Plasma total homocysteine status of vegetarians compared with omnivores: a systematic review and meta-analysis

Derek Obersby1, David C. Chappell1, Andrew Dunnett2 and Amalia A. Tsiami1*

1University of West London, School of Psychology, Social Work and Human Sciences, Paragon House, Boston Manor Road, Brentford, Middlesex TW8 9GA, UK
2University of West London, West London Business School, Paragon House, Boston Manor Road, Brentford, Middlesex TW8 9GA, UK

(Submitted 17 May 2012 – Final revision received 5 October 2012 – Accepted 22 October 2012 – First published online 8 January 2013)

Abstract

There is strong evidence indicating that elevated plasma total homocysteine (tHcy) levels are a major independent biomarker and/or a contributor to chronic conditions, such as CVD. A deficiency of vitamin B12 can elevate homocysteine. Vegetarians are a group of the population who are potentially at greater risk of vitamin B12 deficiency than omnivores. This is the first systematic review and meta-analysis to appraise a range of studies that compared the homocysteine and vitamin B12 levels of vegetarians and omnivores. The search methods employed identified 443 entries, from which, by screening using set inclusion and exclusion criteria, six eligible cohort case studies and eleven cross-sectional studies from 1999 to 2010 were revealed, which compared concentrations of plasma tHcy and serum vitamin B12 of omnivores, lactovegetarians or lacto-ovovegetarians and vegans. Of the identified seventeen studies (3230 participants), only two studies reported that vegan concentrations of plasma tHcy and serum vitamin B12 did not differ from omnivores. The present study confirmed that an inverse relationship exists between plasma tHcy and serum vitamin B12, from which it can be concluded that the usual dietary source of vitamin B12 is animal products and those who choose to omit or restrict these products are destined to become vitamin B12 deficient. At present, the available supplement, which is usually used for fortification of food, is the unreliable cyanocobalamin. A well-designed study is needed to investigate a reliable and suitable supplement to normalise the elevated plasma tHcy of a high majority of vegetarians. This would fill the gaps in the present nutritional scientific knowledge.

Key words: Hyperhomocysteinaemia; Vitamin B12; Vegetarians; Omnivores

There are approximately four million vegetarians within the UK population. In addition 5% of British adults are practising semi-vegetarians, whose diet contains a greatly reduced intake of products of animal origin. Worldwide, there are 75 million vegetarians by choice and 1450 million by necessity. This agrees with the Foeds Standards Agency approximation of 25% of the world’s population consuming a largely vegetarian diet. The most commonly known vegetarians are vegan, lactovegetarian (LV) and lacto-ovovegetarian (LOV).

Hyperhomocysteinaemia (>15 μmol/l, as defined by Ravaglia et al.) has been shown to be linked with chronic conditions, among which is CVD. Other studies have shown that CHD is linked to homocysteine concentrations, with a substantial risk occurring at >10 μmol/l plasma total homocysteine (tHcy). Furthermore, each 5 μmol/l increase in plasma tHcy is associated with an approximate 20% increased risk of CHD events, irrespective of the diet. The present review sets out to determine the homocysteine and vitamin B12 status of vegetarians compared with omnivores, as they may be a group of the population who may have the potential to be at greater risk than omnivores to these homocysteine-related diseases. This is due to the lack of intake of animal produce, the only natural abundant source of vitamin B12, whose deficiency can raise homocysteine levels. Vitamin B12 is required in the important remethylation pathway, where homocysteine is remethylated to methionine in a reaction catalysed by the enzyme methionine synthase and the cofactor vitamin B12(12), but only in its

Abbreviations: LV, lactovegetarian; LOV, lacto-ovovegetarian; tHcy, total homocysteine; THF, 5-methyl tetrahydrofolate.

*Corresponding author: Dr A. Tsiami, email amalia.tsiami@uwl.ac.uk
methylcobalamin form. Homocysteine acquires a methyl group from 5-methyl tetrahydrofolate (THF), which is catalysed by the enzyme methylentetrahydrofolate reductase and folic acid/folate from the diet, which enters the remethylation pathway as THF, via dihydrofolate acid, which has been reduced to THF by the enzyme dihydrofolate reductase. The exact pathomechanisms of cobalamin deficiency that cause the typical clinical symptoms of vitamin B12 deficiency, especially the neurological symptoms, in human subjects have not been fully clarified. The methyl folate trap hypothesis has been widely accepted over decades, despite the difficulty in testing the theory in any meaningful way. The methyl trap hypothesis proposes that due to a vitamin B12 deficiency, folate can be trapped as methylfolate, which is metabolically inactive. This is due to the fact that vitamin B12 is required for the transfer of the methyl group from 5-methylTHF to form THF, so that it can return to the tetrahydrofolate pool for conversion to 5,10-methyleneTHF. As the transfer of the methyl group of 5-methylTHF to homocysteine is impaired in vitamin B12 deficiency, it results in a rise in homocysteine levels.

The RDA for vitamin B12 is 2.5 µg, of which the body stores considerable amounts (several mg) in the liver. The body recycles approximately 75% of vitamin B12 it uses; serum vitamin B12 starts to decline and plasma tHcy rises when the absorption of the ingested vitamin B12 input is less than that dissipated by the body. Thus, a delay of 5–10 years may separate the beginning of a vegetarian diet and the onset of deficiency symptoms that usually occur when serum vitamin B12 is reduced to below 150 pmol/l, which marks the onset of pernicious anaemia.

It is also noted that cell-surface receptors located in the ileum require free Ca to be able to enable the vitamin B12 absorption – intrinsic factor complex to aid absorption of vitamin B12.

Lack of Ca in the vegetarian diet could, therefore, inhibit vitamin B12 absorption. Prolonged Fe deficiency damages the gastric mucosa and promotes atrophic gastritis and gastric atrophy, including loss of gastric acid and intrinsic factor secretion and, therefore, diminished vitamin B12 absorption. As vegetarians have reduced Fe intake, this would cause vitamin B12 deficiency. Furthermore, vitamin B12 is excreted in the presence of high levels of soluble fibre (such as pectin), probably via an effect on the enterohepatic cycle of vitamin B12, a common feature of vegetarian diets. Furthermore, vegetarian diets contain high levels of n-6 PUFA, whilst they are low in n-3 PUFA. This imbalance, together with inherent low vitamin B12 levels and consequential high concentrations of plasma tHcy, can be shown to have a thrombotic tendency that raises the risk of developing CVD.

Hypothesis and objective

The hypothesis is that there is a correlation between levels of plasma tHcy and the intake of dietary animal produce, the only natural abundant source of vitamin B12.

The main objective of the present systematic review and meta-analysis is, therefore, to assess the plasma tHcy and serum vitamin B12 status of LV–LOV and vegans, as compared with omnivores, from a wide range of cohort and cross-sectional published studies that have met the set criteria.

Materials and methods

Electronic searches

The search engines selected were PubMed, as it contains entries from MEDLINE, EMBASE, JAMA, BMJ, Cochrane Databases and Lancet, together with Science Direct, ACP Journal Club, CCTR, AMED, Highwire Press and EBSCO host databases. A search for systematic reviews, meta-analyses, cohort case studies, cross-sectional studies and randomised controlled trials was carried out using the search terms ‘Hyperhomocysteinemia’; ‘Vitamin B12’; ‘Omnivores and vegetarians’; and ‘Supplementation with vitamin B12 to normalise homocysteine in vegetarians’; this revealed 443 entries for studies undertaken during the period from January 1999 to June 2011.

Participants

In the studies examined, omnivores were defined as individuals who consumed both plant and animal products. LV were defined as individuals who did not consume animal produce, but consumed dairy products. LOV had the same diet as LV, but they consumed eggs too. Vegans were defined as individuals who abstained from all types of animal products and semi-vegetarians were defined as individuals who occasionally included animal products in their diet.

Inclusion and exclusion criteria

The flow chart in Fig. 1 outlines the initial inclusion and exclusion criteria employed in the selection of six cohort case studies and eleven cross-sectional studies; this was followed by these studies being finally assessed by one author and checked by another for methodological validity employing standardised data extraction tools from JBI000308 with any disagreements being resolved through discussion with a third reviewer. All initially screened studies met these requirements and are included in the present systematic review and meta-analysis, and summarised in Table 1.

Statistical analyses

Data from the selected seventeen studies in the vast majority of cases have been calculated as mean values for each diet group. In the case of the small number of cases that employed median values, it has been assumed in the calculations that these are approximately equal to the mean value, and that, in the case of two studies, the small number of vegans has been included in the LV–LOV group. As the number (n) is < 30 for the group of the studies, comparison between groups has been undertaken by Student’s two-tailed unpaired test to determine the significant difference between the values of plasma tHcy and serum vitamin B12 for LV–LOV and vegans against omnivores. Table 2 summarises the calculated values.
Results
Of a total of 443 entries, the search revealed six cohort case studies and eleven cross-sectional studies, as summarised in Table 1.

Table 2 demonstrates that the primary outcome of the meta-analysis is that an inverse relationship exists between plasma tHcy and serum vitamin B₁₂ for all three diets, indicating that vegans have the highest mean plasma tHcy value of 16·41 (SD 4·80) μmol/l as well as the lowest mean serum vitamin B₁₂ value of 172 (SD 59) pmol/l.

LV–LOV exhibited a mean plasma tHcy value of 13·91 (SD 3·15) μmol/l and a mean serum vitamin B₁₂ value of 209 (SD 47) pmol/l. Omnivores recorded a mean plasma tHcy value of 11·03 (SD 2·89) μmol/l and a mean serum vitamin B₁₂ value of 303 (SD 72) pmol/l. Fig. 2 indicates the
Table 1. Details of the selected studies of plasma total homocysteine (tHcy) and serum vitamin B\textsubscript{12} status among omnivores, lactovegetarians or lacto-ovovegetarians and vegans (1999–2010) (Mean values and standard deviations; medians, 5th–95th percentiles and 25th–75th percentiles; geometric mean values and 95% confidence intervals)

<table>
<thead>
<tr>
<th>Study, date of publication and sex</th>
<th>Volunteers (n)</th>
<th>Average age (years)</th>
<th>Duration of being vegetarian (years)</th>
<th>Plasma tHcy (\textmu mol/l)</th>
<th>Serum vitamin B\textsubscript{12} (pmol/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Mean</td>
<td>sd</td>
</tr>
<tr>
<td>Haddad et al. (1999)(34)</td>
<td>Omnivores* 20 33·5</td>
<td>>1</td>
<td></td>
<td>8·0 1·9</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Vegans* 25 36·0</td>
<td>>1</td>
<td></td>
<td>7·9 1·5</td>
<td></td>
</tr>
<tr>
<td>Mann et al. (1999)(39)</td>
<td>Omnivores† 18 34·2</td>
<td>>1</td>
<td></td>
<td>11·0 2·5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lactovegetarians or lacto-ovovegetarians† 43 34·9</td>
<td>Not stated</td>
<td></td>
<td>15·8 9·3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Vegans† 18 33·0</td>
<td>Not stated</td>
<td></td>
<td>19·2 10·7</td>
<td></td>
</tr>
<tr>
<td>Krajcovicova-Kudlackova et al. (2000)(40)</td>
<td>Omnivores‡ 59 40·9</td>
<td>>1</td>
<td></td>
<td>10·2 0·3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lactovegetarians or lacto-ovovegetarians‡ 62 35·1</td>
<td>8·5 Mean</td>
<td></td>
<td>13·2 0·3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Vegans‡ 32 41·5</td>
<td>8·5 Mean</td>
<td></td>
<td>15·8 0·9</td>
<td></td>
</tr>
<tr>
<td>Herrmann et al. (2001)(41)</td>
<td>Omnivores‡ 44 23·0</td>
<td>>1</td>
<td></td>
<td>9·8 5·9–16·7</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lactovegetarians or lacto-ovovegetarians‡ 34 22·0</td>
<td>>1</td>
<td></td>
<td>11·0 5·7–20·8</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Vegans‡ 7 22·0</td>
<td>>1</td>
<td></td>
<td>15·2 9·3–18·5</td>
<td></td>
</tr>
<tr>
<td>Refsum et al. (2001)(45)</td>
<td>Omnivores* 126 41·0</td>
<td>>1</td>
<td></td>
<td>19·4 9·7–45·7</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lactovegetarians or lacto-ovovegetarians* 78 41·0</td>
<td>Not stated</td>
<td></td>
<td>22·0 9·6–48</td>
<td></td>
</tr>
<tr>
<td>Hung et al. (2002)(50)</td>
<td>Omnivores§ 45 38·0</td>
<td>>2</td>
<td></td>
<td>8·6 2·0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lactovegetarians or lacto-ovovegetarians§ 45 38·0</td>
<td>>2</td>
<td></td>
<td>11·2 4·3</td>
<td></td>
</tr>
<tr>
<td>Cappucio et al. (2002)(53)</td>
<td>Omnivores‖ 583 50·7</td>
<td>>1</td>
<td></td>
<td>11·2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lactovegetarians or lacto-ovovegetarians‖ 46 50·7</td>
<td>Not stated</td>
<td></td>
<td>15·1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Omnivores§ 669 50·7</td>
<td>>1</td>
<td></td>
<td>8·9</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lactovegetarians or lacto-ovovegetarians§ 92 50·7</td>
<td>Not stated</td>
<td></td>
<td>11·5</td>
<td></td>
</tr>
<tr>
<td>Bissoli et al. (2002)(35)</td>
<td>Lactovegetarians or lacto-ovovegetarians* 14 48·5</td>
<td>>5</td>
<td></td>
<td>17·4 11·1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Vegans 31 45·8</td>
<td>>5</td>
<td></td>
<td>26·9 24·1</td>
<td></td>
</tr>
<tr>
<td>Huang et al. (2003)(43)</td>
<td>Omnivores‡ 32 22·9</td>
<td>>1</td>
<td></td>
<td>9·8</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lactovegetarians or lacto-ovovegetarians‡ 37 28·9</td>
<td>>1</td>
<td></td>
<td>13·2</td>
<td></td>
</tr>
<tr>
<td>Herrmann et al. (2003)(36)</td>
<td>Omnivores* 79 46·0</td>
<td>>1</td>
<td></td>
<td>8·8 5·5–16·1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lactovegetarians or lacto-ovovegetarians* 53 40·0</td>
<td>>1</td>
<td></td>
<td>10·9 6·8–28·2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Vegans* 12 39·0</td>
<td>>1</td>
<td></td>
<td>14·3 6·5–52·1</td>
<td></td>
</tr>
<tr>
<td>Study, date of publication and sex</td>
<td>Volunteers (n)</td>
<td>Average age (years)</td>
<td>Duration of being vegetarian (years)</td>
<td>Plasma tHcy (μmol/l)</td>
<td>Serum vitamin B_{12} (pmol/l)</td>
</tr>
<tr>
<td>-----------------------------------</td>
<td>----------------</td>
<td>---------------------</td>
<td>--------------------------------------</td>
<td>----------------------</td>
<td>-----------------------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Mean</td>
<td>5th–95th percentiles</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>so</td>
<td>Median</td>
</tr>
<tr>
<td>Waldmann et al. (2003)(46)</td>
<td>45</td>
<td>44.6</td>
<td>>1</td>
<td>12.3</td>
<td>4.6–23.6</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vegans*</td>
<td>86</td>
<td>43.8</td>
<td>>1</td>
<td>13.4</td>
<td>6.0–82.5</td>
</tr>
<tr>
<td>Koebnick et al. (2005)(37)</td>
<td>109</td>
<td>44.5</td>
<td></td>
<td>14.7</td>
<td>12–18.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Omnivores*</td>
<td>38</td>
<td>44.5</td>
<td>>1</td>
<td>17.1</td>
<td>13–20.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vegans*</td>
<td>39</td>
<td>44.5</td>
<td>>1</td>
<td>18.5</td>
<td>13.5–29</td>
</tr>
<tr>
<td>Su et al. (2006)(47)</td>
<td>61</td>
<td>57.7</td>
<td></td>
<td>9.0</td>
<td>2.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Omnivores§</td>
<td>57</td>
<td>59.2</td>
<td>>5</td>
<td>11.0</td>
<td>3.3</td>
</tr>
<tr>
<td>Majchrzak et al. (2006)(42)</td>
<td>40</td>
<td>38.4</td>
<td></td>
<td>12.2</td>
<td>5.6</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lactovegetarians or lacto-ovo-vegetarians*</td>
<td>36</td>
<td>34.2</td>
<td><1 to >5</td>
<td>14.0</td>
<td>5.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vegans*</td>
<td>42</td>
<td>30.7</td>
<td><1 to >5</td>
<td>16.5</td>
<td>8.2</td>
</tr>
<tr>
<td>Karabudak et al. (2008)(48)</td>
<td>26</td>
<td>27.4</td>
<td></td>
<td>10.8</td>
<td>3.7</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Omnivores§</td>
<td>26</td>
<td>29.0</td>
<td>10.5 ± 6.7</td>
<td>12.6</td>
<td>6.0</td>
</tr>
<tr>
<td>Lactovegetarians or lacto-ovo-vegetarians§</td>
<td>28</td>
<td>35.9</td>
<td></td>
<td>9.6</td>
<td>2.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yen et al. (2010)(38)</td>
<td>21</td>
<td>34.8</td>
<td>>0.5</td>
<td>12.6</td>
<td>4.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Omnivores§</td>
<td>131</td>
<td>40.8</td>
<td></td>
<td>12.5</td>
<td>4.5</td>
</tr>
<tr>
<td>Lactovegetarians or lacto-ovo-vegetarians§</td>
<td>141</td>
<td>41.9</td>
<td>Not stated</td>
<td>16.5</td>
<td>5.6</td>
</tr>
</tbody>
</table>

* Mixed population of adult volunteers.
† Male adult volunteers only.
‡ Sex of volunteers not stated.
§ Female adult volunteers only.
| Combined measured levels of plasma tHcy and serum vitamin B₁₂ of lactovegetarians or lacto-ovo-vegetarians and vegans. |
relationship between plasma tHcy and serum vitamin B12 for the three diets.

Statistical heterogeneity

The null hypothesis states that the mean values of plasma tHcy and serum vitamin B12 for omnivores, LV–LOV and vegans are homogeneous. Table 3 reports the results of an ANOVA, which demonstrates that the null hypothesis can be rejected.

Table 2. Plasma total homocysteine (tHcy) and serum vitamin B12 levels of lactovegetarians or lacto-ovo vegetarians and vegans compared with omnivores from the selected seventeen studies shown in Table 1 (study by Cappuccio et al. (33) omitted)

<table>
<thead>
<tr>
<th>Diet</th>
<th>Plasma tHcy (µmol/l)</th>
<th>Serum vitamin B12 (pmol/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean</td>
<td>SD</td>
</tr>
<tr>
<td>Omnivores</td>
<td>11.03</td>
<td>2.89</td>
</tr>
<tr>
<td>Lactovegetarians or lacto-ovo vegetarians</td>
<td>13.91</td>
<td>3.15</td>
</tr>
<tr>
<td>Vegans</td>
<td>16.41</td>
<td>4.80</td>
</tr>
</tbody>
</table>

Discussion

A total of fifteen of the seventeen selected studies that met the inclusion and exclusion criteria showed a good agreement that serum vitamin B12 and plasma tHcy exhibit an inverse relationship. The study by Cappuccio et al. (33) did not monitor serum vitamin B12 levels. The study by Haddad et al. (34) concluded that, statistically, vegans had similar plasma tHcy to omnivores (i.e. 8.0 against 7.9 µmol/l, respectively) and serum vitamin B12 levels (i.e. 313 against 312 pmol/l, respectively). In this case, it was noted that 36% of the participating vegans were users of vitamin B12 supplements, although the type, dosage and frequency of usage were not reported. Nevertheless, this could confound the statistics, which have given a result that is incompatible with the other fifteen studies. Furthermore, a small proportion of LV–LOV and vegans were found to be consuming vitamin B12-fortified foods in the studies conducted by Bissoli et al. (35), Herrmann et al. (36) and Koebnick et al. (37). None of these studies recorded details regarding type, dosage and frequency of consumption. The conclusion reached by the respective researchers was that fortification does not lower plasma tHcy or increase serum vitamin B12 levels significantly.

The remaining studies stated that no vitamin B12 supplements had been used by the participants. Yen et al. (38) concluded that vegetarian parents and their preschool children had lower vitamin B12 intake than omnivorous parents and their preschool children, but had similar vitamin B12 and homocysteine concentrations. As far as the adults are concerned, these results are incompatible with the observations of six studies that compared LV–LOV, vegan and omnivores’ serum vitamin B12 and plasma tHcy levels (36,37,39–42). Huang et al. (43) concluded that vegetarians have lower vitamin B12 status than omnivores, leading to raised plasma tHcy, and that vitamin B6 and folate have little effect on plasma homocysteine concentration when individuals have adequate vitamin B6 and folate status. Kluijtmans et al. (30) and Sellheuy (11) demonstrated that hyperhomocysteinemia can be caused by a deficiency of folate. They also demonstrated that, normally, homocysteine elevation is much less affected in cases of vitamin B6 deficiency. However, Majchrzak et al. (42) have shown that in vegetarian diets and, particularly, in vegan diets, which contain relatively high levels of folate, folate deficiency is unlikely to occur, whereas omnivore diets are more predisposed to this. An exception to this is possibly seen in India, where traditionally folate deficiency has been linked to poverty, which may cause problems, with 33% of the population being vegetarians by necessity (44). There is strong
vegetarians in India contains only low proportions of animal
respectively). It is, however, noted that even the diet of non-

Furthermore, a significant proportion of LV–LOV subjects in
the study conducted by Koebnick et al.\(^\text{[57]}\) showed a hyperho-
mocysteinaemia condition, with a strong significance of

\[P < 0.001. \]

A total of ten studies\(^\text{[35,40–43,46–50]}\) reported that
vegans and/or LV–LOV were found to have plasma tHcy
> 10 \(\mu \text{mol/l} \) and serum vitamin B\(_12\) of > 150 \(\mu \text{mol/l} \) (i.e. not
deficient\(^\text{(21)}\)), although vegan and LV–LOV levels of serum
vitamin B\(_12\) were substantially lower than omnivores, with
mean values of 172 and 209 against 303 \(\mu \text{mol/l} \), respectively
(Table 2). This was generally in accordance with studies
conducted by Joosten et al.\(^\text{[51]}\) and Herrmann et al.\(^\text{(52)}\).

Refsum et al.\(^\text{(45)}\) reported that, in India, both omnivores and
LV–LOV have high plasma Hcy levels (i.e. 19.4 \(\mu \text{mol/l} \),
respectively), indicating hyperhomocysteinaemia together
with low serum vitamin B\(_12\) levels (i.e. 161.0 \(\mu \text{mol/l} \),
respectively). It is, however, noted that even the diet of non-
vegetarians in India contains only low proportions of animal
produce and hence relatively low amounts of vitamin
B\(_12\)\(^\text{(52)}\). Also, it is noted that a high proportion of the Indian
population is expected to have, in addition, folate deficiency.
This could be a contributing factor for the high levels of plasma
tHcy and low levels of serum vitamin B\(_12\) in Indian
omnivores. Furthermore, most vegetarians and omnivores in
India begin consuming essentially a vegetarian diet as infants,
which leads to low vitamin B\(_12\) intake, with the only source of
vitamin B\(_12\) coming from bacterial-contaminated food, for
most of their lives\(^\text{[53]}\). India has large proportions of its popu-
lation who suffer from malnutrition, tropical sprue and
gastrointestinal infections, which often result in malabsorp-
tion\(^\text{[54–56]}\). It would seem reasonable to deduce that the
high prevalence of vitamin B\(_12\) deficiency accompanied by
elevated plasma tHcy can only be expected for both omni-
vores and LV–LOV in India.

The examined studies took steps to eliminate possible well-
known confounding factors that may distort the results and
were appropriately adjusted for factors such as smoking,
age and sex. However, there is a minimal risk of distortion
due to inter-assay and inter-population bias and variability
in the present study. It can be clearly observed from Table 2
that there is an inverse relationship between plasma tHcy
and serum vitamin B\(_12\). Moreover, statistical evidence in
Table 2 indicates that vegans have the highest mean values
of plasma tHcy and the lowest mean levels of serum
vitamin B\(_12\). LV–LOV show intermediate levels, whereas
omnivores exhibit high level of serum vitamin B\(_12\) and the lowest
levels of plasma tHcy. This is compatible with work done by
Herbert & Das\(^\text{(21)}\). Studies undertaken by Gilles et al.\(^\text{(57)}\),
who researched British male omnivores, LV–LOV and
vegans, found that 226 omnivores had mean serum vitamin B\(_12\)
levels of 281 (95% CI 270, 292) pmol/l, 231 LV–LOV had mean
serum vitamin B\(_12\) levels of 182 (95% CI 175, 189) pmol/l and
232 vegans had mean serum vitamin B\(_12\) levels of 122 (95% CI
117, 127) pmol/l. Furthermore, work done by Herbert &
Das\(^\text{(21)}\), who studied vitamin B\(_12\) deficiency of LV, LOV,
vegans and semi-vegetarians from the American Vegetarian
Society, found that 92% of the vegans, 64% of the LV, 47%
of the LOV and 20% of semi-vegetarians had serum vitamin B\(_12\)
levels of ≤ 150 pmol/l, which indicates vitamin B\(_12\) deficiency\(^\text{(21)}\).

In the research carried out by Ueland et al.\(^\text{(6)}\), Humphrey
et al.\(^\text{(7)}\), Malinow et al.\(^\text{(8)}\) and Ubbink\(^\text{(9)}\), it was demonstrated
that a substantial risk of developing CHD exists at a plasma
tHcy level of > 10 \(\mu \text{mol/l} \) and that, furthermore, each
5 \(\mu \text{mol/l} \) increase in plasma tHcy is associated with an
approximately 20% increase risk of CHD events. This,
Together with the fact that the present study indicates that
there is an inverse relationship between plasma tHcy and
serum vitamin B\(_12\), is not unreasonable to deduce that these
derisk levels will be breached by some vegetarians well
before they reach the deficiency level of serum vitamin B\(_12\)
(≤ 150 pmol/l) and symptoms of pernicious anaemia usually
occur\(^\text{(21)}\). Levels at which this could occur apply to all veg-
etarian groups, with exception of Haddad et al.\(^\text{(34)}\), as can
be observed in Table 1. Meta-analyses conducted by the
Homocysteine Studies Collaboration\(^\text{(58)}\) and Wald et al.\(^\text{(59)}\)
have demonstrated that lowering homocysteine concentra-
tions by 3 \(\mu \text{mol/l} \) substantially reduces the risk of CVD.
Moreover, Ward et al.\(^\text{(60)}\) showed that there is a benefit to
health in reducing the risk of primary CVD by lowering homo-
cysteine levels. In contrast, The Heart Outcome Prevention
Evaluation (HOPE 2) Investigation\(^\text{(61)}\) found that supplements
combining vitamin B\(_12\) and folic acid did not reduce the risk
of major secondary cardiovascular events in patients with
vascular disease.

Table 3. ANOVA table for differences of plasma total homocysteine and serum vitamin B\(_{12}\) between omnivores and vegans
and omnivores and lactovegetarians or lacto-ovo-vegetarians*

<table>
<thead>
<tr>
<th>Plasma total homocysteine</th>
<th>Sum of squares</th>
<th>df</th>
<th>Mean square</th>
<th>(P)</th>
<th>(F_{\text{nu}, 2, 36})</th>
<th>Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>Between groups</td>
<td>164·124</td>
<td>2</td>
<td>82·062</td>
<td>6·033</td>
<td>3·267</td>
<td>Significant: (P < 0·01)</td>
</tr>
<tr>
<td>Within groups</td>
<td>476·087</td>
<td>35</td>
<td>13·602</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>640·211</td>
<td>37</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Serum vitamin B(_{12})</th>
<th>Sum of squares</th>
<th>df</th>
<th>Mean square</th>
<th>(P)</th>
<th>(F_{\text{nu}, 2, 36})</th>
<th>Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>Between groups</td>
<td>112·389</td>
<td>2</td>
<td>56·195</td>
<td>14·42</td>
<td>3·267</td>
<td>Significant: (P < 0·001)</td>
</tr>
<tr>
<td>Within groups</td>
<td>136·349</td>
<td>35</td>
<td>3896</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>248·738</td>
<td>37</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Mean values utilised from Table 2.
A further finding is that the mean overall homocysteine level of vegans shown in Table 2 of 16.41 (SD 4.80) μmol/l (P<0.005) and mean serum vitamin B12 of 172 (SD 59) pmol/l (P<0.005) indicates that most vegans can be classified as being likely to suffer from hyperhomocysteinaemia due to a deficiency of vitamin B12 that will increase their risk of developing CVD. Moreover, LV–LOV with a mean overall homocysteine level of 13.91 (SD 3.15) μmol/l (P<0.025) and mean serum vitamin B12 of 209 (SD 47) pmol/l (P<0.005) also have an increased risk of developing CVD. Furthermore, omnivores from the results recorded in the present review (mean plasma tHcy 11.03 (SD 2.89) μmol/l can be considered generally to have a borderline increased risk of developing homocysteine-related CVD, probably due to inadequate status of folate [42]. Statistical tests (independent samples t tests and ANOVA) showed a significant difference in mean levels of tHcy and serum vitamin B12 between omnivores, LV–LOV and vegans. Whilst the diets of some vegetarians are aimed at the well-documented benefits of promoting health, due to the restriction or absence of food from animal origin, this as far as CVD is concerned is probably due to reduced saturated fat, lower total serum cholesterol levels, lower prevalence of obesity and slightly lower blood pressure, as compared with omnivores. However, this may not negate the risk of vegetarians with elevated plasma tHcy being susceptible to homocysteine-related CVD, as indicated by Ueland et al. [65], Humphrey et al. [17], Malinow MR, Bostom AG & Krauss RM (1999) Homocysteine level and coronary heart disease: a systematic review and meta-analysis. Mayo Clin Proc 83, 1203–1212. Malinow MR, Bostom AG & Krauss RM (1999) Homocysteine, diet, and cardiovascular disease: a statement for healthcare professionals from the Nutrition Committee, American Heart Association. Circulation 99, 178–182. Ubbink JB (2001) What is a desirable homocysteine level? In Homocysteine in Health and Disease, pp. 485–490 [R Carmel and DW Jacobsen, editors]. Cambridge: Cambridge University Press. Kluijtmans LA, Boers GH, Tribels FJ, et al. (1997) Common 844INS68 insertion variant in the cystathionine beta-synthase gene. Biochem Mol Med 62, 23–27. Selhub J (1999) Homocysteine metabolism. Annu Rev Nutr 19, 217–246. Dudman NPB, Guo X, Gordon RB, et al. (1996) Human homocysteine catabolism: 3 major pathways and their relevance to the development of arterial occlusive disease. J Nutr 126, 4 Suppl., 1295S–1300S. Herrmann W, Ocieb R, Schorr H, et al. (2005) The usefulness of holotranscobalamin in predicting vitamin B12 status in different clinical settings. Curr Drug Meta 6, 47–53. Herbert V & Zalusky R (1962) Interrelationship of vitamin B12 and folic acid metabolism: folic acid clearance studies. J Clin Invest 41, 1263–1276. Noronha JM & Silverman M (1962) On folic acid, vitamin B12, methionine and formiminoglutamic acid. In Vitamin B12

Acknowledgements

The present research received no specific grant from any funding agency in the public, commercial or not-for-profit sectors. There are no conflicts of interest to declare. The contribution made by D. O. was that of lead researcher and was responsible for the compilation of the manuscript. D. C. C. and A. A. T. were responsible for checking the methodological validity of the initially selected studies employing standardised data extraction tools from JBI-QARI and JBI-MASARI, with any disagreement being resolved through discussion with a third reviewer, together with checking the accuracy of the finalised manuscript. A. D. was responsible for providing information and advice on the treatment on the statistical aspects of the research.

References

and Intrinsic Factor 2. Europasches Symposium, p. 728

