
JFP 13 (2): 415–451, March 2003. c© 2003 Cambridge University Press

DOI: 10.1017/S0956796802004653 Printed in the United Kingdom

415

A fully adequate shallow embedding of the
π-calculus in Isabelle/HOL with mechanized

syntax analysis

CHRISTINE RÖCKL

LAMP–DI–EPFL, INR Ecublens, CH–1015 Lausanne, Switzerland

(e-mail: christine.roeckl@epfl.ch)

DANIEL HIRSCHKOFF

LIP – ENS Lyon, 46, allée d’Italie, F–69364 Lyon Cedex 7, France

(e-mail: Daniel.Hirschkoff@ens-lyon.fr)

Abstract

This paper discusses an application of the higher-order abstract syntax technique to general-

purpose theorem proving, yielding shallow embeddings of the binders of formalized languages.

Higher-order abstract syntax has been applied with success in specialized logical frameworks

which satisfy a closed-world assumption. As more general environments (like Isabelle/HOL

or Coq) do not support this closed-world assumption, higher-order abstract syntax may yield

exotic terms, that is, datatypes may produce more terms than there should actually be in the

language. The work at hand demonstrates how such exotic terms can be eliminated by means

of a two-level well-formedness predicate, further preparing the ground for an implementation

of structural induction in terms of rule induction, and hence providing fully-fledged syntax

analysis. In order to apply and justify well-formedness predicates, the paper develops a proof

technique based on a combination of instantiations and reabstractions of higher-order terms.

As an application, syntactic principles like the theory of contexts (as introduced by Honsell,

Miculan, and Scagnetto) are derived, and adequacy of the predicates is shown, both within a

formalization of the π-calculus in Isabelle/HOL.

1 Introduction

General-purpose theorem provers like Isabelle/HOL (Paulson, 1994b) or Coq (Bar-

ras et al., 2001), offer a wide range of sophisticated automatized proof-strategies

which might be beneficial to reasoning within and about programming languages

and calculi, once these have been formalized. It is often the case that the abstract

syntax of a language or calculus involves binders. For their treatment various

methodologies have been proposed, yet their application in practice needs to be

further investigated. This paper reports on such an exercise, using higher-order ab-

stract syntax and implementing bound variables on the meta-level of the prover, a

technique that so far has obtained rather little attention in general-purpose theorem

proving. We have developed our formalization in Isabelle/HOL, which is based

on higher-order intuitionistic logic and offers higher-order logic as an object-logic,

https://doi.org/10.1017/S0956796802004653 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004653

416 C. Röckl and D. Hirschkoff

including formalizations of fixpoints, induction, coinduction, sets, lists, etc. The main

motivation for choosing a general tool rather than a specialized logical framework

like λProlog (Nadathur & Miller, 1988) or Twelf (Pfenning & Schürmann, 1999) was

the broad range of available libraries as well as the automatic proof-support offered

by the former. Indeed, although setting up the syntax of languages with binders is

already a challenging task of its own, we believe that semantic reasoning based on

such a formalization necessitates a degree of generality in libraries and automation

of proofs currently only offered by general-purpose theorem provers such as Isabelle

or Coq. Our preference for a shallow embedding over a deep one, thus employing

the λ-calculus of the theorem prover to implement binders, was motivated by the

experience that setting up α-conversion and β-reduction1 by means of substitution is

a time-consuming and error-prone task. As a result, we obtain a formalization that

allows us to reason quite naturally about α-equivalence classes of terms. Of course,

the greater generality of our proof-environment with respect to specialized logical

frameworks does not come for free. There are four problems to be dealt with:

1. The structural induction principles automatically generated by Isabelle/HOL

from datatype definitions are too weak for syntax analysis in a higher-order

formalization. The natural structural induction principle for a datatype defi-

nition T ::= . . . | f : T1 → . . . → Tn → T | . . ., where we have to assume

that neither of the Ti contains T in a negative position, is of the following

form: for a term t of type T , a statement P (t) is justified provided that, for

all constructors f from the datatype definition, P (f(t1, . . . , tn)) can be inferred

from the induction-hypothesis that P (ti) holds for every ti of type T . As an

example, consider such a constructor f of arity n = 2, where T1 = T and

T2 = int→ T . One then has to infer P (f(t1, t2)) from P (t1) only (as t2 is not of

type T), which is usually too weak; a corresponding hypothesis for t2 would

be necessary. Yet, how should it look like, and how can it be obtained?

2. The search for an adequate induction-principle is further complicated by

the presence of exotic terms. Isabelle/HOL provides the axiom of choice

together with functions that are polymorphic in their result type, such as

conditionals. Such constructs can interfere with the datatype, which in turn

gives rise to exotic terms. From terms t1 and t2 of our example datatype

T above and standard conditional, for instance, we can construct an exotic

term f(t1, λx. if x = 0 then t1 else t2). Important syntactic principles are invalid

in the presence of exotic terms, including structural induction and specific

formulations of extensionality of equality (Hofmann, 1999; Honsell et al.,

2001b). We therefore have to find a means of ruling out exotic terms.

3. In the presence of exotic terms, adequacy of the formalization certainly be-

comes questionable. Having established a procedure separating well-formed

terms from exotic ones, one still has to show that no more exotic terms are left

(or at least not those doing harm), which intrinsically provides an adequacy

proof.

1 Building on the λ-calculus, we use “β-reduction” to refer in general to the mechanism used in the
language to instantiate parameters by values.

https://doi.org/10.1017/S0956796802004653 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004653

A fully adequate shallow embedding of the π-calculus 417

4. Finally, in syntax analysis one often explicitly refers to bound variables, yet

this is not possible in higher-order abstract syntax, where α-equivalence classes

of terms are considered rather than simple terms. In order to perform syntax

analysis nevertheless, one has to find suitable instantiations of the term classes.

Of course, these four problems are related. For instance, syntactic as well as

suitable induction principles for higher-order abstract syntax can be axiomatized

if there are no exotic terms (Honsell et al., 2001a, 2001b); weak object-logics

guarantee for the absence of exotic terms (Hofmann, 1999; Honsell et al., 2001b;

McDowell & Miller, 2001) but necessitate adequacy proofs outside the framework;

and strong object-logics provide the power that is necessary for adequacy proofs,

but produce exotic terms. So far, work on higher-order abstract syntax has mainly

concentrated on logical frameworks that automatically exclude exotic terms (Honsell

et al., 2001b; McDowell & Miller, 2001; Schürmann, 2001), providing category-

theoretical justifications of their adequacy. In this paper we follow an alternative

approach, originally proposed by Despeyroux & Hirschowitz (1994) and Despeyroux

et al. (1995). Building on a strong object-logic, we have to accept that exotic terms

can be derived, but exclude them by means of an inductive well-formedness predicate.

This predicate in turn allows us to perform induction over the syntax of well-formed

processes and to derive an adequacy proof within the framework. To our knowledge,

this is the first full-scale analysis of higher-order abstract syntax within a theorem

prover using a two-level well-formedness predicate both deriving adequacy and

the underlying theory of contexts ((Despeyroux & Hirschowitz, 1994) present an

adequacy proof for an ω-chain of well-formedness predicates, which allows them to

give a more succinct adequacy proof without using the theory of contexts, but which

entails the use of lists of names.) We have chosen the π-calculus as a paradigmatic

object-language; it is a non-trivial example exposing typical features of programming

languages with binders, yet it is small enough to be tractable in a formalization

like ours. Further it is a nominal calculus, that is, processes only appear in positive

position in a higher-order abstract syntax. Higher-order languages such as the λ-

calculus have to be nominalized before they can be treated similarly in Isabelle/HOL

or Coq, for which there exists a standard approach introducing variables, see, for

instance, Despeyroux & Hirschowitz (1994).

Contributions

We address the four above-mentioned questions as follows. We specify inductive

well-formedness predicates on the object-level, which (1) allow us to mimic structural

induction by rule induction and (2) rule out exotic terms. All this finally yields (3) an

adequacy result stating that our well-formed terms correspond to the α-equivalence

classes of a straightforward first-order abstract syntax. To compare our higher-

order terms with their first-order counterparts, we (4) instantiate them with fresh

parameters which we abstract over again later, to establish the original binding-

structure. This coercion technique amounts to selecting a specific representative

of the α-equivalence class of a process specified in higher-order abstract syntax.

Probably the main contribution of this paper is the exploitation of rule induction

https://doi.org/10.1017/S0956796802004653 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004653

418 C. Röckl and D. Hirschkoff

and variable coercion to derive within our framework the theory of contexts for the

π-calculus, which was originally introduced in Honsell et al. (2001b). Note that in

the adequacy proof we make use of the theory of contexts, and apply essentially

the same proof techniques that we have used for its derivation. Further note that

we restrict our well-formedness predicates to two levels of abstraction, instead of

specifying a chain of predicates. Induction proofs therefore require an elaborate use

of fresh parameters, and adequacy is not straightforward. On the other hand, this

approach saves us from manipulation of lists of parameters, and further induction

over the length of these lists, which would at least significantly increase the size

of the proofs, if not make them completely untractable. The material presented

in this paper has been fully formalized in Isabelle/HOL. Significant parts of the

proof scripts are given in the appendix, so to allow for a reconstruction of the

formalization in Isabelle/HOL or related provers.

Related work

Higher-order abstract syntax has been approached from several viewpoints. A

category-theoretical background is provided, for instance, in Fiore et al. (1999), Hof-

mann (1999) and Bucalo et al. (2001). Specialized logical frameworks are presented,

for instance, in McDowell & Miller (2001), Pfenning (1989) and Pfenning & Schuer-

mann (1998). In Honsell et al. (2001b), Coq is used as such a logical framework for

a formalization of the π-calculus, and the theory of contexts is axiomatized, justified

by a model-theoretic adequacy argument, further supported by Hofmann (1999) and

Honsell et al. (2001a). The present paper presents an alternative proof of the theory

of contexts, using well-formedness predicates as they were first proposed in Despey-

roux et al. (1995). With respect to that work, we give a formal justification of the fact

that two-level well-formedness predicates are enough to provide adequacy, and we

derive induction schemes for them. As this paper touches diverse areas of research,

more pointers to related work are given along the text where appropriate. Parts of

the material discussed in this paper have been presented in Röckl et al. (2001).

Overview

The paper is organized as follows. Section 2 introduces the basic principles of

first-order and higher-order abstract syntax, and relates the two approaches to

deep and shallow embeddings in general-purpose theorem provers. Further, some

of the necessary features of Isabelle/HOL are described. Section 3 presents the π-

calculus along with two formalizations of its syntax in Isabelle/HOL, one in a very

straightforward deep embedding and the other in a shallow embedding. Sticking to

representations of the π-calculus on paper as closely as possible, the deep embedding

serves as a reference for proving the adequacy of the shallow embedding. In section 4

we derive the theory of contexts for our shallow embedding, making extensive use of

induction over the well-formed terms and of coercion of bound variables. Section 5

completes the analysis of our shallow embedding by presenting the formalization of

an adequacy proof. Section 6 concludes the paper and discusses related topics.

https://doi.org/10.1017/S0956796802004653 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004653

A fully adequate shallow embedding of the π-calculus 419

For the reader interested in the Isabelle code of the definitions and proof scripts,

the appendix should provide enough material to reconstruct the formalization.

Appendix A introduces a specification of parameters, requiring a suitable set to be

countably infinite yet leaving open unnecessary details. Appendices B and C present

both deep and shallow embeddings; the mechanization of the theory of contexts

and the adequacy result are given in Appendix D and E.

2 Formalizing languages with binders

In this section we introduce some terminology from language specification and

theorem proving that we will use throughout the paper. In particular, we refer to

two taxonomies, one from language specification distinguishing between first-order

abstract syntax and higher-order abstract syntax, and the other from theorem proving

providing the terms deep embedding and shallow embedding. Readers familiar with

the terminology and Isabelle/HOL can skip sections 2.1–2.3. Whereas the notions of

first-order and higher-order abstract syntax are clearly separable, there are varying

degrees of depth and shallowness of embeddings in a theorem prover. These may

result in a controversial application of terminology. Formalizing a language using

a recursive datatype to represent its syntax is usually referred to as a deep em-

bedding. However, the identification of certain object-variables with meta-variables

to implement binders, introduces a form of shallowness into the formalization that

clearly distinguishes it from a purely deep embedding. Note that there certainly

exist encoding strategies providing higher degrees of shallowness than the way we

proceed here, yet we would like to emphasize the fact that such an embedding is

indeed shallow for the following reasons: first, a formalization of a higher-order

abstract syntax does not necessarily yield a shallow embedding of the binders, as

demonstrated by Gordon & Melham (1996) and Gay (2001) (we shall return to this

below); second, a shallow embedding of the binding constructs of a language entails

specific problems that result precisely from this shallowness.

Historical remark

The term higher-order abstract syntax was introduced in Pfenning & Elliot (1988),

with its basic principles going back to Church (1940), and since then has mostly been

used in the context of logical frameworks like λProlog (Miller, 1991; Miller, 1990;

McDowell & Miller, 2001) or Twelf (Pfenning, 1996; Pfenning, 1999; Pfenning &

Schürmann, 1999), but also in Coq (Despeyroux & Hirschowitz, 1994; Despeyroux

et al., 1995; Despeyroux, 2000; Honsell et al., 2001b).

The distinction between deep and shallow embeddings was first made in Boulton et

al. (1992), discussing the formalization of hardware description languages in HOL.

There the term shallow is used to describe an embedding of the semantics of the

object-language, using the syntactic infrastructure from the underlying meta-level

instead of specifying a syntax in terms of a recursive datatype. Since then the term

has been used to describe various levels of access to the meta-level, for instance

to implement the binding character of quantifiers. The shallow representation of

binding as we use it here is discussed, for instance, in Melham (1995).

https://doi.org/10.1017/S0956796802004653 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004653

420 C. Röckl and D. Hirschkoff

Table 1. Some formalizations of the π-calculus in theorem provers and logical

frameworks

Deep embedding Shallow embedding of binders

First-order (Melham, 1995; Aı̈t-Mohamed,

1996; Hirschkoff, 1997; Henry-

Gréard, 1999; Röckl, 2001)

Higher-order (Gordon & Melham, 1996; Gay,

2001; Gillard, 2001)

(Miller, 1992; Honsell et al., 1998;

Despeyroux, 2000; Honsell et al.,

2001b; Miller, 2001; Röckl et al.,

2001)

A note on literature

Table 1 gives an overview of formalizations of the π-calculus, specifying datatypes

either in first-order abstract syntax or in higher-order abstract syntax. Combining

this distinction with the decision to implement bound names in terms of object-

variables or meta-variables, this yields either a purely deep embedding or a shallower

one. At present we are not aware of any formalization of the π-calculus using a

higher degree of shallowness than for the implementation of binders.

2.1 Meta-level and object-level

It is common lore that logical reasoning involves a semantic meta-logic within which

one argues about a syntactic object-logic. To illustrate this distinction, let us consider

the following examples:

1. In a model-theoretic argument that Church’s Simple Theory of Types is a

suitable framework for implementing languages with binders, as is done in

Honsell et al. (2001), model theory is the meta-logic used to reason about the

Simple Theory of Types as an object-logic.

2. It is well possible to reason about higher-order classical logic within higher-

order classical logic, where of course one has to make a clear distinction

between the meta-logic in which the constructs really have a meaning, and the

purely syntactic object-logic.

3. Theorem provers implement a meta-logic which users apply when formalizing

an object-logic. Isabelle, for instance, provides higher-order intuitionistic logic,

whereas Coq is based on the Calculus of (Co)Inductive Constructions; λProlog

is based on higher-order hereditary Harrop formulas, and Twelf implements

LF. The implementors of Isabelle further provide a variety of object-logics,

such as higher-order logic (Isabelle/HOL) or Zermelo–Fraenkel set-theory

(Isabelle/ZF), that can be extended by the user.

https://doi.org/10.1017/S0956796802004653 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004653

A fully adequate shallow embedding of the π-calculus 421

Analogously, we speak of a meta-level and an object-level, the former consisting of

the meta-logic, and the latter referring to the object-logic. There are two kinds of

variables, two kinds of constants, two kinds of quantifiers, etc. In order to emphasize

the distinction, we use x, y, . . . to refer to meta-level variables (meta-variables in short),

and x, y, . . . for object-level variables (or object-variables).

Hierarchies

There does not necessarily have to be one single meta-level and one single object-

level, but there can be a hierarchy of levels l1, . . . , ln, where each li is an object-level

with respect to li−1 and a meta-level with respect to li+1. Level l1 represents a meta-

level that can be considered as the basic level of reasoning. Let us make this more

concrete in terms of our above examples:

1. Honsell et al. (2001b) formalize the π-calculus in the calculus of inductive

constructions, using the latter as a meta-logic for the former. The above-

mentioned model-theoretic justification of the adequacy of the formalization

entails a three-level hierarchy (if one identifies the meta-level provided by the

Coq system with the Calculus of (Co)Inductive Constructions as treated on

paper in Honsell et al. (2001a).

2. In this paper, we stay within a two-level hierarchy, using higher-order intuition-

istic logic (as provided by Isabelle) as a meta-level and extending higher-order

logic on the object-level with suitable constant definitions for the π-calculus.

3. This allows us to formalize in a natural way our complete argument in

Isabelle/HOL, sticking to the prover’s meta- and object-level. Of course, it

is also possible to use theorem provers in a hierarchical way. For example,

Gordon & Melham (1996) specify a λ-calculus in the theorem prover HOL, and

promote this object-logic as a meta-logic for specifying languages. Gay (2001)

follows the same idea in a formalization of the π-calculus in Isabelle/HOL.

2.2 First-order and higher-order abstract syntax, deep and shallow embeddings

When specifying language constructs in a logic, one always has the choice to remain

fully on the object-level or to make use of facilities from the meta-level, for instance,

its type-system or the λ-calculus it implements. This gives rise to two taxonomies,

one relating first-order and higher-order abstract syntax, and the other dealing with

deep and shallow embeddings.

First-order and higher-order abstract syntax

Recursive datatype definitions of languages with binders can either be given a first-

order abstract syntax, such as T ′ ::= . . . | f : T ′ → int → T ′ → T ′ | . . . for our

example from the introduction. Here only first-order functions into T ′ are used.

Hence there is no distinction on a syntactic level between binding and non-binding

operators. Using higher-order abstract syntax, on the other hand, binders bear

higher-order functions, such as T ::= . . . | f : T → (int → T) → T | . . . in our

https://doi.org/10.1017/S0956796802004653 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004653

422 C. Röckl and D. Hirschkoff

example. The main difference is that in a first-order abstract syntax, α-conversion

and β-reduction are treated on the object-level, whereas in a higher-order abstract

syntax, they are delegated to the meta-level.

Deep and shallow embeddings

Theorem provers provide meta-logics, upon which users can specify their object-

logics. Theories remaining fully on the object-level are called deep embeddings.

Shallowness appears whenever some aspects of the theory being formalized are left

outside the object-level, possibly through an application of meta-level constructs.

For instance, binders can be implemented by identifying certain object-variables

with meta-variables (that is, variables bound by the abstraction operator of the

meta-logic). Or, meta-level types are used to express types from the object-language.

Note that there are various degrees of shallowness. In this paper, we implement

the binders of the π-calculus in a shallow way by identifying the object-variables

with meta-variables, but otherwise formulate the calculus as a datatype. Shallowness

usually results in a higher degree of automation, yet on the other hand disallows

direct reasoning about the constructs being manipulated.

Adequacy

Neither for higher-order language specifications nor for shallow embeddings, it is

necessarily clear that the formalization precisely corresponds to the object-language.

Depending on the axioms and constants of the object-logic, we will see in Section 3.4

that a higher-order abstract syntax can give rise to exotic terms, see also Hofmann

(1999), Honsell et al. (2001b) and Schuermann (2001). And the more shallow an

embedding is, the less clear is its connection with the original language. This adequacy

problem has to be adressed by establishing the existence of a bijection between the

object-language and its formalization. This can either be done in a more abstract

way, for instance using a category theoretical argument as is done in Hofmann

(1999), or in a more specific way by establishing transformation functions, as we

shall do in section 5.

2.3 Isabelle/HOL: an overview

Isabelle is a generic theorem prover, and as such is based on a small kernel

implementing higher-order intuitionistic logic as a meta-logic (Paulson, 1994b). On

top of that, the theorem prover offers a variety of object-logics, ranging from first-

order logic (Isabelle/FOL) and higher-order logic (Isabelle/HOL) to the calculus

of constructions (Isabelle/CC) or Zermelo-Fraenkel set-theory (Isabelle/ZF). For a

complete overview of the object-logics, see Paulson (1993) and the Isabelle homepage

at http://isabelle.in.tum.de/.

Proofs in Isabelle are based on unification, and are usually conducted in a

backward chaining style: the user formulates the goal he/she intends to prove, and

then – in interaction with Isabelle – continuously reduces it to simpler subgoals

https://doi.org/10.1017/S0956796802004653 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004653

A fully adequate shallow embedding of the π-calculus 423

until all of the subgoals have been accepted by the tool. Upon this, the original goal

can be stored in the theorem-database of Isabelle/HOL to be applicable in further

proofs. The prover offers various tactics, most of them applying to single subgoals.

The basic resolution tactic resolve tac, for instance, allows the user to instantiate a

theorem from Isabelle’s database so that its conclusion can be applied to transform

a current subgoal into instantiations of its premises. Besides these classical tactics,

Isabelle offers simplification tactics based on algebraic transformations. Powerful

automatic tactics heuristically apply the basic tactics to prove given subgoals. These

heuristics have in common that a provable goal is always transformed into a set of

provable subgoals; rules that might yield unprovable subgoals are only applied if

they succeed in terminating the proof of a subgoal.

In Isabelle/HOL, the user can define, for instance, recursive datatypes and in-

ductive sets. Isabelle then automatically computes rules for induction and case-

analysis. It should be noted that all these techniques have been fully formalized

and verified on the object-level, that is, they are a conservative generic extension of

Isabelle/HOL (Berghofer & Wenzel, 1999; Paulson, 1994a). A recent extension of

Isabelle/HOL allows function types in datatype definitions to contain strictly posi-

tive occurrences of the type being defined (Berghofer & Wenzel, 1999). This allows

for formalizations of programming languages using HOAS in a shallow embedding,

like the one we discuss in this paper. Isabelle/HOL implements an extensional

equality, =, which relates functions if they are equal for all arguments. We employ

this equivalence as syntactic equivalence of π-calculus processes.

3 The π-calculus

The π-calculus (Milner 1992, 1999) is a name-passing language based on CCS

(Milner, 1989), in which both communication-channels and messages sent along

these channels belong to a single type N, called names. This identification of

channels and values implies that a name received in a communication can be used

as a channel in a subsequent communication. As an example, consider the processes

!(ay.ȳc.0) and āx.xz.P . The former represents a very simple procedure that when

called along channel a with argument y emits a constant name c along the received

name. The replication-operator ! (called “bang”) denotes that there is an unlimited

number of copies of the process. The latter process is a client asking the procedure to

return its result along a name x. Put in parallel, the two processes can engage in the

following two communication steps, each of which is marked with the invisible action

τ (a judgment of the form P
µ−→ P ′ means that P can evolve to P ′ by performing

some action µ – here τ is a special action standing for an internal communication):

!(ay.ȳc.0) | āx.xz.P τ−→ !(ay.ȳc.0) | x̄c.0 | xz.P τ−→ !(ay.ȳc.0) | 0 |P {c/z}.
To ensure that the result is indeed returned to the caller – and not to some

interfering process – the π-calculus allows the client to create a local name by means

of a restriction (νx)(āx.xz.P), and then share it with the procedure as a private means

of communication:

!(ay.ȳc.0) | (νx)(āx.xz.P)
τ−→ (νx)(!(ay.ȳc.0) | x̄c.0 | xz.P)
τ−→ (νx)(!(ay.ȳc.0) | 0 |P {c/z}).

https://doi.org/10.1017/S0956796802004653 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004653

424 C. Röckl and D. Hirschkoff

Table 2. Free and bound names of processes

fn(0)
def
= ∅

fn(τ.P , !P)
def
= fn(P)

fn(āb.P , [a = b]P , [a 6= b]P)
def
= {a, b} ∪ fn(P)

fn(ax.P)
def
= {a} ∪ (fn(P)− {x})

fn((νx)P)
def
= fn(P)− {x}

fn(P + Q, P |Q)
def
= fn(P) ∪ fn(Q)

bn(0)
def
= ∅

bn(τ.P , !P)
def
= bn(P)

bn(āb.P , [a = b]P , [a 6= b]P)
def
= bn(P)

bn(ax.P)
def
= bn(P) ∪ {x}

bn((νx)P)
def
= bn(P) ∪ {x}

bn(P + Q P |Q)
def
= bn(P) ∪ bn(Q)

During the first communication, the scope of the local variable x is extended from

the client to the procedure. This mobility – i.e. the fact that the binding structure of a

process can change during its execution – is a paramount feature of the π-calculus,

which allows it to describe higher-order processes (Thomsen, 1990; Sangiorgi, 1992;

Amadio, 1993; Sangiorgi, 1996), functions (Milner, 1992; Sangiorgi, 1996), and

object-oriented and imperative languages (Walker, 1995; Kleist & Sangiorgi, 1998;

Röckl & Sangiorgi, 1999). Further, the π-calculus has served as a basis for concurrent

programming (Turner, 1995).

Names and processes

LetN be a countably infinite set of names. We consider a monadic π-calculus, with

output āb, input ax, and silent τ prefixes. Name a in āb and ax is usually referred to

as the subject, b and x are referred to as object of a prefix. Processes are built from

inaction 0 by applying either of the prefixes π.P , restriction (νx)P , choice P + Q,

parallel composition P |Q, matching [a = b]P and mismatching [a 6= b]P of names a

and b, and replication !P :

P ::= 0 | τ.P | āb.P | ax.P | (νx)P | P+Q | P |Q | [a = b]P | [a 6= b]P | !P .
Input ax.P and restriction (νx)P are the two binders of the π-calculus. As the

semantic analysis of processes is often based on the interplay between these two

operators, they obviously have a great impact also on a treatment of syntax.

Free and bound names

We use the common notions of free, bound and fresh names. In the π-calculus, a name

is bound if it is in the scope of an input-prefix or a restriction, otherwise it is free. A

name is fresh for a process if it does not occur among its free (and bound) names2.

Free and bound names can be determined by primitive recursive functions fn and bn,

which for the π-calculus are given in Table 2. For our example procedure and client,

we obtain free names fn(!(ay.ȳc.0)) = {a, c} and fn((νx)(āx.xz.P)) = {a} ∪ (fn(P) −
{x, z}), and bound names bn(!(ay.ȳc.0)) = {y} and bn((νx)(āx.xz.P)) = bn(P)∪{x, z}.

2 It is often a matter of taste whether freshness forbids bound names as well. Reasoning in a first-order
syntax is often easier if bound names are also excluded. In higher-order syntax, where α-equivalence
classes of processes are considered, freshness can only refer to free names. For more information, see
sections 2, 3.3 and 3.4.

https://doi.org/10.1017/S0956796802004653 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004653

A fully adequate shallow embedding of the π-calculus 425

In the π-calculus, this clear distinction between free and bound names is essential.

Consider again the procedure !ay.ȳc.0 and an instance (νx)(āx.xz.z̄b.0) of the client,

engaging in the following execution steps:

!ay.ȳc.0 | (νx)(āx.xz.z̄b.0)
τ−→ . . .

τ−→ (νx)(!ay.ȳc.0 | 0 | c̄b.0)
c̄b−→ (νx)(!ay.ȳc.0 | 0 | 0).

So far, we have tacitly assumed that x 6= c on a syntactic level. In fact, derivability

of the visible output-step relies on the fact that x 6= c. This emphasizes the static

binding-policy of the π-calculus,where α-conversion takes care that previously free

names do not become bound by a restriction. In contrast, CHOCS (Thomsen, 1990)

is based on dynamic binding, where the client can also send c to the procedure,

despite the restriction.

Semantics

In the examples above, we have applied a labelled transition semantics as introduced

in Milner et al. (1992). For the π-calculus, open, late and early semantics can

be distinguished, which are characterized by the order of the quantifiers in the

definitions of bisimulation-based observational equivalences; see Quaglia (1999)

for a good overview. Often, reduction semantics are presented instead of labelled

transition semantics. There, only silent transitions are considered as (reduction)

steps, and processes are identified modulo a structural congruence.

3.1 Formalizing the π-calculus

We now embark on our exercise of deriving a fully adequate shallow embedding

of the π-calculus in Isabelle/HOL. As pointed out in sections 1 and 2, this is

not a straightforward task, because with the theorem prover providing an open

world, exotic terms necessarily arise. To eliminate them and simultaneously obtain

sufficiently powerful induction-principles, we introduce a well-formedness predicate

based on ideas of Despeyroux et al. (1995). Then, to be able to prove within

Isabelle/HOL that our shallow embedding is fully adequate, we further formalize

the π-calculus in a deep embedding, introducing basic notions of substitution and

deriving parts of a theory of α-conversion, but only as far as this is necessary to

support the adequacy-proof later on. Section 3.3 presents the very straightforward

deep embedding, and section 3.4 describes the shallow embedding.

3.2 Formalizing names

Following standard conventions, we have chosen the set N of names to be at least

countably infinite. This is necessary to be able to pick a fresh name at will, or even

a set of fresh names, a technique which we make extensive use of in the proofs

in sections 4 and 5. Also the theory of contexts itself focuses around fresh names,

as will be seen in section 4. In the formalization, we do not restrict ourselves to a

specific type but use an axiomatic type-class inf class comprising all types T for

https://doi.org/10.1017/S0956796802004653 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004653

426 C. Röckl and D. Hirschkoff

which there exists an injection from IN into T. We neither require nor forbid the

existence of a surjection, see also our discussion in section 6. We then can derive that

for each type that can be proven to belong to this class, the following holds: given a

finite set of elements of such a type, there always exists an element (alternatively, a

set or list of elements) not in that set. As the set of free – and that of bound names,

if it can be computed – of a process is always finite, this result allows us to pick

fresh names whenever necessary. See Appendix A for the Isabelle code.

A note on notation

In this and the following sections, we use a, b, x, y, . . . to range over object-level names

(with respect to the processes) bound by universal quantifiers3, and a, b, x, y . . . to

denote meta-level names. In our deep embedding, both free and bound names are

represented on the object-level. In our shallow embedding, free names are represented

by object-variables and bound names by meta-variables (see also section 2). Further

we use fa and ffa to denote name-abstractions, that is, functions mapping one,

respectively two, names to names. Process-abstractions, that is, functions from names

to processes, are referred to by fP and ffP , respectively.

3.3 A deep embedding

In a deep embedding, processes are formalized fully on the object-level, including

input-prefix and restriction. This yields a straightforward correspondence with the

syntax presented at the beginning of section 3:

P ::= 0 Inaction | P + P Choice (Summation)

| τ.P Silent Prefix | P |P Parallel Composition

| āb.P Output Prefix | [a = b]P Matching

| ax.P Input Prefix | [a 6= b]P Mismatching

| (ν x)P Restriction | !P Replication

The structural induction-principle computed automatically by Isabelle/HOL is fully

viable as a basis for syntax analysis. Finding a suitable notion of substitution is

generally a hard task when giving a first-order syntax for a language with binders,

and has been the topic of various investigations (deBruijn, 1972; Gabbay & Pitts,

1999; McKinna & Pollack, 1993). As our first-order syntax principally serves the

purpose of showing that our higher-order syntax is fully adequate, we stick to a

very straightforward formulation of substitution, allowing us to define α-equivalence

and α-renaming to normalize processes. Normalization maps terms to a specified

representative of their α-equivalence classes. Appendix B presents major parts of the

Isabelle code.

3 Note, however, that these are meta-variables, because object-level quantifers in Isabelle/HOL are
formalized in a shallow way.

https://doi.org/10.1017/S0956796802004653 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004653

A fully adequate shallow embedding of the π-calculus 427

Free, bound and fresh names

With the deep embedding being a one-to-one translation into an Isabelle datatype

of the π-calculus processes introduced in Section 3, the functions from Table 2 com-

puting free and bound names can be used without modification in the formalization.

We use n(P) = fn(P) ∪ bn(P) to refer to the complete set of names occurring in P .

We consider a name as fresh in a process if it occurs neither among its free nor

bound names.

Counting binders

To determine whether two processes are α-equivalent, one has to choose a fresh name

at each point a binder is encountered along a path in the process tree; in different

paths, names can of course be reused. In order to supply sufficiently many fresh

names, one has therefore to compute the maximal number of binders along the paths

in the process tree. We do this in terms of a straightforward primitively recursive

function dbd. For each binder that is encountered, the current value for the subtree

is incremented; when two subtrees are joined by choice or parallel composition, the

maximum of the two depths is chosen.

Substitution

Following the most straightforward approach, we use a simple substitution that does

not perform α-conversion, and prevent name-capture by applying the side-condition

that all substitutes be fresh. Our substitution is based on a conditional rewriting of

names, following

a{c/d} def
= if a = d then c else a,

and is extended recursively for processes. We write P {c/d} to denote that c is

substituted for d in P . The definition follows the standard lines, for instance,

(āb.P){c/d} def
= a{c/d} b{c/d}.P {c/d}

(ab.P){c/d} def
= if b = d then a{c/d}b.P else a{c/d}b.P {c/d}.

To illustrate the problem of name-capture, consider ab.āc.0 with c 6∈ {a, b}, and

suppose that c is to be replaced by b. Hence, we obtain,

(ab.āc.0){b/c} = ab.(āc.0){b/c} because c 6∈ { a, b }
= ab.āb.0{b/c} because c 6= a

= ab.āb.0,

so that after the transformation, the emitted name b is bound by the input prefix.

Nevertheless, this definition can be used to formulate α-equivalence, α-conversion,

and normalization, and hence can serve as a basis for a “proper” notion of substi-

tution. In this paper, we restrict our attention to α-equivalence and normal-forms,

because they are sufficient for the adequacy-proof presented in section 5. We write

P {c1/d1, . . . , cn/dn} for a sequence of substitutions P {cn/dn} . . .{c1/d1}; or simply

P {xs} for xs = {c1/d1, . . . cn/dn}.

https://doi.org/10.1017/S0956796802004653 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004653

428 C. Röckl and D. Hirschkoff

α-equivalence

We specify two notions of α-equivalence, one very straightforward formalization

(written =α), and an implementation of it (written =ys
α) that uses lists (such as ys)

of fresh names to be instantiated for names underneath binders. For input, the two

formalizations yield the following rules:

P {c/b} =α P
′{c/b′} c 6∈ n(P)− {b} c 6∈ n(P ′)− {b′}

ab.P =α ab′.P ′
α3

P {hd(ys)/b} =tl(ys)
α P ′{hd(ys)/b′}

ab.P =ys
α ab′.P ′

α′3

It can be shown that the latter implements the former provided ys provides suffi-

ciently many distinct fresh names (the predicate nodups captures the fact that a list

does not have multiple occurrences of the same name):

P =ys
α P ′ dbd(P) 6 |ys| nodups(ys) ys ∩ (n(P) ∪ n(P ′)) = ∅

P =α P
′

The proof proceeds by rule induction over P =ys
α P ′. It is a straightforward case-

analysis using monotonicity properties of free and bound names with respect to

substitutions. In particular, we apply that n(P {c/d}) ⊆ {c} ∪ n(P), which follows

by induction on P . The proof has been formalized in Isabelle/HOL, and the proof

script consists of about 50 lines of code (see Appendix B).

Normalization

Like for α-equivalence, we specify a very straightforward notion of normalization

(nm(,)) as well as an implementation of it (nmm(,)). By normalization we mean

here the process of fixing a canonical (though not unique) representation of first-

order terms modulo α-equivalence. We will use the function in the adequacy-proof

to map processes to specific representatives of their α-equivalence classes determined

by the list of fresh names with which we instantiate bound variables. As both

normalization functions depend on our notion of substitution defined above, they

only yield correct results if the lists of names they use contain sufficiently many

distinct fresh names. As an example, consider the rules for input:

nm(ab.P , ys)
def
= a hd(ys).nm(P {hd(ys)/b}, tl(ys))

nmm(ab.P , xs, ys)
def
= nmm(a, xs) hd(ys).nmm(P , (hd(ys), b)xs, tl(ys))

By structural induction, we can derive that for a suitable list ys, the normalized

process nm(P , ys) coincides with its counterpart nmm(P , [], ys), and that both are

α-equivalent to the original process P :

dbd(P) 6 |ys| nodups(ys) ys ∩ n(P) = ∅
nm(P , ys) =α P

dbd(P) 6 |ys| nodups(ys) n(P) ∩ ys = ∅
nm(P , ys) = nmm(P , [], ys)

In fact, in both cases, stronger results have to be proved. The difficult part actually

https://doi.org/10.1017/S0956796802004653 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004653

A fully adequate shallow embedding of the π-calculus 429

Table 3. Computing the free names fns and depth of binders dbs of a process

fns (0) = ∅
fns (τ.P) = fns (P)

fns (āb.P) = {a, b} ∪ fns (P)

fns (ax.fP (x)) = {a} ∪ fnas (fP)

fns ((ν x)fP (x)) = fnas (fP)

fns (P + Q) = fns (P) ∪ fns (Q)

fns (P |Q) = fns (P) ∪ fns (Q)

fns ([a = b]P) = {a, b} ∪ fns (P)

fns ([a 6= b]P) = {a, b} ∪ fns (P)

fns (!P) = fns(P)

fnas (fP)
def
= { a | ∀b. a ∈ fns (fP (b)) }

fnaas (ffP)
def
= { a | ∀b. a ∈ fnas (λx. ffP (b, x)) }

dbs (0, c) = 0

dbs (τ.P , c) = dbs (P , c)

dbs (āb.P , c) = dbs (P , c)

dbs (ax.fP (x), c) = 1 + dbas (fP , c)

dbs ((ν x)fP (x), c) = 1 + dbas (fP , c)

dbs (P + Q, c) = max (dbs (P , c), dbs (Q, c))

dbs (P |Q, c) = max (dbs (P , c), dbs (Q, c))

dbs ([a = b]P , c) = dbs (P , c)

dbs ([a 6= b]P , c) = dbs (P , c)

dbs (!P , c) = dbs (P , c)

dbas (fP , c)
def
= dbs (fP (c), c)

was to find a suitable strengthenings; the proofs themselves are derived by tedious

but straightforward case-analyses:

∀ xs, ys. (dbd(P) 6 |ys| ∧ nodups(ys) ∧ ys ∩ (n(P) ∪ xs) = ∅
−→ nm(P {xs}, ys) =α P {xs}).

∀xs, ys. (dbd(P) 6 |ys| ∧ nodups(snd(xs)) ∧ nodups(ys) ∧ n(P) ∩ (fst(xs) ∪ ys) = ∅
−→ nm(P {xs}, ys) = nmm(P , xs, ys)).

3.4 A shallow embedding

In our shallow embedding, input and restriction make use of process-abstractions fP ,

that is, functions from names to processes. A corresponding datatype definition can

be directly given in Isabelle/HOL, similarly to the specifications used in Despeyroux

(2000) and Honsell et al. (2001b):

P ::= 0 Inaction | P + P Choice (Summation)

| τ.P Silent Prefix | P |P Parallel Composition

| āb.P Output Prefix | [a = b]P Matching

| ax.fP (x) Input Prefix | [a 6= b]P Mismatching

| (ν x)fP (x) Restriction | !P Replication

However, as pointed out in the Introduction and section 2, the structural induction-

principle automatically generated by the prover does not suffice for syntax analysis,

and exotic terms can be derived. As typical π-calculus examples, consider the

following process-abstractions:

fE
def
= λ(x : names). if x = a then 0 else ay.0,

fW
def
= λ(x : names). ay.0.

The term fE is exotic, because it is built from an object-level conditional (and

not from a π-calculus conditional, which we represent in terms of matching and

mismatching), whereas fW can be considered as valid, or well-formed. For the

Isabelle sources, see Appendix C.

https://doi.org/10.1017/S0956796802004653 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004653

430 C. Röckl and D. Hirschkoff

Table 4. Well-formed processes

wfp (0)
W0

wfp (P)

wfp (τ.P)
W1

wfp (P)

wfp (āb.P)
W2

wfpa (fP)

wfp (ay.fP (y))
W3

wfpa (fP)

wfp ((ν y)fP (y))
W4

wfp (P) wfp (Q)

wfp (P + Q)
W5

wfp (P) wfp (Q)

wfp (P |Q)
W6

wfp (P)

wfp ([a = b]P)
W7

wfp (P)

wfp ([a 6= b]P)
W8

wfp (P)

wfp (!P)
W9

Free and fresh names, depth of binders

As pointed out in section 2, we are dealing with α-equivalence classes of processes

rather than with specific terms. As a consequence, we can compute the set of

free names by applying a closure to process abstractions, but we cannot compute

bound names. For instance, to compute the free names of an input-prefix ax.fP (x),

we have to determine those of the process-abstraction fP first, which we do by

considering all possible instantiations: fnas (fP)
def
= { a | ∀b.a ∈ fns (fP (b)) }. Universal

quantification is necessary to eliminate those names that were merely used to

instantiate meta-variables during the computation. As an example, consider the

process ay.āy.0. Instantiations of λy. āy.0 with some b and c yield fns (āb.0) = {a, b}
and fns (āc.0) = {a, c}. The intersection over all such sets clearly preserves the actual

set of free names {a}. Hence, we obtain fns (ay.āy.0) = {a}. Table 3 presents the

functions used to compute the free names of a process, as well as its depth of

binders. Again, the latter will be necessary to determine the amount of fresh names

needed for analysing a given process.

Well-formedness

Tables 4, 5 and 6 specify the well-formedness predicates which we apply to rule

out exotic terms like fE , and simultaneously to mimic structural induction by rule

induction. Following ideas of Despeyroux et al. (195), we use a two-level predicate

applying a closure via universal quantification to process-abstractions with binders.

As an example, consider the rule for input-prefix:

wfna (fa) ∀ b. wfpa (λx. ffP (b, x)) ∀ b. wfpa (λx. ffP (x, b))

wfpa (λx. fa(x)y.ffP (y, x))
Wa

3

We will see in section 5 that well-formed processes indeed represent a fully adequate

encoding of the π-calculus. The reason is that the closure we specify for input-

prefix and restriction defines a natural transformation on the domain of those

process-abstractions corresponding to terms in a first-order syntax.

4 Deriving the theory of contexts

The theory of contexts by Honsell et al. (2001b) presents three syntactic properties

that are necessary for the semantic analysis of the π-calculus, and has been proved

on paper by Hofmann (1999) and Honsell et al. (2001a). For the π-calculus, it yields

the following intuitive description:

https://doi.org/10.1017/S0956796802004653 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004653

A fully adequate shallow embedding of the π-calculus 431

Table 5. Well-formed process-abstractions

wfpa (λx. 0)
Wa

0

wfpa (fP)

wfpa (λx. τ.fP (x))
Wa

1

wfna (fa) wfna (fb) wfpa (fP)

wfpa (λx. fa(x)fb(x).fP (x))
Wa

2

wfna (fa) ∀ b. wfpa (λx. ffP (b, x)) ∀ b. wfpa (λx. ffP (x, b))

wfpa (λx. fa(x)y.ffP (y, x))
Wa

3

∀ b. wfpa (λx. ffP (b, x)) ∀ b. wfpa (λx. ffP (x, b))

wfpa (λx. (ν y)ffP (y, x))
Wa

4

wfpa (fP) wfpa (fQ)

wfpa (λx. fP (x) + fQ(x))
Wa

5

wfpa (fP) wfpa (fQ)

wfpa (λx. fP (x) | fQ(x))
Wa

6

wfna (fa) wfna (fb) wfpa (fP)

wfpa (λx. [fa(x) = fb(x)].fP (x))
Wa

7

wfna (fa) wfna (fb) wfpa (fP)

wfpa (λx. [fa(x) 6= fb(x)].fP (x))
Wa

8

wfpa (fP)

wfpa (λx. !fP (x))
Wa

9

Table 6. Well-formed names-abstractions

wfna (λx. x)
Wn

1 wfna (λx. a)
Wn

2

wfnaa (λ(x, y). x)
Wn

3 wfnaa (λ(x, y). y)
Wn

4 wfnaa (λ(x, y). a)
Wn

5

(Mon) Monotonicity: If a name a is fresh in an instantiated process-abstraction

fP (b), it is fresh in fP already.

(Ext) Extensionality: Two process-abstractions fP and fQ are equal, if their in-

stantiations with a fresh name a are equal.

(Exp) β-Expansion: Every process P can be abstracted over an arbitrary name a,

yielding a suitable process-abstraction.

A formal representation involving the well-formedness predicates from the previous

section is given in Table 7. Indeed, extensionality of contexts (Ext) only holds

for well-formed process-abstractions; applying (Ext) to exotic terms like fE from

section 3.4 yields an inconsistency, because fE(b) = fW (b) for all b 6= a yet fE(a) 6=
fW (a). The necessity of the well-formedness predicates in (Ext) further yields that

(Exp) has to be strengthened by restricting it to well-formed processes as well.

4.1 Proof techniques

In the following, we derive the theory of contexts for the π-calculus within our

formalization in Isabelle/HOL. For excerpts of the code see Appendix D. We mimic

the missing structural induction-principles in terms of rule induction over the well-

formedness predicates. Binders are treated differently on the two levels. In order

to prove a property P of well-formed processes ax.fP (x) and (νx)fP (x), we refer

to the corresponding property P ′ for well-formed process abstractions fP ; whereas

in order to prove P ′ of well-formed process-abstractions λy. fa(y)x.fP (y, x) and

λy. (νx)fP (y, x), we apply the closure given by the universal quantification in rules

Wa
3 and Wa

4. Fresh names play a vital role both in the statement of the theory of

https://doi.org/10.1017/S0956796802004653 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004653

432 C. Röckl and D. Hirschkoff

Table 7. Formalizations of monotonicity, extensionality, and β-expansion

fresh (a, fP (b))

fresha (a, fP)
(Mon)

fresha (a, λx. ffP (b, x))

freshaa (a, ffP)
(Mona)

wfpa (fP) wfpa (fQ) fresha (a, fP) fresha (a, fQ) fP (a) = fQ(a)

fP = fQ
(Ext)

wfp (P)

∃ fP . wfpa (fP) ∧ fresha (a, fP) ∧ P = fP (a)
(Exp)

contexts as well as in our proof thereof. We use fresh names to uniquely instantiate

process-abstractions underneath binders, so that we are able to reabstract over them

after analysis. We apply this proof technique extensively in the proof of (Exp), where

we use a transformation function which, like the normalization function presented

in section 3.3, works by picking up fresh names from a list. Indeed, instantiating a

higher-order process with fresh names amounts to converting it to a representative

of the α-equivalence class determined by it. Note that (Exp) cannot be proved

immediately in our framework, because the existential quantifier in its conclusion

yields an induction-hypothesis that is too weak in the case of well-formed process

abstractions with binders, where induction is closed by the two universal quantifiers.

For this reason, we have to work with a specific transformation function.

4.2 Free and fresh names

The following basic results will be used in the proofs of (Ext) and (Exp) in order to

create fresh names, so we summarize them here. Laws (f6) and (f7) express that a

name a which is fresh for a well-formed process-abstraction, is necessarily fresh for

every instantiation except a (finite is a predicate capturing the finiteness of a set). (f6)

is proved by induction over wfpa, and all cases are proved automatically by Isabelle;

(f7) can then be derived as a corollary, by a single call to an automatic tactic.

(f1) ∃ b. a 6= b (f2)
finite (A)

∃ b. b 6∈ A
(f3) finite (fns (P)) (f4) finite (fnas (fP)) (f5) finite (fnaas (ffP))

(f6)
wfpa (fP) fresha (a, fP) c 6= a

fresh (a, fP (c))

(f7)
∀b. wfpa (λx. ffP (b, x)) ∀b. wfpa (λx. ffP (x, b)) freshaa (a, ffP) c 6= a

fresha (a, λx. ffP (c, x))

4.3 Monotonicity

The monotonicity law, see (Mon) in Table 7, is implicitely encoded in our formaliza-

tion. That is, a name a is only free in a process-abstraction fP according to fnaas, if

it is free in every instantiation; hence for a to be fresh in fP , it suffices to present a

single name b as a witness for which a is fresh in fP (b). The proof in Isabelle requires

one call to a standard automatic tactic. Monotonicity can be derived similarly for

freshaa, see (Mona) in Table 7.

https://doi.org/10.1017/S0956796802004653 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004653

A fully adequate shallow embedding of the π-calculus 433

4.4 Extensionality

We prove (Ext) by induction over one of the two involved well-formed processes,

fP , and using case-analysis for the other, fQ, see Appendix D for the Isabelle/HOL

proof scripts. Except for input and restriction, the resulting case-analysis is purely

technical. For the two binders, induction yields the following subgoal:

(1st induction hypothesis)

∀b, fQ, a.wfpa (fQ) ∧ fresha (a, λx. ffP (b, x)) ∧ fresha (a, fQ)∧
ffP (b, a) = fQ (a) −→ λx. ffP (b, x) = λx. fQ(x)

(2nd induction hypothesis)

∀b, fQ, a.wfpa (fQ) ∧ fresha (a, λx. ffP (x, b)) ∧ fresha (a, fQ)∧
ffP (a, b) = fQ (a) −→ λx. ffP (x, b) = λx. fQ(x)

∀b. wfpa (λx. ffP (b, x)) ∀b. wfpa (λx. ffP (x, b))

∀b. wfpa (λx. ffQ (b, x)) ∀b. wfpa (λx. ffQ (x, b))

freshaa (a, ffP) freshaa (a, ffQ) λx. ffP (x, a) = λx. ffQ (x, a)

λx. ffP (x, c) = ffQ (x, c)

The first two premises are the induction-hypotheses corresponding to instantiations

of the first (respectively second) parameter of ffP . We use both of them by subse-

quently instantiating the first arguments of ffP and ffQ and then the second. Laws

(f5) and (f2) from section 4.2 allow us to choose a name d which does not occur in

{a, c} ∪ fnaas (ffP)∪ fnaas (ffQ). Instantiating the first components of ffP and ffQ in

the first induction-hypothesis, we obtain

wfpa (λx. ffQ(d, x)) ∧ fresha (a, λx. ffP (d, x)) ∧ fresha (a, λx. ffQ(d, x)) ∧
ffP (d, a) = ffQ (d, a) −→ λx. ffP (d, x) = λx. ffQ(d, x).

As all the conditions for the implication can be derived directly from the premises,

or from (f7) and the fact that d 6= a, this yields a new premise of the form

λx. ffP (d, x) = λx. ffQ(d, x). Then, instantiating the second arguments of ffP and

ffQ with c in the second induction-hypothesis, we obtain,

wfpa (λx. ffQ(x, c)) ∧ fresha (a, λx. ffP (x, c)) ∧ fresha (a, λx. ffQ(x, c)) ∧
ffP (d, c) = ffQ (d, c) −→ λx. ffP (x, c) = λx. ffQ(x, c).

The conditions of the implications can be derived like in the above case, this time

employing that c 6= a, yielding the conclusion λx. ffP (x, c) = λx. ffQ(x, c).

In all of the proofs, we have used standard Isabelle proof techniques. Altogether,

the proofs of the theorems leading to the extensionality result, contain a bit less

than 200 lines of proof script code, see Appendix D for more details.

Extensionality for process abstractions taking two names as arguments can be

derived from (Ext) if the process abstractions are well-formed for all instantiations

of their first and second arguments. In the proof, a fresh name is chosen, and (Ext) is

instantiated twice, once with that new fresh name, and a second time with the fresh

name from the premise, that is, the argument from the proof of (Ext) is replayed,

in an Isabelle proof script of about 20 lines of code, see Appendix D.

https://doi.org/10.1017/S0956796802004653 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004653

434 C. Röckl and D. Hirschkoff

Table 8. Abstracting over a name in a process

[[a, []]] = λx. x

[[a, (b, fa)xs]] = if a = b then fa else [[a, xs]]

[[0, xs, ys]] = λx. 0

[[τ.P , xs, ys]] = λx. τ.[[P , xs, ys]]

[[āb.P , xs, ys]] = λx. [[a, xs]](x)[[b, xs]](x).[[P , xs, ys]](x)

[[ay.fP (y), xs, ys]] = λx. [[a, xs]](x)y. [[fP (fst (ys)), (fst (ys), (λx. y))xs, tl(ys)]](x)

[[(ν y)fP (y), xs, ys]] = λx. (ν y) [[fP (fst (ys)), (fst (ys), (λx. y))xs, tl(ys)]](x)

[[P + Q, xs, ys]] = λx. [[P , xs, ys]](x) + [[Q, xs, ys]](x)

[[P ‖ Q, xs, ys]] = λx. [[P , xs, ys]](x) ‖ [[Q, xs, ys]](x)

[[[a = b]P , xs, ys]] = λx. [[[a, xs]](x) = [[b, xs]](x)][[P , xs, ys]](x)

[[[a 6= b]P , xs, ys]] = λx. [[[a, xs]](x) 6= [[b, xs]](x)][[P , xs, ys]](x)

[[!P , xs, ys]] = λx. ![[P , xs, ys]](x)

4.5 Beta-expansion

Though seemingly fully natural, β-expansion (Exp) has turned out to be the trickiest

law to prove. The reason for this is twofold: (1) Unlike in the proof of (Ext), we

cannot directly apply induction, due to the existential quantification in the conclu-

sion. Instead, we encode a primitively recursive translation-function [[]] abstracting

over a name in a well-formed process. (2) This function necessarily compares all

names with the name to be abstracted over, which works well for object-variables,

but in a naive implementation would unintentionally replace every meta-variable

with a conditional. As a result, every well-formed process with binders would be

transformed into an exotic process-abstraction. For example, an abstraction ay.0

over a would result in λx. x(if a = y then x else y).0.

The transformation We therefore propose a function translating from higher-order

to first-order syntax and back. The two lists, xs and ys, in [[P , xs, ys]] are computed

prior to the transformation. List xs is the transformation-list telling for every free

name in P the names-abstraction it shall be mapped to in the transformation; except

for the name to be abstracted over, it associates a constant function λx. a with every

free name a in P (so that free names are eventually mapped to themselves). List ys

contains as many fresh names as are necessary to instantiate every meta variable in

P ; we compute it with the help of dbs(P , c) (see Table 3 in section 3.4) for some

arbitrary name c, and law (f2). The transformation intuitively proceeds as follows

(refer to Table 8 for its formalization): every name that is encountered is mapped to

the names-abstraction denoted in the transformation list xs. Only the name that is to

be abstracted over does not occur in xs, hence it is transformed into λx.x. Whenever

the transformation comes across a binder, that is, input or restriction, it instantiates

the continuation with the first fresh name from ys, that is, fst (ys), and adds a pair

(fst (ys), (λx. y)) to xs, where y is the meta-variable given by the binder. When the

transformation later encounters the instantiated (object-level) name, it thus abstracts

https://doi.org/10.1017/S0956796802004653 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004653

A fully adequate shallow embedding of the π-calculus 435

over it again. This methodology – that is, first instantiating and later restoring meta-

variables in a process abstraction – prevents meta-variables from being compared

with the object-variable to be abstracted over. For the Isabelle/HOL code, see

Appendix D.

Well-formedness We call an abstraction over a transformation list well-formed if it

only applies well-formed names-abstractions (see Table 6 for a definition):

wftrl (λx. [])
Wt

1

wfnaa (ffa) wftrl (fxs)

wftrl (λx. (a, ffa(x))fxs(x))
Wt

2

The following two derived results show that the transformation described above

produces well-formed process-abstractions when applied to well-formed processes:

wfpa (fP) wftrl (fxs)

wfpa ([[fP (c), fxs(d), ys]]) ∧ wfpa (λx. [[fP (c), fxs(x), ys]](b))

wfp (P) ∀(a, fa) ∈ xs. wfna (fa)

wfpa ([[P , xs, ys]])

The proofs of these two theorems are tedious but purely technical inductions. The

main difficulty is to formulate a suitable notion of abstraction over transformation-

lists (see above). Note that the second theorem is actually a corollary of the first one.

Freshness To prove that the transformation really eliminates the intended name a,

we choose a name b 6= a, and derive by two technical inductions:

wfpa (fP) ∀(d, fd) ∈ xs. a 6= fd(b) a 6= b

fresh (a, [[fP (c), xs, ys]](b))

wfp (P) ∀(d, fd) ∈ xs. a 6= fd(b) a 6= b

fresh (a, [[P , xs, ys]](b))

Again, the proof of the second theorem is based on that of the first. In the proofs,

we make extensive use of law (f6) from section 4.2.

Equality It remains to show by induction that a reinstantiation of a transformation

yields the original process again. The proofs make use of the monotonicity and

extensionality theorems proved in sections 4.3 and 4.4, as well as of the well-

formedness and freshness results from the previous two sections. For this reason,

we have to guarantee by dbs that ys contains at least as many names as there are

nested binders in a process. The predicate nodups ensures that ys does not contain

duplicates. The function fst maps pairs to their first item; when applied to a list

(a1, b1) . . . (an, bn) it returns a1 . . . an.

wfpa (fP) ∀(b, fb) ∈ xs. fb = λx. b dbas (fP , c) 6 |ys| fnas (fP) ⊆ {a} ∪ fst (xs)

a 6∈ fst (xs) d ∈ fst (xs) nodups (ys) ys ∩ ({a} ∪ fst (xs)) = ∅
[[fP (d), xs, ys]](a) = fP (d)

wfp (P) ∀(b, fb) ∈ xs. fb = λx. b dbs (P , c) 6 |ys| fns (P) ⊆ {a} ∪ fst (xs)

a 6∈ fst (xs) nodups (ys) ys ∩ ({a} ∪ fst (xs)) = ∅
[[P , xs, ys]](a) = P

https://doi.org/10.1017/S0956796802004653 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004653

436 C. Röckl and D. Hirschkoff

Table 9. From first-order to higher-order syntax and back

[[0, xs]]d→s
def
= 0

[[τ.P , xs]]d→s
def
= τ.[[P , xs]]d→s

[[āb.P , xs]]d→s
def
= [[a, xs]]d→s[[b, xs]]d→s.[[P , xs]]d→s

[[ab.P , xs]]d→s
def
= [[a, xs]]d→sb.[[P , [(b, b)]xs]]d→s

[[(νb)P , xs]]d→s
def
= (νb)[[P , [(b, b)]xs]]d→s

[[P +Q, xs]]d→s
def
= [[P , xs]]d→s+[[Q, xs]]d→s

[[P |Q, xs]]d→s def
= [[P , xs]]d→s | [[Q, xs]]d→s

[[[a = b]P , xs]]d→s
def
= [[[a, xs]]d→s = [[b, xs]]d→s][[P , xs]]d→s

[[[a 6= b]P , xs]]d→s
def
= [[[a, xs]]d→s 6= [[b, xs]]d→s][[P , xs]]d→s

[[!P , xs]]d→s
def
= ![[P , xs]]d→s

[[0, ys]]s→d
def
= 0

[[τ.P , ys]]s→d
def
= τ.[[P , ys]]s→d

[[āb.P , ys]]s→d
def
= āb.[[P , ys]]s→d

[[ab.P , ys]]s→d
def
= ahd(ys).[[P , tl(ys)]]s→d

[[(νb)P , ys]]s→d
def
= (νhd(ys))[[P , tl(ys)]]s→d

[[P +Q, ys]]s→d
def
= [[P , ys]]s→d+[[Q, ys]]s→d

[[P |Q, ys]]s→d def
= [[P , ys]]s→d | [[Q, ys]]s→d

[[[a = b]P , ys]]s→d
def
= [a = b][[P , ys]]s→d

[[[a 6= b]P , ys]]s→d
def
= [a 6= b][[P , ys]]s→d

[[!P , ys]]s→d
def
= ![[P , ys]]s→d

The proofs are tedious but purely technical. Whenever a process abstraction is

encountered, the first name in ys is used as a fresh name, and (Ext) is applied. The

mechanization of the proofs of β-expansion in Isabelle/HOL consist of about 350

lines of proof script code, see Appendix D for the Isabelle/HOL code. Material

from this section has been presented in Röckl et al. (2001).

5 Adequacy

In this section, we present a mechanized proof that our shallow embedding is fully

adequate, that is, that the well-formed processes exactly define α-equivalence classes

of processes in a first-order syntax. A similar result is obtained in Despeyroux &

Hirschowitz (1994) for two encodings of the λ-calculus, using a more straightforward

but tedious to formalize ω-chain of well-formedness predicates. Despeyroux et

al. (1995) only sketch a justification of the result we obtain here, namely that well-

formedness predicates that “stop” at the level of functions taking two arguments

are sufficient to obtain adequacy. An overview of the Isabelle/HOL sources is given

in Appendix E.

Intuitively, adequacy of two syntaxes means that for every term in one syntax

there exists a corresponding term in the other, and vice versa. This can be shown by

exhibiting encoding and decoding functions [[,]]d→s from the deep into the shallow

embedding and [[,]]s→d from the shallow into the deep embedding, and proving that

[[,]]d→s and [[,]]s→d are reverse functions. Table 9 introduces the two functions.

Like in the transformation function from the previous section, one has to take

care that in the decoding-function meta-names are not involved in comparisons.

Again, we therefore apply a transformation-list xs rather than substitution. As a

consequence, one can say that [[,]]s→d and [[,]]d→s are separated representations

of the instantiating and the reabstracting parts of [[, ,]] from section 4.5.

5.1 From first-order to higher-order syntax

The function [[,]]d→s translates processes from the deep embedding into well-formed

processes in the shallow embedding. It uses an auxiliary list xs, telling for a process

P in [[P , xs]]d→s how its free names should be transformed. Whenever the function

https://doi.org/10.1017/S0956796802004653 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004653

A fully adequate shallow embedding of the π-calculus 437

encounters an input or a restriction, the corresponding bound name is added to xs

together with a new meta-variable, and bound by Isabelle’s functional mechanism

(see Table 9 for a complete definition):

[[ab.P , xs]]d→s
def
= [[a, xs]]d→sb.[[P , [(b, b)]xs]]d→s [[(νb)P , xs]]d→s

def
= (νb)[[P , [(b, b)]xs]]d→s

The encoding of names themselves is rather straightforward: if a does not occur in

xs, it is left unchanged; otherwise, it is mapped to the name accompanying its first

occurrence, since in non-normalized processes, a name b can occur under several

binders. To illustrate this, consider the process ab.āb.(νb)āb.0. In it, the b from the

first output is bound by the input, whereas that in the second output is bound by

the restriction. This yields the following encoding:

[[ab.āb.(νb)āb.0, []]]d→s = [[a, []]]d→sb.[[āb.(νb)āb.0, [(b, b)]]]d→s new meta-name b

= ab.[[a, [(b, b)]]]d→s[[b, [(b, b)]]]d→s.[[(νb)āb.0, [(b, b)]]]d→s
= ab.āb.(νb′)[[āb.0, [(b′, b), (b, b)]]]d→s new meta-name b′
= ab.āb.(νb′)[[a, [(b′, b), (b, b)]]]d→s

[[b, [(b′, b), (b, b)]]]d→s.[[0, [(b′, b), (b, b)]]]d→s
= ab.āb.(νb′)āb′.0

Note that the meta-names b and b′ are chosen by the theorem prover, and cannot be

manipulated by the user. For instance, the user cannot tell whether they are equal

to or distinct from some other name, be it on the object-level or on the meta-level.

Well-formedness We can show that every encoding of a deeply embedded process is

well-formed:

wfp ([[P , xs]]d→s) wfp ([[P , []]]d→s)
The proof proceeds by induction on the structure of P (in this case, we can indeed

apply structural induction, as the generated principle for first-order syntax naturally

suffices). With xs replacing object-level names with meta-level names, we have to

reason with abstractions fxs over transformation-lists xs. We say that such an fxs
is well-formed, if it maps object-level names to well-formed name-abstractions. This

can be described by the following inductive predicate:

wfnml (λx. [])
Wfnml1

wfnafa wfnml (xs)

wfnml (λx. (fa, a)xs)
Wfnml2

We show by structural induction on P that for every list fxs with wfnml (fxs), the

encoding λx. [[P , fxsx]]d→s is a well-formed process abstraction. The proof script

consists of less than ten lines, featuring mostly calls to Isabelle’s automatic tactic

auto tac.

5.2 From higher-order to first-order syntax

The function [[,]]s→d translates higher-order processes into representatives of α-

equivalence classes of first-order processes. Note that not any arbitrary first-order

process can be generated by our function, because it takes the names it uses to

instantiate process-abstractions from a list ys. The process ax.0 | by.0, for instance,

https://doi.org/10.1017/S0956796802004653 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004653

438 C. Röckl and D. Hirschkoff

cannot be computed, however the α-equivalent process ax.0 | bx.0 is derivable from

ax.0 | by.0. See Table 9 for an overview, and Appendix E for the Isabelle/HOL code.

For the higher-order process ab.āb.(νb′)āb′.0 resulting from our previous example,

consider the resulting higher-order process and a list [b, b′] of object-level names, we

obtain an α-equivalent first-order decoding:

[[ab.āb.(νb′)āb′.0, [(b, b′)]]]s→d = ab.[[āb.(νb′)āb′.0, [b′]]]s→d instantiate b with b

= ab.āb.[[(νb′)āb′.0, [b′]]]s→d
= ab.āb.(νb′)[[āb′.0, []]]s→d instantiate b′ with b′
= ab.āb.(νb′)āb′.0

5.3 Proving Adequacy

Adequacy falls into two parts: (1) whenever a process P from the deep embedding

is translated into a shallow process and back, the result is α-equivalent to P , and (2)

whenever a well-formed process P from the shallow embedding is translated into

a deep process and back, the resulting process is syntactically equal to P . In our

formalization, we thus have to prove the following theorems:

dbd(P) 6 |ys| n(P) ∩ ys = ∅ nodups(ys)

[[[[P , []]]d→s, ys]]s→d =α P

wfp (P) dbs(P)c 6 n fns(P) ∩ ys = ∅ nodups(ys)

[[[[P , ys]]s→d, []]]d→s = P

The proofs follow a scheme which is similar to that of β-expansion in section 4.5.

We are going to sketch it in the sequel. Excerpts of the Isabelle/HOL proof scripts

can be found in Appendix E.

Deep embedding yields deep embedding We prove by induction on the structure of P

that for arbitrary xs and ys we have [[[[P , xs]]d→s, ys]]s→d = nmm(P , xs, ys). Then, we

use the normalization result from section 3.3 to conclude that for a suitable ys, as

assumed in the premises, [[[[P , []]]d→s, ys]]s→d = nm(P , ys). Referring to the theorem

from section 3.3 relating normalization and α-equivalence, we can then infer that

[[[[P , []]]d→s, ys]]s→d =α P .

Shallow embedding yields shallow embedding The proof proceeds by the usual two

separate structural inductions, one on the well-formedness predicates for process-

abstractions, and the other on that for well-formed processes. It makes use of

extensionality of contexts (Ext) from section 4.4, so that additional lemmas about

the freshness of names are necessary; these are proved by induction on well-formed

process abstractions. Otherwise, that is, with usual Leibnitz-equality, the proof would

be unmanageable.

6 Discussion

Table 1 in section 2 presents three general ways of specifying the datatype of a

language with binders in a theorem prover, determined by suitable combinations

https://doi.org/10.1017/S0956796802004653 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004653

A fully adequate shallow embedding of the π-calculus 439

of first-order and higher-order abstract syntax with deep and shallow embeddings.

This paper deals in particular with higher-order abstract syntax using datatype

definitions but a shallow embedding of binders. Within the general-purpose theorem

prover Isabelle/HOL we have demonstrated how this approach can be directly

related to a straightforward first-order abstract syntax, by establishing translation

functions between the two syntaxes. To achieve this, we have developed techniques

for syntax analysis in a shallow embedding, mimicking structural induction by rule

induction over a well-formedness predicate, and instantiating bound variables with

fresh parameters and reabstracting over them. A major result obtained using these

techniques is a mechanized proof of the theory of contexts for the π-calculus. We

believe that the proof techniques presented in this paper are applicable to other

shallow datatype specifications as well.

6.1 First-order and higher-order abstract syntax

The main conceptual difference between first-order and higher-order abstract syntax

is that the former yields all the terms of a language whereas the latter specifies

α-equivalence classes. As a consequence, first-order datatypes necessitate a notion

of substitution to express α-conversion and β-reduction, which are “for free” in

higher-order abstract syntax. Formalizing substitutions for a language, especially if

it has a lot of operators, is a tedious and error-prone task. As for the π-calculus, a

closer look on the literature reveals that the analyses of transitions, bisimulations,

and modal logic tacitly assume α-equivalence classes of processes, hence higher-order

abstract syntax seems to offer a good support here. Investigations on basic syntactic

aspects of programming languages, on the other hand, frequently focus on a theory

of α-conversion, which requires explicit reasoning about terms, hence the use of

first-order abstract syntax. Various approaches have been proposed to facilitate the

setup of abstract syntax (deBruijn, 1972; Gabbay & Pitts, 1999; McKinna & Pollack,

1993). We shall not discuss these further in this work. The search for (as well as

the thorough study of) alternatives remains an area of ongoing research. For an

overview of existing techniques used in formalizations of the π-calculus, see Gay

(2001) and Röckl (2001).

6.2 Higher-order abstract syntax: deep and shallow embeddings

Shallow embeddings of higher-order abstract syntax, like the one studied in this

paper, use the functional mechanism of the meta-level of the theorem prover in

order to represent binders. Higher-order abstract syntax in a deep embedding, as

studied in Gordon & Melham (1996) and applied in Gay (2001) and Gillard (2001),

adds an intermediate (pseudo) meta-level to be used as a logical framework for

the higher-order abstract syntax specified on top of it. The main advantage of the

latter approach with respect to a pure first-order syntax (see Table 1 in section 2)

is that αβη-theory has to be derived only for the small intermediate language. As

an aside, this approach allows for formalized proofs about the logical framework

itself. Usually such proofs are rather conducted on paper. Gordon & Melham

https://doi.org/10.1017/S0956796802004653 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004653

440 C. Röckl and D. Hirschkoff

(1996) studied the untyped λ-calculus as a logical framework in HOL. It would be

interesting to see how their methodology carries over to analyses of other logical

frameworks, especially those underlying existing proof-tools like λProlog (Nadathur

& Miller, 1988) or Twelf (Pfenning, 1996).

The principal advantage of that approach over a shallow embedding is that an

appropriately chosen logical framework naturally excludes exotic terms. On the

other hand, bound variables are still represented on the object-level of the prover,

so α-conversions and β-reductions still have to be manipulated by the user, even

though on the level of the underlying intermediate logic.

6.3 Logical frameworks and general-purpose theorem provers

Logical frameworks such as λProlog (Nadathur & Miller, 1988) or Twelf (Pfenning,

1996) allow the user to specify higher-order abstract syntax in a closed world where

exotic terms cannot arise. Miller (1990, 2000, 2001) and McDowell & Miller (1997)

study syntactic abstractions as underlying principle, and Despeyroux et al. (1997),

Pfenning & Schürmann (1998, 1999), Schürmann (2001) and Leleu (1998) examine

meta-logics for higher-order abstract syntax in dependently typed settings. Gordon

& Melham (1996) present a fully formalized analysis of the untyped lambda-

calculus as logical framework. Note that Coq (Barras et al., 1999) can be used as

a logical framework as well, as has been demonstrated by Honsell et al. (2001b)

for the π-calculus. General-purpose theorem provers like Isabelle/HOL or standard

extensions of Coq usually provide an open world, in which the axiom of choice (or

elimination principles in Coq) and constants from the environment may yield exotic

terms. Hofmann (1999) and Schürmann (2001) discuss the boundary determining

whether exotic terms arise or not. A recent study (Dowek et al., 2001) proposes an

extension of first-order logic with binders. This might yield a novel perspective for

the development of logics directly supporting the representation of binders.

In this paper, we have dealt with the open world of Isabelle/HOL and have

eliminated exotic terms by means of well-formedness predicates, based on ideas

from Despeyroux et al. (1995) and Despeyroux & Hirschowitz (1994). The use of

well-formedness predicates yields parametrised judgements, that is, theorems have to

be suitably annotated with well-formedness assumptions. This is not necessary in a

logical framework. On the other hand, general-purpose theorem provers offer greater

support concerning further proofs, in terms of libraries and automatic tactics.

One drawback of tools like Isabelle/HOL or Coq with respect to λProlog or

Twelf is that only base types can be abstracted over in a shallow way, hence for

the formalization of languages with higher-order binders (like the λ-calculus), a

nominalized representation has to be chosen. Yet, such a nominalization can be

achieved using standard techniques.

Coq as a logical framework

The use of Coq as a logical framework is based on the fact that datatypes can be

specified directly on top of its meta-logic, the calculus of inductive constructions, so

https://doi.org/10.1017/S0956796802004653 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004653

A fully adequate shallow embedding of the π-calculus 441

no further object-logic is necessary. As pointed out by Hofmann (1999) and Honsell

et al. (2001a), however, one has to take care not to specify parameters as a recursive

type, because this would lead to exotic terms. Note that this rules out the use of

natural numbers as names, a choice usually considered natural for the π-calculus.

The reason is that, for recursive types, it is possible to tell in Coq’s Set kind whether

two elements are equal or not. As datatype definitions are usually located in Set,

such a distinction can be exploited to construct a conditional within a function

underneath a binder, as used in the introduction to derive exotic terms. However,

Coq offers Prop as a kind in which to derive proofs. Here a distinction does not

cause any problem, and can be exploited for the encoding of transition systems.

6.4 Exotic terms and well-formedness predicates

The use of well-formedness predicates to rule out exotic terms entails parametrised

judgements, which in turn require some effort from the user to show that a given

term is indeed well-formed. The extent of this additional effort in proofs about

semantics will have to be further investigated. To hide the predicates in transition

rules, for instance, one can use axiomatic type-classes requiring well-formedness

implicitly. This, however, does not necessarily reduce the number of proof tasks, as

now it has to be shown for each term that it belongs to the type class, that is, that

it is well-formed.

Despeyroux et al. (1995) and Despeyroux & Hirschowitz (1994) propose two dif-

ferent kinds of well-formedness predicates. In Despeyroux & Hirschowitz (1994), the

authors study a well-founded set of predicates, ordered by the number of arguments

a function takes. Hence there is a predicate for each level determined by this order-

ing, implemented for the λ-calculus in Coq in terms of finite lists of arguments. Using

the predicates, they are able to specify rule induction principles that mimic struc-

tural induction. Being purely syntax-directed, such a chain of predicates naturally

corresponds to a family of process contexts one can obtain in a logical frame-

work (Miller, 2001; Honsell et al., 2001a). Later, Despeyroux et al. (1995) defined a

two-level well-formedness predicate which does not necessitate the use of lists in a

formalization, but the authors do not further elaborate on it. In this work, we have

shown that this approach indeed yields adequacy, and have derived induction and

other syntactic proof-principles which are based on suitable instantiations with fresh

names. Such an instantiation amounts to choosing a suitable representative from an

α-equivalence class of terms. On a logical level, the use of a two-level predicate is

justified by the fact that the universal quantification specifying wfpaa in terms of

∀b.wfpa (λx. ffP (b, x)) and ∀b.wfpa (λx. ffP (x, b)) entails a natural transformation.

The exact correspondence with the theories presented elsewhere (Fiore et al., 1999;

Fiore & Turi, 2001; Hofmann, 1999; Honsell et al., 2001a; McDowell & Miller,

2001; Schürmann, 2001), however, remains to be fully investigated.

Acknowledgements

We thank Stefan Berghofer, Joëlle Despeyroux, Gilles Dowek, Javier Esparza, René

Lalement, Tobias Nipkow, and Peter Rossmanith for helpful comments and dis-

cussions. We are further indebted to the anonymous referees for providing detailed

https://doi.org/10.1017/S0956796802004653 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004653

442 C. Röckl and D. Hirschkoff

comments, which we believe have helped us a lot in relating the different approaches

towards higher-order abstract syntax.

This work has been supported by the PROCOPE project 9723064, “Verification

Techniques for Higher-Order Imperative Concurrent Languages”. Most of the for-

malization was accomplished while the first author was employed at the Technische

Universität München.

A Names

We do not fix a set of names a priori, but require it to be at least countably infinite,

achieving this by an axiomatic type-class inf_class requiring the existence of an

injection from nat into the types in it.

axclass inf_class < term
inf_class "EX (f::nat=>’a). inj f"

This allows us to pick a names that is distinct from another name, list of names, or

finite set of names:

Goal "[| finite (A::((’a::inf_class) set)) ; inj (f::nat=>’a) |] \
\ ==> EX n. ALL a:A. ALL m. a = f m --> m <= n";
(* by induction on finite A *)
by (etac finite_induct 1); ...

Goal "finite A ==> EX (b::(’a::inf_class)). b ~: A";
... (* as a corollary of the above lemma *)

qed "ex_dist_set";

Goal "finite (A::(’a::inf_class) set) ==> EX B. card B = n & finite B & A Int B = {}";
(* by induction on n referring to ex_dist_set *)
by (induct_tac "n" 1); ...

qed "ex_n_dist_set";

Goalw [mk_meta_eq set_mem_eq] "EX (b::(’a::inf_class)). ~(b mem xs)";
by (auto_tac ((claset() addIs [ex_dist_set]), simpset())); (* as a corollary of ex_dist_set *)

qed "ex_dist_list";

B Deep embedding

We do not fix a set of names a priori, but require it to be at least countably infinite,

achieving this by an axiomatic type-class inf_class requiring the existence of an

injection from nat into the types in it.

axclass inf_class < term
inf_class "EX (f::nat=>’a). inj f"

This allows us to pick a names that is distinct from another name, list of names, or

finite set of names:

Goal "[| finite (A::((’a::inf_class) set)) ; inj (f::nat=>’a) |] \
\ ==> EX n. ALL a:A. ALL m. a = f m --> m <= n";
(* by induction on finite A *)
by (etac finite_induct 1); ...

Goal "finite A ==> EX (b::(’a::inf_class)). b ~: A";
... (* as a corollary of the above lemma *)

qed "ex_dist_set";

Goal "finite (A::(’a::inf_class) set) ==> EX B. card B = n & finite B & A Int B = {}";
(* by induction on n referring to ex_dist_set *)
by (induct_tac "n" 1); ...

qed "ex_n_dist_set";

Goalw [mk_meta_eq set_mem_eq] "EX (b::(’a::inf_class)). ~(b mem xs)";
by (auto_tac ((claset() addIs [ex_dist_set]), simpset())); (* as a corollary of ex_dist_set *)

qed "ex_dist_list";

https://doi.org/10.1017/S0956796802004653 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004653

A fully adequate shallow embedding of the π-calculus 443

C Shallow embedding

The shallow embedding applies functions from names to processes, yielding α-

equivalence classes rather than single processes. Therefore we are not able to compute

the bound names of a process. Free names of process abstractions are computed

via a closure over all instantiations. Note that for every function and predicate, two

instances have to be defined: one for processes and the other for process abstractions.

datatype
’a procs = Null (".0" 115)

| Tau "(’a::inf_class) procs" (".t.(_)" [111] 110)
| Out ’a ’a (’a procs) ("_<_>._" [120, 0, 110] 110)
| In ’a "’a => (’a procs)" ("_[_]._" [120, 0, 110] 110)
| Res "’a => (’a procs)" (binder ".#" 100)
| Plus (’a procs) (’a procs) (infixl ".+" 85)
| Par (’a procs) (’a procs) (infixl ".|" 90)
| Mt ’a ’a (’a procs) (".[_.=_]_" [100, 100, 96] 95)
| Mmt ’a ’a (’a procs) (".[_.~=_]_" [100, 100, 96] 95)
| Repl (’a procs) (".!_" [100] 100)

(* free and fresh names *)
consts

fn :: ((’a::inf_class) procs) => ’a set
fna :: ((’a::inf_class) => (’a procs)) => ’a set
fnaa :: ((’a::inf_class) => ’a => (’a procs)) => ’a set
fresh :: (’a::inf_class) => (’a procs) => bool
fresha :: (’a::inf_class) => (’a => (’a procs)) => bool
freshaa :: (’a::inf_class) => (’a => ’a => (’a procs)) => bool

primrec
"fn (.0) = {}" "fn (In a fP) = {a} Un fna fP"
"fn (.t.P) = fn P" "fn (Res fP) = fna fP"
"fn (a.P) = {a,b} Un fn P" ...

defs
fna_def "fna fP == {a. ALL b. a: fn (fP b)}"
fnaa_def "fnaa ffP == {a. ALL b. a: fna (ffP b)}"
fresh_def "fresh a P == a ~: fn P"
fresha_def "fresha a fP == a ~: fna fP"
freshaa_def "freshaa a ffP == a ~: fnaa ffP"

(* depth of binders *)
consts

dob :: "(’a::inf_class) procs => ’a => nat"
doba :: "((’a::inf_class) => (’a procs)) => ’a => nat"

primrec
"dob (.0) c = 0" "dob (In a fP) c = Suc (doba fP c)"
"dob (.t.P) c = dob P c" "dob (Res fP) c = Suc (doba fP c)"
"dob (a.P) c = dob P c" ...

defs
doba_def "doba fP c == dob (fP c) c"

Well-formedness wfna of names abstractions require them to be either the identity

or a constant function. Well-formedness wfpa on process abstractions uses wfna to

implement prefixes and the names in matching and mismatching.

consts
WFNA :: ((’a::inf_class) => ’a) set "wfna fa" == "fa : WFNA"
WFNAA :: ((’a::inf_class) => ’a => ’a) set "wfnaa ffa" == "ffa : WFNAA"
WFP :: ((’a::inf_class) procs) set "wfp P" == "P : WFP"
WFPA :: ((’a::inf_class) => (’a procs)) set "wfpa P" == "P : WFPA"

inductive WFNA inductive WFNAA
w1 "wfna (%x. x)" (* identity *) w1 "wfnaa (%x y. x)" (* identity *)
w2 "wfna (%x. a)" (* constants *) w2 "wfnaa (%x y. y)" (* identity *)

w3 "wfnaa (%x y. a)" (* constants *)

https://doi.org/10.1017/S0956796802004653 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004653

444 C. Röckl and D. Hirschkoff

inductive WFP, WFPA
Null "wfp (.0)" Res "wfpa fP ==> wfp (.#x. fP x)"
Out "wfp P ==> wfp (a.P)" Plus "[| wfp P ; wfp Q |] ==> wfp (P .+ Q)"
In "wfpa fP ==> wfp (a[x].fP x)" ...

Null "wfpa (%x. .0)"
Out "[| wfpa fP ; wfna fa ; wfna fb |] ==> wfpa (%x. fa x<fb x>.fP x)"
In "[| ALL b. wfpa (ffP b) ; ALL b. wfpa (%x. ffP x b) ; \

\ wfna fa |] ==> wfpa (%x. fa x[y].ffP y x)"
Res "[| ALL b. wfpa (ffP b) ; ALL b. wfpa (%x. ffP x b) |] ==> wfpa (%x. .#y. ffP y x)"
Plus "[| wfpa fP ; wfpa fQ |] ==> wfpa (%x. fP x .+ fQ x)"

...

D Theory of contexts

Monotonicity follows directly from the implementation. Extensionality of contexts

is proved by induction over well-formedness of one of the two involved process

abstractions. To obtain more compact proofs, we treat the induction hypothesis for

input and restriction as a theorem of its own (inst_hyp).

Goal "[| wfna fa ; wfna fb ; fa a = fb a ; \
\ a ~: fnna fa ; a ~: fnna fb |] ==> fa = fb";
by (auto_tac (claset() addSEs WFNA.elims, simpset() addsimps [fnna_def]));

qed "ext_na";

Goal "finite ({a, c} Un (fnaa ffP) Un (fnaa ffQ))";
by (asm_simp_tac (simpset() addsimps [finite_fnaa]) 1);

qed "lemma";

Goal "EX d. d ~= a & d ~= c & d ~: fnaa ffP & d ~: fnaa ffQ";
by (cut_inst_tac [("a", "a"), ("c", "c"), ("ffP", "ffP"), ("ffQ", "ffQ")] lemma 1);
by (fast_tac (claset() addSDs [ex_dist_set]) 1);

qed "fresh_ext";

Goal "[| ALL b fQ a. wfpa fQ & ffP b a = fQ a & a ~: fna (ffP b) & a ~: fna fQ --> ffP b = fQ ; \
\ ALL b fQ a. wfpa fQ & ffP a b = fQ a & a ~: fna (%x. ffP x b) & a ~: fna fQ \
\ --> (%x. ffP x b) = fQ ; ALL b. wfpa (ffP b) ; ALL b. wfpa (%x. ffP x b) ; \
\ ALL b. wfpa (ffQ b) ; ALL b. wfpa (%x. ffQ x b) ; a ~: fnaa ffP ; a ~: fnaa ffQ ; \
\ (%x. ffP x a) = (%x. ffQ x a) |] ==> (%x. ffP x c) = (%x. ffQ x c)";
(* introduce a fresh name, d *)
by (cut_inst_tac [("a", "a"), ("c", "c"), ("ffP", "ffP"), ("ffQ", "ffQ")] fresh_ext 1);
by (Clarify_tac 1);
(* instantiate first hypothesis: b -> d, fQ -> ffQ d, a -> a *)
by (eres_inst_tac [("x", "d")] allE 1);
by (eres_inst_tac [("x", "ffQ d")] allE 1);
by ((rotate_tac 12 1) THEN (eres_inst_tac [("x", "a")] allE 1)); ...
(* instantiate second hypothesis: b -> c, fQ -> %x. ffQ x c, a -> d *)
by (eres_inst_tac [("x", "c")] allE 1);
by (eres_inst_tac [("x", "%x. ffQ x c")] allE 1);
by ((rotate_tac 12 1) THEN (eres_inst_tac [("x", "d")] allE 1)); ...

qed "inst_hyp";

Goal "wfpa fP ==> ALL fQ a. wfpa fQ & fP a = fQ a & a ~: fna fP & a ~: fna fQ --> fP = fQ";
by (etac WFPA.induct 1); ... (* tedious but technical case-study applying inst_hyp *)

qed "lemma";

Goal "[| wfpa fP ; wfpa fQ ; fP a = fQ a ; fresha a fP ; fresha a fQ |] ==> fP = fQ";
by (auto_tac (claset() addDs [lemma], simpset() addsimps [fresha_def]));

qed "ext_pa";

Goalw [freshaa_def] "[| ALL b. wfpa (ffP b) ; ALL b. wfpa (%x. ffP x b) ; ALL b. wfpa (ffQ b) ; \
\ ALL b. wfpa (%x. ffQ x b) ; ffP a = ffQ a ; freshaa a ffP ; freshaa a ffQ |] ==> ffP = ffQ";
...
(* introduce a fresh name, d *)
by (cut_inst_tac [("a", "a"), ("c", "x"), ("ffP", "ffP"), ("ffQ", "ffQ")] fresh_ext 1);
by (Clarify_tac 1);
(* apply ext_pa to (ffP x) and (ffQ x) with fresh name d *)
by (res_inst_tac [("a", "d")] ext_pa 1); ...
(* apply ext_pa to (%x. ffP x d) and (%x. ffQ x d) with fresh name a *)

https://doi.org/10.1017/S0956796802004653 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004653

A fully adequate shallow embedding of the π-calculus 445

by (dres_inst_tac [("x", "d")] inst_fun_eq 1);
by (dres_inst_tac [("a", "a"), ("fP", "%x. ffP x d"), ("fQ", "%x. ffQ x d")]

(rotate_prems 2 ext_pa) 1); ...
qed "ext_paa";

We give a constructive proof of β-expansion, introducing a transformation function

abstracting a process over a given name. Further, we have to introduce a well-

formedness predicate wftrl for abstractions over lists used in the transformation.

types
’a trlist = "((’a::inf_class) * (’a => ’a)) list"

consts
mk_trl :: (’a::inf_class) list => ’a => (’a trlist)
WFTRL :: ((’a::inf_class) => ’a trlist) set "wftrl fxs" == "fxs : WFTRL"
trn :: (’a::inf_class) => ’a trlist => (’a => ’a)
tr :: (’a::inf_class) procs => ’a trlist => ’a list => (’a => ’a procs)

primrec
mtr1 "mk_trl [] a = []"
mtr2 "mk_trl (x#xs) a = (if x = a then (mk_trl xs a) else (x, (%y. x))#(mk_trl xs a))"

inductive WFTRL
etrl "wftrl (%x. [])"
ctrl "[| wfnaa ffa ; wftrl fxs |] ==> wftrl (%x. (a, ffa x)#fxs x)"

primrec
trn1 "trn a [] = (%x. x)"
trn2 "trn a (x#xs) = (if a = fst x then snd x else (trn a xs))"

primrec
tr0 "tr (.0) xs ys = (%x. .0)"
tr2 "tr (a.P) xs ys = (%x. (trn a xs) x<(trn b xs) x>. (tr P xs ys) x)"
tr3 "tr (In a fP) xs ys = (%x. (trn a xs) x[y]. \

\ (tr (fP (hd ys)) ((hd ys, (%x. y))#xs) (tl ys)) x)"
tr4 "tr (Res fP) xs ys = (%x. .#y. (tr (fP (hd ys)) ((hd ys, (%x. y))#xs) (tl ys)) x)"
tr5 "tr (P .+ Q) xs ys = (%x. (tr P xs ys) x .+ (tr Q xs ys) x)"

...

The proof then proceeds in four parts: after deriving (1) auxiliary results about

well-formed transformation lists, we prove that (2) a suitable transformation indeed

eliminates the specified name, (3) yields a well-formed abstraction, (4) which re-

instantiated results in the original process. These results can then be combined in the

weaker β-epansion theorem, requiring merely the existence of a suitable abstraction.

Goal "(ALL x:set xs. wfna snd x) --> wftrl (%x. xs)";
by (induct_tac "xs" 1);
by (auto_tac (claset() addSIs WFTRL.intrs addSEs WFNA.elims addIs WFNAA.intrs, simpset()));

qed "lemma";

Goal "ALL x:set xs. wfna snd x ==> wftrl (%x. xs)";
by (fast_tac (claset() addIs [lemma RS mp]) 1);

qed "wfna_wftrl";

Goal "wftrl fxs ==> ALL x:set (fxs a). wfna snd x";
by (etac WFTRL.induct 1); by (auto_tac (claset() addSEs WFNAA.elims addIs WFNA.intrs,

simpset()));
qed "wftrl_wfna";

Goal "wftrl fxs ==> wftrl (%x. (a, (%y. b))#fxs c)";
by (auto_tac (claset() addSIs WFTRL.intrs addIs WFNAA.intrs addSIs [wfna_wftrl, wftrl_wfna],

simpset()));
qed "wftrl_cons1";

Goal "wftrl fxs ==> wftrl (%x. (a, (%y. x))#fxs c)";
by (auto_tac (claset() addSIs WFTRL.intrs addIs WFNAA.intrs addSIs [wfna_wftrl, wftrl_wfna],

simpset()));
qed "wftrl_cons2";

https://doi.org/10.1017/S0956796802004653 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004653

446 C. Röckl and D. Hirschkoff

Goal "wftrl fxs ==> wftrl (%x. (a, (%y. b))#fxs x)";
by (auto_tac (claset() addSIs WFTRL.intrs addIs WFNAA.intrs, simpset()));

qed "wftrl_cons3";

Goal "wftrl fxs ==> wftrl (%x. (a, (%y. x))#fxs x)";
by (auto_tac (claset() addSIs WFTRL.intrs addIs WFNAA.intrs, simpset()));

qed "wftrl_cons4";

Goal "wftrl fxs ==> wfna trn a (fxs b)";
by (etac WFTRL.induct 1);
by (auto_tac (claset() addSIs WFTRL.intrs addEs WFNAA.elims addIs WFNA.intrs, simpset()));

qed "wftrl_wfna_trn1";

Goal "wftrl fxs ==> wfna (%x. trn a (fxs x) b)";
by (etac WFTRL.induct 1); by (case_tac "a=aa" 2);
by (auto_tac (claset() addSIs WFTRL.intrs addEs WFNAA.elims addIs WFNA.intrs, simpset()));

qed "wftrl_wfna_trn2";

(* freshness *)

Goal "wfpa fP ==> ALL xs ys. (ALL x:set xs. a ~= snd x b) & a ~= b --> a ~: fn (tr (fP c) xs ys b)";
by (etac WFPA.induct 1); ... (* tedious but technical case-study *)

qed "lemma";

Goal "[| wfpa fP ; ALL x:(set xs). a ~= (snd x) b ; a ~= b |] ==> fresh a ((tr (fP c) xs ys) b)";
by (fast_tac (claset() addDs [lemma] addSss (simpset() addsimps [fresh_def])) 1);

qed "tr_fresh_abs";

Goal "wfp P ==> (ALL x:(set xs). a ~= (snd x) b) & a ~= b --> a ~: fn ((tr P xs ys) b)";
by (etac WFP.induct 1); ... (* tedious but technical case-study *)

qed "lemma";

Goal "[| wfp P ; ALL x:(set xs). a ~= (snd x) b ; a ~= b |] ==> fresh a ((tr P xs ys) b)";
by (fast_tac (claset() addDs [lemma] addSss (simpset() addsimps [fresh_def])) 1);

qed "tr_fresh";

(* well-formedness *)

Goal "wfpa fP ==> ALL fxs ys d. wftrl fxs --> wfpa tr (fP c) (fxs d) ys & \
\ wfpa (%x. tr (fP c) (fxs x) ys d)";
by (etac WFPA.induct 1); ... (* tedious but technical case-study *)

qed "lemma";

Goal "[| wfpa fP ; wftrl fxs |] ==> wfpa (tr (fP c) (fxs b) ys)";
by (fast_tac (claset() addDs [lemma]) 1);

qed "tr_wfpa_abs1";

Goal "[| wfpa fP ; wftrl fxs |] ==> wfpa (%x. (tr (fP c) (fxs x) ys) b)";
by (fast_tac (claset() addDs [lemma]) 1);

qed "tr_wfpa_abs2";

Goal "wfp P ==> (ALL x:set(xs). wfna (snd x)) --> wfpa (tr P xs ys)";
by (etac WFP.induct 1); ... (* tedious but technical case-study *)

qed "lemma";

Goal "[| wfp P ; ALL x:set xs. wfna snd x |] ==> wfpa tr P xs ys";
by (fast_tac (claset() addDs [lemma]) 1);

qed "tr_wfpa";

(* equality *)

Goal "[| ALL b xs ys. (ALL x:set xs. snd x = (%y. fst x)) & doba (ffP b) c <= length ys & \
\ fna (ffP b) <= insert a (set (map fst xs)) & a ~: set (map fst xs) & d : set (map fst xs) & \
\ nodups ys & set ys Int insert a (set (map fst xs)) = {} --> tr (ffP b d) xs ys a = ffP b d ; \
\ ALL b. wfpa ffP b ; ALL b. wfpa (%x. ffP x b) ; \
\ ALL x:set xs. snd x = (%y. fst x) ; Suc (doba (ffP c) c) <= length ys ; \
\ fnaa ffP <= insert a (set (map fst xs)) ; a ~: set (map fst xs) ; d : set (map fst xs) ; \
\ nodups ys ; set ys Int insert a (set (map fst xs)) = {} |] \
\ ==> (%y. tr (ffP (hd ys) d) ((hd ys, (%x. y))#xs) (tl ys) a) = (%y. ffP y d)";
by (res_inst_tac [("a", "hd ys")] ext_pa 1);
by (rtac tr_wfpa_abs2 1); ... (* well-formedness required by ext_pa *)
... (* equality required by ext_pa *)
... (* freshness required by ext_pa *)

qed "inst_hyp";

https://doi.org/10.1017/S0956796802004653 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004653

A fully adequate shallow embedding of the π-calculus 447

Goal "wfpa fP ==> ALL xs ys. (ALL x:set xs. snd x = (%y. fst x)) & (doba fP c) <= length ys & \
\ fna fP <= insert a (set (map fst xs)) & a ~: set (map fst xs) & d : set (map fst xs) & \
\ nodups ys & set ys Int insert a (set (map fst xs)) = {} --> (tr (fP d) xs ys) a = fP d";
by (etac WFPA.induct 1); ... (* tedious but technical case-study using inst_hyp *)

qed "lemma";

Goal "[| wfpa fP ; ALL x:set xs. snd x = (%y. fst x) ; doba fP c <= length ys ; \
\ fna fP <= insert a (set (map fst xs)) ; a ~: set (map fst xs) ; d : set (map fst xs) ; \
\ nodups ys ; set ys Int insert a (set (map fst xs)) = {} |] ==> (tr (fP d) xs ys) a = fP d";
by (dres_inst_tac [("a", "a"), ("c", "c"), ("d", "d")] lemma 1); by (Auto_tac);

qed "tr_eq_abs";

Goal "[| wfpa fP ; ALL x:set xs. snd x = (%y. fst x) ; Suc (doba fP c) <= length ys ; \
\ fna fP <= insert a (set (map fst xs)) ; a ~: set (map fst xs) ; nodups ys ; \
\ set ys Int insert a (set (map fst xs)) = {} |] \
\ ==> (%y. tr (fP (hd ys)) ((hd ys, (%x. y))#xs) (tl ys) a) = fP";
by (res_inst_tac [("a", "hd ys")] ext_pa 1);
by (rtac tr_wfpa_abs2 1); ... (* well-formedness required by ext_pa *)
... (* equality required by ext_pa *)
... (* freshness required by ext_pa *)

qed "inst_hyp";

Goal "wfp P ==> ALL xs ys. (ALL x:set xs. snd x = (%y. fst x)) & dob P c <= length ys & \
\ fn P <= insert a (set (map fst xs)) & a ~: set (map fst xs) & nodups ys & \
\ set ys Int insert a (set (map fst xs)) = {} --> (tr P xs ys) a = P";
by (etac WFP.induct 1); ... (* tedious but technical case-study using inst_hyp *)

qed "lemma";

Goal "[| wfp P ; ALL x:set xs. snd x = (%y. fst x) ; dob P c <= length ys ; \
\ fn P <= insert a (set (map fst xs)) ; a ~: set (map fst xs) ; nodups ys ; \
\ set ys Int insert a (set (map fst xs)) = {} |] ==> (tr P xs ys) a = P";
by (dres_inst_tac [("a", "a"), ("c", "c")] lemma 1); by (Auto_tac);

qed "tr_eq";

(* beta-expansion *)

Goal "finite (insert a (fn P))";
by (cut_inst_tac [("P", "P")] finite_fn 1); by (Auto_tac);

qed "finite_insert_fn";

Goal "wfp P ==> EX fP. wfpa fP & fresha a fP & P = fP a";
(* create transformation list and store of names *)
by (cut_inst_tac [("a", "a"), ("P", "P")] finite_insert_fn 1);
by (dres_inst_tac [("n", "dob P c")] ex_n_dist_set 1);
... (* make list out of set o fresh names *)
by (res_inst_tac [("x", "tr P (mk_trl xs a) xsa")] exI 1); (* instantiate fP *)
(* well-formedness *)
by (rtac conjI 1); by (fast_tac (claset() addSIs [tr_wfpa, mk_trl_wfna]) 1);
(* freshness *)
... by (fast_tac (claset() addSIs [tr_fresh, mk_trl_ineq]) 1);
(* equality *)
by (rtac (tr_eq RS sym) 1); ...

qed "beta_exp";

E Adequacy

Like the proof of β-expansion in Appendix D, our proof of adequacy is constructive

in that it specifies translation functions from first-order syntax into higher-order

syntax and back. Note the close correspondence between these functions and the

transformation function for β-reduction.

consts
foenn :: "(’a::inf_class) => (’a * ’a) list => ’a"
foenc :: "((’a::inf_class) foprocs) => (’a * ’a) list => ’a procs"
fodec :: "((’a::inf_class) procs) => (’a list) => ’a foprocs"

primrec
"foenn a [] = a"
"foenn a (x#xs) = (if a = snd x then fst x else (foenn a xs))"

https://doi.org/10.1017/S0956796802004653 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004653

448 C. Röckl and D. Hirschkoff

primrec
"foenc (foNull) xs = .0"
"foenc (foOut a b P) xs = (foenn a xs)<(foenn b xs)>.(foenc P xs)"
"foenc (foIn a b P) xs = (foenn a xs)[x].(foenc P ((x, b)#xs))"
"foenc (foRes b P) xs = .#x. (foenc P ((x, b)#xs))"
"foenc (foPlus P Q) xs = (foenc P xs) .+ (foenc Q xs)"
...

primrec
"fodec (.0) ys = foNull"
"fodec (a.P) ys = foOut a b (fodec P ys)"
"fodec (In a fP) ys = foIn a (hd ys) (fodec (fP (hd ys)) (tl ys))"
"fodec (Res fP) ys = foRes (hd ys) (fodec (fP (hd ys)) (tl ys))"
"fodec (P .+ Q) ys = foPlus (fodec P ys) (fodec Q ys)"
...

It is easy to show that the decoding of an encoding yields the normal-form of a

process, which is in turn α-equivalent to the original process. The harder part of the

proof is to show that the encoding of the decoding of a well-formed higher-order

process yields exactly that process again.

Goal "fodec (foenc P xs) ys = fonm P xs ys";
by (res_inst_tac [("x", "xs")] spec 1); by (res_inst_tac [("x", "ys")] spec 1);
by (induct_tac "P" 1); by (Auto_tac);

qed "fodec_foenc_fonm";

Goal "[| nodups ys ; fodob P <= length ys ; set ys Int fobn P = {} |] \
\ ==> fodec (foenc P []) ys = fonorm (P, ys)";
by (dtac fonm_fonorm_gen 1); by (REPEAT (atac 1));
by (asm_simp_tac (simpset() addsimps [fodec_foenc_fonm]) 1);

qed "fodec_foenc_fonorm";

Goal "[| nodups ys ; fodob P <= length ys ; set ys Int fon P = {} |] \
\ ==> fodec (foenc P []) ys foalpha P";
by (forward_tac [fodec_foenc_fonorm] 1); ...

qed "fodec_foenc_foalpha";

Goal "wfpa fP ==> ALL xs zs ys. doba fP c <= length ys & b ~: set ys & \
\ b ~: fna fP & (ALL x:(set xs). fst x = snd x) & \
\ (ALL x:(set zs). fst x = snd x) & a ~= b & b ~: snd ‘‘ set xs \
\ --> b ~: fn (foenc (fodec (fP b) ys) (xs@(a,b)#zs))";
by (etac WFPA.induct 1); ... (* tedious but technical case-analysis *)

qed "lemma";

Goalw [fresh_def] "[| wfpa fP ; doba fP c <= length ys ; b ~: set ys ; b ~: fna fP ; \
\ (ALL x:(set xs). fst x = snd x) ; a ~= b |] \
\ ==> fresh b (foenc (fodec (fP b) ys) ((a,b)#xs))";
by (dres_inst_tac [("a", "a"), ("b", "b")] lemma 1); by (eres_inst_tac [("x", "[]")] allE 1);
by (Auto_tac);

qed "foenc_fodec_fresh";

Goal "wfpa fP ==> ALL xs ys b. doba fP c <= length ys & nodups (b#ys) & \
\ insert b (set ys) Int fna fP = {} & (ALL x:(set xs). fst x = snd x) \
\ --> (%x. foenc (fodec (fP b) ys) ((x, b)#xs)) = fP";
by (etac WFPA.induct 1); ... (* tedious but technical case-analysis using foenc_fodec_fresh *)

qed "lemma";

Goal "[| wfpa fP ; doba fP c <= length ys ; nodups (b#ys) ; insert b (set ys) Int fna fP = {} ; \
\ (ALL x:(set xs). fst x = snd x) |] ==> (%x. foenc (fodec (fP b) ys) ((x, b)#xs)) = fP";
by (dtac lemma 1); by (eres_inst_tac [("x", "xs")] allE 1); by (Auto_tac);

qed "foenc_fodec_eqa";

Goal "wfp P ==> ALL xs ys. dob P c <= length ys & nodups ys & \
\ set ys Int fn P = {} & (ALL x:(set xs). fst x = snd x) \
\ --> foenc (fodec P ys) xs = P";
by (etac WFP.induct 1); ... (* tedious but technical case-analysis using foenc_fodec_eqa *)

qed "lemma";

Goal "[| wfp P ; dob P c <= length ys ; nodups ys ; set ys Int fn P = {} |] \
\ ==> foenc (fodec P ys) [] = P";
by (dtac lemma 1); by (eres_inst_tac [("x", "[]")] allE 1); by (Auto_tac);

qed "foenc_fodec_eq";

https://doi.org/10.1017/S0956796802004653 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004653

A fully adequate shallow embedding of the π-calculus 449

References

Aı̈t-Mohamed, O. (1996) Pi-Calculus Theory in HOL. PhD thesis, Université Henri Poincaré,

Nancy, France.

Amadio, R. (1993) On the reduction of CHOCS bisimulation to π-calculus bisimulation.

Proceedings of CONCUR’93: Lecture Notes in Computer Science 715, pp. 112–126. Springer-

Verlag.

Barras, B. et al. (2001) The Coq proof assistant, version 7.0. INRIA. available at

http://coq.inria.fr/.

Barras, B., Boutin, S., Cornes, C., Courant, J., Coscoy, Y., Delahaye, D., de Rauglaudre, D.,

Filliâtre, J.-C., Giménez, E., Herbelin, H., Huet, G., Laulhère, H., Muñoz, C., Murthy, C.,

Parent-Vigouroux, C., Loiseleur, P., Paulin-Mohring, C., Säıbi, A. and Werner, B. (1999).

The Coq proof assistant reference manual – version 6.3.1. Technical report, INRIA.

Berghofer, S. and Wenzel, M. (1999) Inductive datatypes in HOL–lessons learned in Formal-

Logic Engineering. Proceedings of TPHOLs ’99: Lecture Notes in Computer Science 1690,

pp. 19–36.

Boulton, R., Gordon, A., Gordon, M., Harrison, J., Herbert, J. and Van Tassel, J. (1992)

Experience with embedding hardware description languages in HOL. Proceedings IFIP

TC10/WG 10.2 international conference on theorem provers in circuit design: Theory, practice

and experience. IFIP Transactions, A-10, pp. 129–156. Elsevier.

Bucalo, A., Hofmann, M., Honsell, F., Miculan, M. and Scagnetto, I. (2001) Using functor

categories to explain and justify an axiomatisation of variables and schemata in HOAS. In

preparation.

Church, A. (1940) A formulation of the simple theory of types. J. Symbolic Logic, 5, 56–68.

deBruijn, N. G. (1972) Lambda calculus notation with nameless dummies: a tool for auto-

matic formula manipulation, with application to the Curch-Rosser theorem. Indagationes

mathematicae, 34, 381–392.

Despeyroux, J. (2000) A higher-order specification of the π-calculus. Proceedings of IFIP

TCS’00: Lecture Notes in Computer Science 1872, pp. 425–439. Springer-Verlag.

Despeyroux, J. and Hirschowitz, A. (1994) Higher-order abstract syntax with induction

in Coq. Proceedings of LPAR’94: Lecture Notes in Computer Science 822, pp. 159–173.

Springer-Verlag.

Despeyroux, J., Felty, A. and Hirschowitz, A. (1995) Higher-order abstract syntax in Coq.

Proceedings of TLCA’95: Lecture Notes in Computer Science 902, pp. 124–138. Springer-

Verlag.

Despeyroux, J., Pfenning, F. and Schürmann, C. (1997) Primitive recursion for higher-order

abstract syntax. Proceedings of TLCA’97: Lecture Notes in Computer Science 1210, pp. 147–

163. Springer-Verlag.

Dowek, G., Hardin, T. and Kirchner, C. (2001) A completeness theorem for an extension of

first-order logic with binders. Proceedings of MERLIN’01.

Fiore, M. P. & Turi, D. (2001) Semantics of name and value passing. Proceedings of LICS’01,

pp. 93–104. IEEE Press.

Fiore, M., Plotkin, G. and Turi, D. (1999) Abstract syntax and variable binding. Proceedings

of the 14th LICS, pp. 193–202. IEEE Press.

Gabbay, M. J. and Pitts, A. M. (1999) A new approach to abstract syntax involving binders.

Proceedings of the 14th LICS, pp. 214–224. IEEE Computer Society Press.

Gay, S. (2001) A framework for the formalisation of pi-calculus type-systems in

Isabelle/HOL. Proceedings of TPHOLs ’01: Lecture Notes in Computer Science 2152,

pp. 217–232. Springer-Verlag.

https://doi.org/10.1017/S0956796802004653 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004653

450 C. Röckl and D. Hirschkoff

Gillard, G. (2001) Formalization of concurrent and object languages up to alpha-conversion.

PhD thesis, Université Paris 7.

Gordon, A. and Melham, T. (1996) Five axioms of alpha-conversion. Proceedings of TPHOLs

’96: Lecture Notes in Computer Science 1125, pp. 173–190. Springer-Verlag.

Henry-Gréard, L. (1999) Proof of the subject reduction property for a pi-calculus in Coq.

Technical report RR-3698, INRIA.

Hirschkoff, D. (1997) A full formalisation of π-calculus theory in the calculus of construc-

tions. Proceedings of TPHOLs ’97: Lecture Notes in Computer Science 1275, pp. 153–169.

Springer-Verlag.

Hofmann, M. (1999) Semantical analysis of higher-order abstract syntax. Proceedings of

LICS’99, 158, pp. 204–213. IEEE.

Honsell, F., Lenisa, M., Montanari, U. and Pistore, M. (1998) Final semantics for the

pi-calculus. Proceedings of PROCOMET’98, pp. 225–243. Chapman & Hall.

Honsell, F., Miculan, M. and Scagnetto, I. (2001a) An axiomatic approach to metareasoning

on nominal algebras in HOAS. Proceedings of ICALP’01: Lecture Notes in Computer

Science 2076, pp. 963–978. Springer-Verlag.

Honsell, F., Miculan, M. and Scagnetto, I. (2001b) π-calculus in (Co)Inductive Type Theory.

Theor. Comput. Sci. 253(2), 239–285.

Kleist, J. and Sangiorgi, D. (1998) Imperative objects and mobile processes. Proceedings of

PROCOMET’98, pp. 285–303. Chapman & Hall.

Leleu, P. (1998) Induction et Syntaxe Abstraite d’Ordre Supérieur dans les Théories Typées.

PhD thesis, ENPC, Marne la Vallée – France.

McDowell, R. and Miller, D. (1997) A logic for reasoning with higher-order abstract syntax.

Proceedings of the 12th LICS, pp. 434–445. IEEE Press.

McDowell, R. and Miller, D. (2001) Reasoning with Higher-Order Abstract Syntax in a

Logical Framework. ACM Trans. Computational Logic. To appear.

McKinna, J. and Pollack, R. (1993) Pure type systems formalized. Proceedings of TLCA’93:

Lecture Notes in Computer Science 664, pp. 289–305. Springer-Verlag.

Melham, T. (1995) A mechanized theory of the π-calculus in HOL. Nordic J. Comput. 1(1),

50–76.

Miller, D. (1990) An extension to ML to handle bound variables in data structures: prelim-

inary report. Informal Proceedings of the Logical Frameworks BRA Workshop. (Available

as UPenn CIS technical report, MS-CIS-90-59.)

Miller, D. (1991) A logic programming language with lambda-abstraction, function variables,

and simple unification. J. Logic and Computation, 1(4), 497–536.

Miller, D. (1992) The π-calculus as a theory in linear logic: Preliminary results. Proceedings

of ELP’92: Lecture Notes in Computer Science 660, pp. 242–264. Springer-Verlag.

Miller, D. (2000) Abstract syntax for variable binders: An overview. Proceedings of Com-

putational Logic 2000: Lecture Notes in Artificial Intelligence 1861, pp. 239–253. Springer

Verlag.

Miller, D. (2001) Encoding Generic Judgments. Proceedings of MERLIN’01.

Milner, R. (1989) Communication and Concurrency. Prentice-Hall.

Milner, R. (1992) Functions as Processes. J. Math. Struct. Comput. Sci. 17, 119–141.

Milner, R. (1999) Communicating and Mobile Systems: the π-Calculus. Cambridge University

Press.

Milner, R., Parrow, J. and Walker, D. (1992) A calculus of mobile processes. Infor. &

Computation, 100, 1–77.

https://doi.org/10.1017/S0956796802004653 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004653

A fully adequate shallow embedding of the π-calculus 451

Nadathur, G., & Miller, D. (1988) An overview of λProlog. Proceedings of LPC’88, pp. 810–

827. MIT Press.

Paulson, L. C. (1993) Isabelle’s object-logics. Technical report 286, University of Cambridge,

Computer Laboratory.

Paulson, L. C. (1994a) A fixedpoint approach to implementing (co)inductive definitions.

Proceedings of CADE’94: Lecture Notes in Artificial Intelligence 814, pp. 148–161. Springer-

Verlag.

Paulson, L. C. (ed). (1994b) Isabelle: A generic theorem prover: Lecture Notes in Computer

Science 828. Springer-Verlag.

Pfenning, F. (1989) Elf: A language for logic definition and verified metaprogramming.

Proceedings of LICS’89, pp. 313–321. IEEE.

Pfenning, F. (1996) The practice of logical frameworks. Proceedings of ICALP’96: Lecture

Notes in Computer Science 1059, pp. 119–134. Springer-Verlag.

Pfenning, F. (1999) Logical and Meta-Logical Frameworks. Proceedings of PPDP’99, p. 206.

Springer-Verlag.

Pfenning, F. and Elliot, C. (1988) Higher-order abstract syntax. Proceedings of PLDI ’98,

pp. 199–208. ACM Press.

Pfenning, F. and Schürmann, C. (1998) Automated theorem proving in a simple meta-logic

for LF. Proceedings of CADE’98: Lecture Notes in Computer Science 1421, pp. 286–300.

Springer-Verlag.

Pfenning, F. and Schürmann, C. (1999) System description: Twelf – a meta-logical framework

for deductive systems. Proceedings of CADE’99: Lecture Notes in Computer Science 1632,

pp. 202–206. Springer-Verlag.

Quaglia, P. (1999) The π-calculus: Notes on labelled semantics. Bulletin EATCS, 68, 104–114.

Röckl, C. (2001) A First-Order Syntax for the Pi-Calculus in Isabelle/HOL using Permuta-

tions. Proceedings of MERLIN’01.

Röckl, C. and Sangiorgi, D. (1999) A π-calculus process semantics of concurrent idealised

ALGOL. Proceedings of FOSSACS’99: Lecture Notes in Computer Science 1578, pp. 306–

321. Springer-Verlag.

Röckl, C., Hirschkoff, D. and Berghofer, S. (2001) Higher-Order Abstract Syntax in

Isabelle/HOL:. Proceedings of FOSSACS’01: Lecture Notes in Computer Science 2030,

pp. 364–378. Springer-Verlag.

Sangiorgi, D. (1992) Expressing mobility in process algebras: First-order and higher-order

paradigms. PhD thesis, University of Edinburgh.

Sangiorgi, D. (1996) π-calculus, internal mobility, and agent-passing calculi. Theor. Comput.

Sci. 167(2), 235–274.

Schürmann, C. (2001) Recursion for Higher-Order Encodings. Proceedings of CSL’01: Lecture

Notes in Computer Science 2142, pp. 585–599. Springer-Verlag.

Thomsen, B. (1990) Calculi for Higher Order Communicating Systems. PhD thesis, Imperial

College.

Turner, D. (1995) The Polymorphic Pi-calculus: Theory and Implementation. PhD thesis,

University of Edinburgh.

Walker, D. (1995) Objects in the π-calculus. Infor. & Computation, 116, 253–271.

https://doi.org/10.1017/S0956796802004653 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004653

