 0$ as $k \rightarrow \infty$,

for $\mu = 1, ..., m$ and $\nu = 1, ...s$. Consider the mapping τ of Theorem C. Then we have

$$(z_{i_1},\ldots,z_{i_m},\bar{z}_{j_1},\ldots,\bar{z}_{j_s})\in\sigma_p(\tau(S)),$$

where $\tau(S) = (\tau(T_{i_1}), \ldots, \tau(T_{i_m}), \tau(T_{j_1}^*), \ldots, \tau(T_{j_s}^*))$. Since $\tau(T_i)$ is a p-HU-operator for every i $(i = 1, \ldots, n)$, by Lemma 6 we have $(\bar{z}_1, \ldots, \bar{z}_n) \in \sigma_p(\tau(\mathbb{T}^*))$. Hence by Theorem D it follows that $(\bar{z}_1, \ldots, \bar{z}_n) \in \sigma_{\pi}(\mathbb{T}^*)$. It is clear that $\sigma_{\pi}(\mathbb{T}^*) \subset \sigma(T)$ and so the proof is complete.

THEOREM 8. Let $\mathbb{T} = (T_1, \ldots, T_n)$ be a doubly commuting n-tuple of p-HU-operators on \mathcal{H} . If $(r_1, \ldots, r_n) \in \sigma(\mathbb{T}^*\mathbb{T}) \cup \sigma(\mathbb{T}^*)$, then there exists $(z_1, \ldots, z_n) \in \sigma(\mathbb{T})$ such that $|z_i|^2 \ge r_i$ $(i = 1, \ldots, n)$, where $\mathbb{T}^*\mathbb{T} = (T_1^*T_1, \ldots, T_n^*T_n)$ and $\mathbb{T}\mathbb{T}^* = (T_1^*T_1^*, \ldots, T_n^*T_n^*)$.

Proof. We shall prove the theorem by induction. When n = 1, the theorem holds by Theorem 4. We assume that the theorem holds for every doubly commuting (n - 1)-tuple of p-HU-operators. We assume that $(r_1, \ldots, r_n) \in \sigma(\mathbb{T}^*\mathbb{T})$. Since $\sigma(\mathbb{T}^*\mathbb{T}) = \sigma_{\pi}(\mathbb{T}^*\mathbb{T})$, we

have $(\sqrt{r_1}, \ldots, \sqrt{r_n}) \in \sigma_{\pi}(|\mathbb{T}|)$, where $|\mathbb{T}| = ((|T_1|, \ldots, |T_n|))$. Consider the mapping τ of Theorem C. Let $\mathfrak{M} = \ker(|\tau(T_n)| - \sqrt{r_n})$ ($\neq \{0\}$). Then \mathfrak{M} is a reducing subspace of $\tau(T_1), \ldots, \tau(T_{n-1})$ and $(\tau(T_1)_{|\mathfrak{M}}, \ldots, \tau(T_{n-1})_{|\mathfrak{M}})$ is a doubly commuting (n-1)-tuple of p-HU-operators on \mathfrak{M} . Since $\sum_{i=1}^n (|\tau(T_i)| - \sqrt{r_i})^2$ is not invertible, it follows that

$$\ker\left(\sum_{i=1}^{n}\left(|\tau(T_i)|-\sqrt{r_i}\right)^2\right)=\left\{\bigcap_{i=1}^{n-1}\ker(|\tau(T_i)|-\sqrt{r_i})\right\}\cap\mathfrak{M}\neq\{0\}.$$

Hence it follows that $(\sqrt{r_1},\ldots,\sqrt{r_{n-1}})\in\sigma(R)$, where $R=(|\tau(T_1)_{|\mathfrak{M}}|,\ldots|\tau(T_{n-1})_{|\mathfrak{M}}|)$. So, by the induction hypothesis, there exists $(z_1,\ldots,z_{n-1})\in\sigma(S)$ such that $|z_i|\geq \sqrt{r_i}$ $(i=1,\ldots,n-1)$, where $S=(\tau(T_i)_{|\mathfrak{M}},\ldots,\tau(T_{n-1})_{|\mathfrak{M}})$. Since by Theorem 7 it follows that $(\bar{z}_1,\ldots,\bar{z}_{n-1})\in\sigma_p(S^*)$, there exists a non-zero vector x_0 in \mathfrak{M} such that

$$\tau(T_i^*)x_0 = \bar{z}_i x_0 \quad (i = 1, ..., n-1).$$

Therefore $\sum_{i=1}^{n-1} (\tau(T_i) - z_i)(\tau(T_i) - z_i)^* + (|\tau(T_n)| - \sqrt{r_n})^2$ is not invertible. Hence

$$\ker\left(\sum_{i=1}^{n-1} (\tau(T_i) - z_i)((\tau(T_i) - z_i)^*) + (|\tau(T_n)| - \sqrt{r_n})^2\right) \neq \{0\}.$$

Let $\mathfrak{N}=\ker\Bigl(\sum\limits_{i=1}^{n-1}(\tau(T_i)-z_i\Bigr)(\tau(T)-z_i)^*$). Then \mathfrak{N} reduces $\tau(T_n)$. Also since $\mathfrak{M}\cap\mathfrak{N}\neq\{0\}$, $\sqrt{r_n}\in\sigma(|\tau(T_n)_{|\mathfrak{N}}|)$. Since $\tau(T_n)_{|\mathfrak{N}}$ is a p-HU-operator, by Theorem 2 it follows that there is a $z_n\in\mathbb{C}$ such that $(\tau(T_n)_{|\mathfrak{N}}-z_n)(\tau(T_n)_{|\mathfrak{N}}-z_n)^*$ is not invertible and $|z_n|^2\geq r_n$. Since

$$\sum_{i=1}^n (\tau(T_i) - z_i)(\tau(T_i) - z_i)^*$$

is not invertible, this point (z_1, \ldots, z_n) is in $\sigma(\mathbb{T})$ and satisfies

$$|z_i|^2 \ge r_i \quad (i = 1, \ldots, n).$$

In case of $(r_1, \ldots, r_n) \in \sigma(\mathbb{TT}^*)$, the proof is similar. Thus the proof is complete.

For an *n*-tuple $\mathbb{T} = (T_1, \ldots, T_n)$ of operators on \mathcal{H} , the joint spectral radius $r(\mathbb{T})$ and the joint operator norm $||\mathbb{T}||$ of \mathbb{T} are given by

$$r(\mathbb{T}) = \sup \left\{ |z| = \left(\sum_{i=1}^{n} |z_i|^2 \right)^{1/2} : z = (z_1, \dots, z_n) \in \sigma(\mathbb{T}) \right\}$$

and

$$\|\mathbb{T}\| = \sup \left\{ \left(\sum_{i=1}^{n} \|T_i x\|^2 \right)^{1/2} : x \in \mathcal{H}, \|x\| = 1 \right\},$$

respectively. It always holds that $r(\mathbb{T}) \leq ||\mathbb{T}||$ for every commuting *n*-tuple $\mathbb{T} = (T_1, \ldots, T_n)$ of operators.

THEOREM 9. Let $\mathbb{T} = (T_1, \ldots, T_n)$ be a doubly commuting n-tuple of p-HU-operators on \mathcal{H} . Then $r(\mathbb{T}) = ||\mathbb{T}||$; i.e., \mathbb{T} is jointly normaloid.

Proof. Since $\mathbb{T}^*\mathbb{T}=(T_1^*T_1,\ldots,T_n^*T_n)$ is a commuting *n*-tuple of positive operators, $\mathbb{T}^*\mathbb{T}$ is jointly convexoid (see [2]). Also $\|\mathbb{T}\|^2=\sup\left\{\sum\limits_{i=1}^n\left(T_i^*T_ix,x\right):x\in\mathcal{H},\|x\|=1\right\}$ and we can see that there exists $(r_1,\ldots,r_n)\in\sigma(\mathbb{T}^*\mathbb{T})$ such that $\sum\limits_{i=1}^nr_i=\|\mathbb{T}\|^2$. By Theorem 8, it follows that there exists $(z_1,\ldots,z_n)\in\sigma(\mathbb{T})$ such that $\left(\sum\limits_{i=1}^n|z_i|^2\right)^{1/2}\geq\|\mathbb{T}\|$. The converse inequality is clear and so the proof is complete.

REFERENCES

- 1. A. Aluthge, On p-Hyponormal operators for 0 , Integral Equations and Operator Theory 13 (1990), 307-315.
- 2. M. Chō and M. Takaguchi, Some classes of commuting n-tuples of operators, *Studia Math.* 80 (1984), 246–259.
- 3. R. Curto, On the Connectedness of Invertible *n*-tuples, *Indiana Univ. Math. J.* 29 (1980), 393-406.
- 4. T. Furuta, On the polar decomposition of an operator, Acta Sci. Math. (Szeged) 46 (1983), 261-268.
- 5. C. R. Putnam, Spectra of polar factors of hyponormal operators, *Trans. Amer. Math. Soc.* 188 (1974), 419-428.
- 6. J. L. Taylor, A joint spectrum for several commuting operators, J. Functional Analysis 6 (1970), 172-191.
- 7. D. Xia, On the nonnormal operators-semihyponormal operators, Sci. Sinica 23 (1983), 700-713.
 - 8. D. Xia, Spectral theory of hyponormal operators (Birkhäuser Verlag, Basel, 1983).

DEPARTMENT OF MATHEMATICS
JOETSU UNIVERSITY OF EDUCATION
JOETSU, NIIGATA 943
JAPAN