Canad. Math. Bull. Vol. 17 (1), 1974

AN INEQUALITY FOR POSITIVE SEMIDEFINITE HERMITIAN MATRICES⁽¹⁾

BY RUSSELL MERRIS

Let A and B be positive semidefinite Hermitian *n*-square matrices. If A-B is positive semidefinite, write $A \ge B$. Haynsworth [1] has proved that if $A \ge B$ then $\det(A+B) \ge \det A + n \det B$.

Let G be a subgroup of the symmetric group, S_n , and let λ be a character on G. Let

$$e_r(A) = \sum_{g \in G} \lambda(g) E_r(a_{1g(1)}, \ldots, a_{ng(n)})$$

where $A = (a_{ij})$ and E_r is the rth elementary symmetric function.

THEOREM. Let $A \ge B$. Then $e_r(A+B) \ge e_r(A) + (2^r-1)e_r(B)$. In particular, if $G = S_n$ and $\lambda = sgn$, $\det(A+B) \ge \det A + (2^n-1)\det B$.

Proof. Let $K_r(X)$ be the *r*th Kronecker power of *n*-square X. Observe that $(A-B)\otimes B\geq 0$, so $A\otimes B\geq B\otimes B\equiv K_2(B)$. It follows by induction that

(1)
$$K_r(A+B) \ge K_r(A) + (2^r - 1)K_r(B).$$

Let Γ be the set of integer sequences of length r chosen from 1, 2, ..., n. Then, $K_r(X)$ is indexed by the set Γ ordered lexicographically.

Let Ω be the subset of Γ consisting of the (n!/(n-r)!) sequences in which no integer is repeated.

Let $k_r(X)$ be the (n!/(n-r)!)-square principal submatrix of $K_r(X)$ corresponding to Ω .

Let Q(g) be the *n*-square permutation matrix defined by $g (\in S_n)$. It follows from the orthogonality relations for characters that

$$C_r = \sum_{g \in G} \lambda(g) K_r(Q(g))$$

is a positive multiple of a projection. Since $\lambda(g^{-1}) = \overline{\lambda(g)}$, C_r is hermitian. Thus, $C_r \ge 0$. Let c_r be the principal submatrix of C_r^T corresponding to Ω , i.e.,

$$c_r = \sum_{g \in G} \lambda(g) k_r(Q(g^{-1})).$$

⁽¹⁾ Part of this work was done while the author was a National Academy of Sciences— National Research Council Postdoctoral Research Associate at the National Bureau of Standards Washington, D.C. 20234.

R. MERRIS

Certainly, $c_r \ge 0$. Let $\sigma(X)$ be the sum of the elements of X. Finally, let $A \circ B = (a_{ij}b_{ij})$ be the Hadamard product of A and B. The straight forward observation that $r!e_r(A) = \sigma(c_r \circ k_r(A))$ has been made in [2] and [3]. The Theorem now follows from (1) and the linearity of σ and Hadamard product.

References

1. Emilie V. Haynsworth, Applications of an inequality for the Schur complement, Proc. Amer. Math. Soc. 24 (1970) 512-516.

2. Russell Merris, A dominance theorem for partitioned hermitian matrices, Trans. Amer. Math. Soc. 164 (1972) 341-352..

NATIONAL BUREAU OF STANDARDS, Washington, D.C. 20234 California State University, Hayward, CA 94542

^{3.} ____, Inequalities for matrix functions, J. Algebra, 22 (1972) 451-460.