AN INEQUALITY FOR POSITIVE SEMIDEFINITE HERMITIAN MATRICES ${ }^{(1)}$

BY
RUSSELL MERRIS

Let A and B be positive semidefinite Hermitian n-square matrices. If $A-B$ is positive semidefinite, write $A \geq B$. Haynsworth [1] has proved that if $A \geq B$ then $\operatorname{det}(A+B) \geq \operatorname{det} A+n \operatorname{det} B$.

Let G be a subgroup of the symmetric group, S_{n}, and let λ be a character on G. Let

$$
e_{r}(A)=\sum_{g \in G} \lambda(g) E_{r}\left(a_{1 g(1)}, \ldots, a_{n g(n)}\right)
$$

where $A=\left(a_{i j}\right)$ and E_{r} is the r th elementary symmetric function.
Theorem. Let $A \geq B$. Then $e_{r}(A+B) \geq e_{r}(A)+\left(2^{r}-1\right) e_{r}(B)$. In particular, if $G=S_{n}$ and $\lambda=\operatorname{sgn}, \operatorname{det}(A+B) \geq \operatorname{det} A+\left(2^{n}-1\right) \operatorname{det} B$.

Proof. Let $K_{r}(X)$ be the r th Kronecker power of n-square X. Observe that $(A-B) \otimes B \geq 0$, so $A \otimes B \geq B \otimes B \equiv K_{2}(B)$. It follows by induction that

$$
\begin{equation*}
K_{r}(A+B) \geq K_{r}(A)+\left(2^{r}-1\right) K_{r}(B) \tag{1}
\end{equation*}
$$

Let Γ be the set of integer sequences of length r chosen from $1,2, \ldots, n$. Then, $K_{r}(X)$ is indexed by the set Γ ordered lexicographically.

Let Ω be the subset of Γ consisting of the ($n!/(n-r)!$) sequences in which no integer is repeated.

Let $k_{r}(X)$ be the ($n!/(n-r)!$)-square principal submatrix of $K_{r}(X)$ corresponding to Ω.

Let $Q(g)$ be the n-square permutation matrix defined by $g\left(\in S_{n}\right)$. It follows from the orthogonality relations for characters that

$$
C_{r}=\sum_{g \in G} \lambda(g) K_{r}(Q(g))
$$

is a positive multiple of a projection. Since $\lambda\left(g^{-1}\right)=\overline{\lambda(g)}, C_{r}$ is hermitian. Thus, $C_{r} \geq 0$. Let c_{r} be the principal submatrix of C_{r}^{T} corresponding to Ω, i.e.,

$$
c_{r}=\sum_{g \in G} \lambda(g) k_{r}\left(Q\left(g^{-1}\right)\right)
$$

[^0]
R. MERRIS

Certainly, $c_{r} \geq 0$. Let $\sigma(X)$ be the sum of the elements of X. Finally, let $A \circ B=$ $\left(a_{i j} b_{i j}\right)$ be the Hadamard product of A and B. The straight forward observation that $r!e_{r}(A)=\sigma\left(c_{r} \circ k_{r}(A)\right)$ has been made in [2] and [3]. The Theorem now follows from (1) and the linearity of σ and Hadamard product.

References

1. Emilie V. Haynsworth, Applications of an inequality for the Schur complement, Proc. Amer. Math. Soc. 24 (1970) 512-516.
2. Russell Merris, A dominance theorem for partitioned hermitian matrices, Trans. Amer. Math. Soc. 164 (1972) 341-352..
3. ——, Inequalities for matrix functions, J. Algebra, 22 (1972) 451-460.

National Bureau of Standards, Washington, D.C. 20234
California State University,
Hayward, CA 94542

[^0]: ${ }^{(1)}$ Part of this work was done while the author was a National Academy of SciencesNational Research Council Postdoctoral Research Associate at the National Bureau of Standards Washington, D.C. 20234.

