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NONABELIAN FULLY-RAMIFIED SECTIONS 

MARK L. LEWIS 

ABSTRACT. Let G be a finite group and let K and L be normal subgroups of G such 
that |AT : Z>| and \G : K\ are relatively prime, and assume that \K : L\ is odd. Let H be 
a subgroup of G such that G = HK and H n K = L. Let </? be an irreducible character 
of L that is invariant under the action of// and is fully ramified with respect to K/L. 
If X € Irr(G) is a constituent of ^G , then we prove that \H has a unique irreducible 
constituent having odd multiplicity. 

1. Introduction. Given a finite group G, we write Irr(G) for the set of all irreducible 
characters of G. For a subgroup H of G, we would like to understand the relationship be­
tween the sets Irr(//) and Irr(G). In general, there is very little that can be said about how 
these two sets relate. If we know something about the structure of how H is embedded 
in G, then often we can apply knowledge of Irr(G) to gain information about Irr(//). In 
many cases, we obtain this data by constructing a bijection between the characters that lie 
in a subset A of Irr(G) and the characters that lie in a subset $ of Irr(//). Such a bijection 
is called a character correspondence; and these correspondences have been studied in 
numerous papers. In this paper, we are going to take a closer look at one correspondence 
that has played an important role in the development of the character theory of finite 
solvable groups. 

In order to present this result, we fix notation that encapsulates the knowledge of how 
the subgroup H is embedded in G. The notation that we use in this paper is broader than 
the notation found in the paper where this correspondence originally appeared, [4]. We 
extend this bijection to our more general setting, and so, we feel justified in using this 
broader notation to present Isaacs' result. We say that (G, K, L) is a normal triple if L C K 
are normal subgroups of G. Such a normal triple is called solvable, nilpotent, or abelian 
if the quotient group K/L is solvable, nilpotent, or abelian. We call the subgroup H of G 
a complement for the normal triple (G, K, L)ifG = HK and HHK = L. 

Given a normal subgroup N of G, there is an action of G on the elements of Irr(TV) 
defined by (pg(ng) = tp(n) where the character ip lies in \u(N) and the elements g lies in G 
and n lies in N. Now, we can define (G, K,L,e, (p) to be a basic configuration if (G, K, L) 
is a solvable normal triple, e G Irr(AT) is G-invariant, and ip G Irr(Z>) is a constituent of 
CL. We will call this basic configuration abelian or nilpotent if the normal triple (G, K, L) 
is abelian or nilpotent. We say that H is a stabilizing complement for (G, K, L, e, (p) if// 
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is a complement for (G,K,L) and p is //-invariant, and from the definition of the basic 
configuration, we observe that e is necessarily invariant under the action of//. 

We also need to set notation for another situation that has been studied in many dif­
ferent papers. Given a subgroup H of G and an irreducible character p G Irr(//), we 
write Irr(G | (p) for the subset of Irr(G) consisting of irreducible constituents of pG. 
Suppose that L is a normal subgroup of G and that the irreducible character p G Irr(L) 
is G-invariant; we say that <p is fully ramified with respect to G/L if Irr(G | <p) contains 
exactly one character. Thus, a basic configuration (G,K,L, e, (p) is called fully ramified 
if ip is fully ramified with respect to K/L. 

In [4], Isaacs studied the case where (G,/T,L,e, ip) is an abelian fully-ramified con­
figuration. In the notation of that paper, an abelian fully-ramified configuration is called 
a character five. One result that he proved in that paper is the following. 

THEOREM (ISAACS). Let (G,K,L,e,p) be an abelian fully-ramified configuration 
such that \G : L\ is odd. Then there exists a stabilizing complement H so that for each 
character 0 G lrr(// | p) there is a unique irreducible constituent \ of6G having odd 
multiplicity, and 0 is the unique constituent of\H having odd multiplicity. 

Given an abelian fully-ramified configuration (G,K,L, e, ip) such that \G : L\ is odd, 
one can use this theorem to define a correspondence between Irr(// | p) and Irr(G | e) by 
associating the character 9 G Irr(// | p) with the unique irreducible constituent \ of9G 

having odd multiplicity. Furthermore, observe that this bijection is invariant under any 
map that fixes //, K, L, and p. In order to generalize this result, we need to fix some more 
notation. We will call a normal triple (G,K,L) coprime if (|G : K\, \K : L\) = 1 and a 
configuration (G, K, L, e, p) is coprime if (G, K, L) is. We now present an analog to Isaacs' 
theorem for coprime fully-ramified configurations (i.e., nonabelian configurations.) 

THEOREM A. Let (G, K,L,e, p) be a coprime fully-ramified configuration such that 
\G : L\ is odd. Then there exists a stabilizing complement H so that for each character 
6 G Irr(// | p) there is a unique irreducible constituent \ of9G having odd multiplicity 
and 6 is the unique irreducible constituent of\u having odd multiplicity. 

As in Isaacs' theorem, we can use Theorem A to define a correspondence between the 
sets Irr(// | p) and Irr(G | e). In fact, this bijection is invariant under any isomorphism of 
G that fixes K, L, and p. The result that we have presented as Isaacs' theorem is weaker 
than what appears in [4]. In particular, Isaacs is able to construct a correspondence with 
the assumption that either \G : K\ or \K : L\ is odd in place of the assumption that \G : L\ 
is odd that we used. In fact, even in the nonabelian case, it is possible to build on the 
techniques we develop here to construct such bijections under weaker conditions than 
we assume here. In [9], for instance, a bijection is constructed in the coprime situation 
without the assumption that \G : L\ is odd. Isaacs was able to deal with abelian configu­
rations without assuming coprimeness, and in [9], we succeed in constructing bijections 
in certain nonabelian noncoprime configurations. Extending the results in that paper, we 
are able, in [10], to prove that this bijection can be constructed to be invariant under iso­
morphisms of G that fix K, L, and p. We show, in [11], that the bijection that we construct 
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in [10] is the same as the bijection determined by Theorem A. Furthermore, in [12], we 
build an example that shows that the coprime hypothesis is necessary to get a unique 
constituent with odd multiplicity. 

Obviously, character correspondences play an important role in this paper. For an ex­
pository account regarding this subject, we suggest reading [6]. Perhaps, the best known 
of these is the Glauberman-Isaacs correspondence. The Glauberman "half originally 
appeared in [2], and is described completely in Chapter 12 of [5]. The Isaacs "half 
can be found in [4]. (The fact that both "halves" are the same when both are defined 
was proved by Wolf in [16].) There have been many papers published investigating the 
properties of this correspondence including (but not limited to) [17], [18], [8], [13], and 
[14]. Recently, Navarro has written a paper outlining many of the problems related to 
this correspondence that are still open (see [15]). While the Glauberman-Isaacs corre­
spondence has received the most attention, it is not the only one that has been studied. 
A different correspondence is the subject of [7]. In this paper, the other correspondence 
that we will use frequently is a consequence of a theorem of Clifford's and can be found 
as Theorem 6.11 (b) of [5]. 

To show the utility of Theorem A, we would like to apply it to prove a corollary in 
the area of coprime actions. Let the group S act on the group G so that (\S\, | G\) = 1. We 
will write V for the semi-direct product obtained by S acting on G. By Corollary 8.16 of 
[5], there is a unique extension x* of x to T such that the determinantal order o(x*) of 
X* is relatively prime to \S\, and x* is called the canonical extension of x-

THEOREM B. Let the group S act on G such that (|5|, |G|) = 1 and \S\ \G\ is odd. 
Suppose that L is a normal subgroup S-invariant subgroup ofG and that the character 
if E Irr(L) is fully ramified with respect to G/L and S-invariant. Assume that the sub­
group H of G contains L and is S-invariant and that Lp is fully ramified with respect to 
H/L. Ife andl are the unique irreducible constituents of(fG and (fH respectively, then 
e andl are S-invariant and x* is the unique irreducible constituent of(l*)SG having odd 
multiplicity. 

2. Coprime and controlled triples. Let (G,K,L) be a coprime triple, and so, by 
the Schur-Zassenhaus theorem (see Hauptsatz 1.18.1 and 1.18.2 of [3]), we know that 
(G,K,L) has a complement and that all the complements are conjugate. If H is a com­
plement in this situation, then it follows that H/L acting on K/L is a coprime action. 
We will say that the action is fixed-point-free ifCK/L(H) = 1, and since in this case all 
the complements are conjugate, it is easy to see that this property is independent of the 
choice of complement. Therefore, we may define (G,K,L) to be a fixed-point-free co-
prime normal triple in this case. Given a normal triple (G,K,L), assume that there exists 
a normal subgroup M of G containing K such that (M, K, L) is a fixed-point-free coprime 
normal triple. In this situation, we say that (G,K,L) is a controlled normal triple and that 
(G, K,L,e, Lp) is a controlled configuration if it is a basic configuration with a controlled 
normal triple. 

The next lemma, which is a consequences of Glauberman's lemma, Theorem 13.8 of 
[5], will be used to look at the character theory of coprime and controlled triples. 
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LEMMA 2.1. Let (G,K,L) be a coprime normal triple. Assume that <p G lrr(L) is 
G-invariant and that p extends to K. Then some irreducible character extending (p in K 
is G-invariant. Furthermore, if(G, K, L) is a fixed-point-free coprime normal triple, then 
this G-invariant extension is unique. 

PROOF. We write 8 G ln(K) for an extension of p, and we know by Gallagher's 
theorem (Corollary 6.17 of [5]) that the set of irreducible characters in K lying over <p is 
{<57 | 7 G lrv(K/L)}. Thus, if we set Q = {<57 | 7 G Irr(A'/I),7(l) = 1}, then it is easy 
to see that Q is the set of extension of p to Irr(AT). Since (p is G-invariant, it follows that 
G permutes the irreducible constituents of ipK. Because this action of G fixes character 
degrees, we know that G must permute the elements of Q. Furthermore, since K acts 
trivially on Q under this action, we may view this action as a G/K-action. We denote 
the set of linear characters of K/L by A = \in(K/L), and we remark that A is an abelian 
group with \A\ = \(K/L) : (K/L)'\. This implies that \A\ divides \K : L\. Since G/K 
fixes character degrees in its action on lrr(K/L), it follows that G/K acts by conjugation 
on A in a coprime manner. Also, it is easy to see that A acts transitively on Q by right 
multiplication. Since (otffi = oc8f5g for all a G Q, f3 G A, andg G G/K, we are now in 
the situation of Glauberman's lemma (Theorem 13.8 of [5]). By that theorem, we know 
that there exists some extension a G Q that is G-invariant. 

We know by the Schur-Zassenhaus theorem (see Hauptsatz 1.18.1 of [3]) that there 
exists a complement H for (G,K,L). Assume that the action of H/L on K/L is fixed-
point-free. Since H/L is isomorphic to G/K, we can view the action in the last para­
graph as being an ///Z-action. Since this is a coprime action, we know that K/L = 
([K, H]L/L)CKiL(H). Because the action is fixed-point-free, we have that CKiL(H) — 1. 
Together, these two facts imply that K = [K, H]L. By a corollary to Glauberman's lemma 
(Corollary 3.9 of [5]), we know that CA(H) acts transitively on the ///Z-fixed points of 
Q. Thus, if we can show that CA(H) — 1, then we are done. Suppose that A G CA{H). 

This implies that A is a linear character of K/L and that Â  = A for all h G H. We see that 
\h(k) = \{k) for all k G K. Using the fact that A is a homomorphism (i.e. A is linear), it is 
easy to see that A([/z, k]) = 1 for all h G H and k G K. This implies that [K,H] C ker(A). 
Since we also know that L C ker(A), it follows that [K,H]L C ker(A). Recalling that 
[K, H]L — K, we now see that ker(A) = K and that A = 1^. • 

We now get an immediate corollary for controlled triples. 

COROLLARY 2.2. Let (G,K,L) be a controlled normal triple. Suppose that ip G 
Irr(L) is G-invariant and that (p extends to K. Then (p has a unique G-invariant extension 
toK. 

PROOF. We have a normal subgroup M containing K such that (M, K, L) is a fixed-
point-free coprime normal triple. Thus, by Lemma 2.1, we see that p has a unique M-
invariant extension to K. On the other hand, it is easy to see that G permutes the M-
invariant extensions of p to K. The uniqueness of the M-invariant extension implies that 
it must be G-invariant. • 
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3. The "bilinear" form and good elements. First, we present a tool that Isaacs 
used in [4] to study fully-ramified sections and that we use to study the nonabelian case. 

Given a normal subgroup L of G and a G-invariant character p G Irr(Z), a uniquely 
defined complex number ((x,y))^ was constructed in [4] for all x,y £ G such that xL and 
yL commute. In particular, if [x,y] G L, then define ({x,y))^ in the following manner. 
Since (L,y)/L is cyclic and p is invariant, it follows that there exists some character 
xjj G lrr((L,y)) extending p, and since x normalizes (L,y), we see that \jf is another 
extension of p. Thus, by Gallagher's theorem (6.17 of [5]), there exists some linear 
character A G lrr((L,y)/L) such that i/f = A^, and hence, we may define ((x,_y))̂  to be 
A(y). In [4], Isaacs proved that this is well-defined and when p is linear that ((x^y))^ = 
p([x,y]), and he also showed there that ((•, -))^ is constant on I-cosets in G. Thus, we 
view ((',-)}# as a form that is defined on commuting pairs in G/L. Given a subgroup 
X such that X/L is central in G/L, we define the perpendicular space for X in G with 
respect to ((•,-))^ as 

X1 = {keK\ ({k,X))=\}. 

We now assume that (G, K, L) is an abelian normal triple, and so, we may view ((•,•)) ̂  
as a bilinear form defined onK/Lx K/L. The form is called nondegenerate on K/L when 
the only elements a G K that have the property ((a, K)) ̂  = 1 lie in L. In particular, ((•,•)) ̂  
is nondegenerate on AT/Z if and only if KHK1 = L. In Lemma 2.1 of [4], Isaacs proved 
that p is fully ramified with respect to K/L if and only if ((•, •)}(f is nondegenerate on 
K/L. The next result that we will require is the following lemma which can be found as 
Lemma 2.4 in [4]. 

LEMMA 3.1. Let (G,L, 6) be a character triple with L C H C G. Fix a character 
X G Irr(// | 0) and elements g G G a«J /* G H such that [g, /*] G L. Then: 

(a) X(ghg-l)=((g,h))^x(h). 
(b) Ifg G Hand «g, A»^ ^ 1, rte* xfe) = 0 = *(*). 

In fact, the function ((•, ))^ is an example of the following well-known general phe­
nomenon. We say that (•, •) is a.pairing between the groups A and B if (•, •) maps A x B 
into the multiplicative group of the complex numbers and (•, •) is a homomorphism in 
each coordinate. We define AQ — {a G A \ (a,B) — 1} andZ?o = {b G B \ (A,b) = 1}. 

Let (G, K, L) be a normal triple and p a G-invariant character in Irr(L). In Lemma 2.1 
of [4], Isaacs proved that if X is a subgroup such that X/L is in the center of K/L, then 
((•, •))(£ is a G-invariant pairing between K andX, and it is easy to see that Ko — X1. The 
following two lemmas are well-known. 

LEMMA 3.2. Let (•, •) be a pairing between A and B. Then A/A^ and B/Bo are iso­
morphic abelian groups. 

PROOF. Note that if b G B, then the map (•, b) is a linear character of A with A0 in 
its kernel. It is easy to see that the map b\-^(-,b) defines a homomorphism from B into 
the linear characters of A/Ao, written \in(A/Ao). Furthermore, the kernel of this map is 
exactly B$. Thus, we have that \B : BQ\ < \ \in(A/Ao)\ < \A : AQ\. From symmetry, we 
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get the reverse inequality, and so, we have \A : Ao\ — \B : BQ\. This implies that B/Bo 
is isomorphic to \in(A/Ao) and thus, toA/Ao. Since lin(^/v40) is abelian, the result now 
follows. • 

COROLLARY 3.3. Let (G,L, (p) be a character triple. Assume that U is a subgroup 
of G containingL such that U/L C Z(G/L). Then \G : UL\ < \U : L\. Furthermore, if 
if is fully-ramified with respect to G/L, then \G : U^\ — \U : L\. 

PROOF. Recall that ((•, -))^ is pairing between U and G and that Go = UL. It is easy 
to see that L C £/0, and from Lemma 3.2, we have that \G : UL\ < \U : L\. Now 
assume that <p is fully ramified with respect to G/L, and we work to prove that UQ — L. 
Suppose that u € Uo, and since <p is fully ramified with respect to G/L, we know that 
G acts transitively on Irr((L, u) \ (f>). On the other hand, from Lemma 3.1, we see that 
all the elements of Irr((L, u) \ <p) are G-invariant. The only way both of these facts can 
occur simultaneously is if | Irr((Z, u) \ <p)\ = 1. Since (p is w-invariant, we know that 
(p extends to (L,u) and so by Gallagher's theorem (6.17 of [5]), | Irr((L, u) \ (p)\ = 
\(L9u) : L\. Thus, we conclude that u G L. Therefore, Uo — L and the result follows 
from Lemma 3.2. • 

Next, we include any easy consequence of Corollary 3.3. 

LEMMA 3.4. Let (K,L, <p) be a fully-ramified triple. Suppose that U is a subgroup 
of K such that U/L C Z(K/L), and consider a character 6 G lrr(U \ ip). Write V for 
the stabilizer of 8 in K. Then (V, U,8) is a fully-ramified triple. Furthermore, if 8 is an 
extension of(p, then V — U1. 

PROOF. Because 8 is invariant in V, it suffices to show that 8 is fully ramified with 
respect to V/U. Since U is normal in K and V is the stabilizer of 8 in K, it follows, by 
Clifford's theorem (Theorem 6.11 of [5]), that | lrr(K \ 8)\ = \ Irr(F | 6)\. On the other 
hand, it is easy to see that Irr(K \ 8) C Irr(^ | <p) = {e}. Thus, | Irr(K | 8)\ — 1, and 
because 8 is F-invariant, we conclude that 8 is fully ramified with respect to V/ U. 

Assume that (p extends to U, and so, we know by Gallagher's theorem (6.17 of [5]) 
that 

| I i r ( t / | ^ ) | = |Iir(t//L)| = | £ / : I | . 

Since <p is fully ramified with respect to K/L, we have that K acts transitively on the set 
Irr(U | (p). Hence, we know that \K : V\ = \U : L\. By Lemma 3.1, we know that U1-
fixes 8, and so U1- C V. From Corollary 3.3, we have that \K : U^l = \U : L\. Thus, we 
see that \K : UL\ = \K : V\. It is now immediate that UL = V. m 

In order to prove Theorem A, we need to generalize one of the tools used in [4] to 
the case where the configuration is a nilpotent fully-ramified configuration. The tool that 
Isaacs used to study fully-ramified abelian sections is the idea of "good" elements. We 
remark that in [4] good elements were defined only when K/L was abelian, and so, we 
now extend the definition of good elements to the case when K/L need not be abelian. 

DEFINITION. Let (G,K,L) be a normal triple, ip e Irr(L) be a G-invariant character, 
and C/L = CK/L(g) for some element g G G. We say that g is good with respect to 
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the character triple (K,L, p) if <p has a g-invariant extension to (Z, c) for every element 
cec. 

Note in this definition that if one extension of ip to (Z, c) is g-invariant, then it fol­
lows that all the extensions of <p to (Z, c) are g-invariant. We remark that if g is good 
with respect to the character triple (K9L, ip), then it follows that every member of gL is 
good with respect to this same character triple. Thus, we will often say that an Z-coset is 
good with respect to the character triple (K, Z, ip) if the members of the Z-coset are good 
with respect to this character triple. We will show that this definition is equivalent to the 
definition of good elements presented in [4]. 

This next lemma specifies the relationship between good elements and the form dis­
cussed above. In particular, the elements of G that are good with respect to the triple 
(K9L9 (f) are precisely those elements g such that ((g, c))<p = 1 for every element c E C, 
where C/L — CK/L(g). Given an element g E G and a character \ E Irr(G | </?), suppose 
that x(g) 7̂  0. Observe that Lemma 3.1 in combination with the next lemma states that 
g must be good with respect to triple (K,L, ip). 

LEMMA 3.5. Let (G, K, L) be a normal triple, (p E Irr(Z) be a G-invariant character, 
and C/L = CKfL(g)for some element g E G. Then g is good with respect to the triple 
(K, Z, ip) if and only if((g, c))^ = 1 for every element c E C Furthermore, ifip is linear, 
then g is good with respect to the triple (K,L, ip) if and only if[g,C] C ker(^). 

PROOF. We know that g is good with respect to the triple (K, Z, (p) if and only if ip 
has a g-invariant extension to (Z, c) for every element c E C On the other hand, it is 
easy to see from Lemma 3.1 for each element c E C that <p has a g-invariant extension 
to (Z, c) if and only if ((g, c))<p = \. Therefore, it follows that g is good with respect to 
the triple (K, L, (p) if and only if ((g, c))^= 1 for every element c E C. 

Now, we assume that (p is linear, and as we stated earlier, we know that we may write 
((g, c))<p — <p([g, c]) for all c E C. Thus, by applying the previous paragraph we see that 
g is good with respect to the triple (K, Z, <p) if and only if [g, C] C ker((£>). • 

Suppose again we have a character triple (G, Z, ip) where <p is linear and faithful. If 
((x>y))ip = 1 f° r elements x,y E G such that [x,y] E Z, then we have that [x,y] = 1. 
Furthermore, suppose there exists a normal subgroup K containing Z such that ip is fully 
ramified with respect to K/L. If g is good with respect to the triple (K,L, ip\ then g 
centralizes CK/L{x). 

Assume now that we have an abelian normal triple (G, K, L) and a G-invariant char­
acter (p E Irr(Z). When there exists some element g E G such that the order mod Z of g 
is relatively prime to \K : Z|, Isaacs showed in [4] that g must be good with respect to 
the triple (K,L, ip). The following easy lemma shows that we do not need to assume that 
K/L be abelian. 

LEMMA 3.6. Let (G, K, L) be a normal triple and ip E Irr(Z) be a G-invariant char­
acter. If the order mod L of some element g E G is relatively prime to \K : L\, then g is 
good with respect to the triple (K, Z, p). 
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PROOF. Notice that we may assume that G = (K9g). Let C/L — CK/L(g\ and 
consider c G C. We will write B = (L,c). Since B/L is cyclic where ^ is ^-invariant, 
we have that p extends to B. Because B is a normal subgroup in (B9g)9 we may apply 
Lemma 2.1 to (B9g) to conclude that p has a g-invariant extension to B. Therefore, g is 
good with respect to the triple (K9 L, p). m 

4. Conjugacy of good cosets. In the main result of this section, we prove an analog 
of Theorem 3.2 of [4]. In particular, we assume that we have normal subgroups K and 
L of G such that K/L is nilpotent and that we have a G-invariant character <p G Irr(L) 
that is fully ramified with respect to K/L. In this situation, we prove that all the L-cosets 
containing elements that are good with respect to the triple (K9L9 p) are conjugate by 
elements of K. Before we can prove the main result of this section, we need to prove the 
following technical lemma. 

LEMMA 4.1. Let (A, U, L) be a normal triple such that L is central in A, that A jL is 
a p-group for some prime p, that U/L is an elementary abelian p-group, and that U/L is 
central in A/L. Assume a cyclic group G acts on A such that [L9 G] = 1 and [A, G] C U. 
Write C/L = CA/L(G), and suppose that G centralizes C. Let p G Irr(L) be a character 
such that p has an A-invariant extension to U. Then there exists a G-invariant extension 
6 eIrr(U)ofip such that [A,G]C ker(<5). 

PROOF. We assume that (A, U9L) forms a counterexample normal triple with \A\ + 
\U : L\ as small as possible. 

Write v G Irr(L0 for the .4-invariant extension of p mentioned in the hypothesis. By 
Gallagher's theorem (6.17 of [5]), we know that every irreducible constituent of <pu is 
of the form i/X for some character A G lrr(U/L)9 and because U/L is central in A/L, it 
follows that every member of lrr(U \ p) is an A -invariant extension of p. 

Suppose first that there exists a G-invariant subgroup V such that L < V < U. Since 
U/L is central in A /L, it follows that V is normal in A, and we set B/V = CA/y(G). We 
will show that (B, V,L) is a normal triple satisfying the hypotheses of the lemma. From 
the definition of B, we see that [#, G] C V. We recall that v is an ,4-invariant extension 
of ip, and so, it follows that i/y G Irr(F) is an ^-invariant extension of p. In particular, 
p has a ^-invariant extension to V. Since \V : L\ < \U : L\ and \B\ < \A\, we have 
|Z?| + | F : L| < |,41 + | £/ : Z,|, and thus, we know that (/?, K, L) is a normal triple satisfying 
the conclusion of the lemma. Therefore, there exists a G-invariant character 7 G Irr(r> 
extending p such that [B, G] C ker(7). 

Because every irreducible constituent of lu is an irreducible constituent of pu, we 
know that every character in lvr(U \ 7) is an ^4-invariant extension of p. In particular, 
7 has an ^-invariant extension to U, and so, 7 is itself an ^-invariant extension of p. 
Thus, it follows that ker(7) is a normal subgroup of A, and we write "for the map from 
A to A/ ker(7). We now show that (A, U, V) is a normal triple satisfying the hypotheses 
of the lemma. Since 7 is also G-invariant, it follows that G normalizes ker(7) and that 
it acts on A. Because 7 is linear, faithful, and ^-invariant in V, it is easy to see that V is 
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central in A. Recall that B/V — CA/V(G) and that [B, G] C ker(7), and so, this implies 
that G centralizes B. Since \U : V\ = \U : V\ < \U : L\ and | i | < |^|, we observe 
that |^| + \U : F| < |^| + | U : Z|, and by the choice of the normal triple (A, U,L) as a 
minimal counterexample, we see that there exists a G-invariant extension <5 G Irr(£/) of 
7 such that [A, G] C ker(<5). Because 7 extends (/?, we conclude that 6 is a G-invariant 
extension of ^ in contradiction to the choice of normal triple (A, U,L), and we are done 
in this case. 

We may assume that there exist no proper nontrivial G-invariant subgroups of U/L, 
and we let D/L = C^^(G). Because D is G-invariant, we have that either D — U or 
D = L, and so, we first assume that D — U. We now know that U C C and so, by 
hypothesis, G centralizes U. In particular, all the extensions of (f to U are G-invariant, 
and hence, to get a contradiction in this case it suffices to find some extension of </? to U 
with [,4, G] in its kernel. Write \in(U) for the abelian group of linear characters of U9 and 
note that lrr(U/L) and lvr(U \ </?) are subsets of C\[n(U)(A). 

Fix an element g G G so that G = (g). We define a map/ : Ciin(Lo(̂ ) ~~> l*n(A/U) by 
f(fi)(a) = n([a,g]) for all a G ̂  and // G Cnn(^(^). To see that this map makes sense, 
we show that if /i G Cnn(^(v4), then/(/i) is a homomorphism with £/ in the kernel. To 
see that/(/i) is a homomorphism, we consider the elements a,b £ A. Thus, we have that 

fQiXab) = ii([ab9g\) = Mfogf [*>,£]) = M([«^])M[*,g]) = (/fa)(*)) (/faX*)) 

where the third equality follows from the fact that /i is an ^-invariant linear charac­
ter. To see that U is in the kernel of/(/i), we recall that [U, G] = 1. This implies that 
f(fi)(u) — \ii\g, u]) = /i(l) = 1 for every element u G U. We now claim that/ itself is a 
homomorphism. Fix [i,v £ C\\n(U)(A). We s e e m a t 

fdivXa) = liH[a,g]) = fi([a,g])v([a,g]) = f{^){aY{V)(a) 

for every element a £ A. Thus, we conclude that/(^z/) =/(^y(z/) and that/is a homo­
morphism. 

Suppose [i G ker(/); so that for every element a G ^, we have that /i([tf,g]) = 1. This 
implies that [A, G] C ker(/x). Hence, if/(lrr(£//Z)) = 1, then we have that 

[A,G\C f| ker(/i)=L 
/i€lrr({//Z,) 

where the last equality comes from Lemma 2.21 of [5]. This implies that A C C, and 
it follows that G centralizes^. Therefore, we conclude that [A, G] = 1 C ker(<5) for all 
extensions 6 G Irr(L0 of (/?. Therefore, any extension of </? to U satisfies the lemma, and 
we have a contradiction to the choice of (A, U,L) in the case 

when/(lrr(t//Z,)) = 1. 
We assume that/(lrr(£//L)) > 1. We fix a character A e/(lir(C//Z,)) with A 7̂  land 

choose a character /1 G ln(U/L) so that/(//) = A. Since [//Z, *s a n elementary/?-group, 
we know that A has order/?. Thus, if B = ker(A), then |^ : B\ = p. Note that (B, U,L) is a 
normal triple satisfying the hypotheses of the lemma with \B\ +1U : L\ < \A | +1U : L\. By 

https://doi.org/10.4153/CJM-1996-052-8 Published online by Cambridge University Press

file:///ii/g
https://doi.org/10.4153/CJM-1996-052-8


1006 MARK L. LEWIS 

the choice of normal triple (A, U, L), we know that there exists a character 7 E Irr(£/ | p) 
such that [B, G] C ker(7). It follows from this fact that/(7) E ln(A/B) = (A) and so 
/(7) = \n for some integer « such that 0 < n <p. This implies that/(7) —f{^)n =f(^n) 
and sof(lfip~n) = 1. If we fix 6 = l[ip~n, then since /i E \rv{U / L) we conclude that 6 
extends p. By the definition of/, we observe that [A,G] C ker(<5). This, however, is a 
contradiction to the choice of (A, U, L). Therefore, we are done in the case when D — U. 

Finally, we may assume that D = L. Let P be a Sylow/^-subgroup of G and Q be a 
/^-complement for G. Since G is cyclic, we know that P and Q are normal in G. We see 
that thep-group P acts on thep-group U/L, and so there exist nontrivial fixed points. In 
particular, we see that Ca/L(P) > 1. Since CJJ/L{P) is G-invariant, we note that because 
U/L has no proper nontrivial G-invariant subgroups, this implies that CU/L(P) = U/L. 
Since D = L, it follows that CU/L(Q) = 1. Hence, (GU, U, L) is a controlled triple. Thus, 
by Corollary 2.2 there exists a unique G-invariant extension 5 E Irr(£/) of (/?. If we can 
show that [i4, G] C ker(^), then we would have a contradiction to the choice of {A, U, L). 

Write E/L = CAjL(Q\ and note that £ is G-invariant and that UHE = L. Since 
the action of g onA/L is coprime, we see that A/L = ([̂ 4, Q]L/L)(E/L), and so, ̂ 4 = 
[A9Q]E. Because [^,g] C [^,G] C I/, this implies that A = UE. We observe that 
[E,G] Q [A,G\ Q U. Since we also have that [E,G\ C £, it follows that [E,G\ C 
E n U = L and so £ C C. By hypothesis, we have that G centralizes £. Since 5 is 
linear and G-invariant, it is easy to see that [U,G] C ker(<5). Therefore, we conclude 
that [v4, G] = [UE, G] = [U,G] C ker(<5) where the middle equality is true since G 
centralizes E. This completes the proof of the lemma. • 

Since our definition of good elements is equivalent to the definition stated in [4] when 
K/L is abelian, we can present the following result, which appears as Theorem 3.2 of 
that paper. Recall that the basic configuration (G,K,L, e, <p) is fully ramified if ip is fully 
ramified with respect to K/L. 

THEOREM 4.2. Let (G, K,L,e, </?) be an abelian fully-ramified configuration. Fix an 
element g £ G. Then all the L-cosets in gK that are good with respect to the character 
triple (K, L, (p) are conjugate under K. m 

We would like to be able to prove this theorem in a more general situation, and so, we 
present the following result which proves the same conclusion when K/L is nilpotent. 
This theorem will be used in later papers in order to further generalize the results of [4]. 

THEOREM 4.3. Let (G, K, L, e, (p) be a nilpotent fully-ramified configuration. Fix an 
element g E G. Then all the L-cosets in gK that are good with respect to the character 
triple (K, L,<p) are conjugate under K. 

PROOF. We assume that the theorem is not true. It is easy to see from the definition 
of good cosets that determining whether an L-coset is good with respect to the charac­
ter triple (K, L, cp) can be done entirely in the character triple (G, L, (p). In particular, the 
good L-cosets with respect to the triple (K,L, (p) are invariant under character triple iso­
morphisms. If (G,L, p) is a counter example, then every character triple isomorphic to 
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(G,Z, (f) is one also, and thus, by Theorem 11.28 of [5], there exists one where p is lin­
ear. We assume that G, K9 L, and p provide a counter example with <p linear and \K\ as 
small as possible. We begin by noting that (K9g) satisfies the hypotheses of the theorem 
and that determining whether an I-coset of gK is good with respect to the triple (K9 L, p) 
may be done in (K9g). Thus, it suffices to assume that G — (K9g). 

Because G, K9 L and p form a counterexample, we see that Theorem 4.2 implies that 
K/L is not abelian. Also, since we have a counterexample with (p linear and \K\ as small 
as possible, it is easy to see that p is faithful and thus, that L is central. 

STEP 1. Suppose that K = UV where U and V are normal subgroups in G such that 
LCU, that LCV, and that [U,V]=l. Then either U = K or V = K 

PROOF 1. Assume that there exist subgroups U and V as above with U < K and 
V < K. Since (p is fully ramified with respect to K/L, we know that K acts transitively 
on the set lrr(U | p). On the other hand, we observe that V fixes all the members of 
\xx(U | (p) and so every irreducible constituent ofipu is invariant in K. The only way that 
all the irreducible constituents of pu can simultaneously be transitively permuted by K 
and invariant in K is if lrr(U | p) has exactly one member. Since p is invariant in U9 this 
implies that p is fully ramified with respect to U/L. By the symmetry of the hypotheses, 
we observe that p is fully ramified with respect to V/L. 

We have a contradiction if we can show that gL is conjugate to gkL in K for every 
choice of element k £ K such that gkL is good with respect to the triple (K,L, <p). Fix 
some element k £ K and assume that gkL is a good I-coset with respect to the triple 
(K9L9 <p). We know that there exist elements u £ U and v £ V such that k = vu. It is 
obvious that gL is good with respect to the triple (V9L9 p). Let C/L — Cv/L(gk). Since 
U centralizes V, it follows that C/L = CVjL(gv). Becausegk is good in K with respect to 
the triple (K9 L, p) and C/L C CK/L(gk)9 it follows that gk centralizes C by Lemma 3.5. 
Since u £ U centralizes V, it follows that gv centralizes C. By Lemma 3.5, we observe 
that gvL is good with respect to the triple (V, L, p)9 and we note that G, V9 L9 and p satisfy 
the hypotheses of the theorem with | V\ < \K\. Hence, all the Z-cosets in gV that are good 
with respect to the triple (V9 L9 p) are conjugate by elements of V, and thus, gL and gvL 
are conjugate by an element of V. 

Since gvL is conjugate to an L-coset that is good with respect to the triple (U9L9 p)9 

it follows that gvL is itself good with respect to the triple (U9L9 p). Notice that G, U, 
L9 and p satisfy the hypotheses of the theorem with \U\ < \K\9 and so, all the Z-cosets 
in gvU that are good with respect to the triple (U9 L9 ip) are conjugate by elements of U. 
Since gkL is good with respect to the triple (K9L9 p)9 we note that gkL = gvuL is good 
with respect to the triple (U9 L9 p)9 and we now conclude that gvL and gvuL are conjugate 
by an element of U. Therefore, gL and gkL are conjugate by an element ofK which is a 
contradiction. • 

STEP 2. K/L is a p-groupfor some prime p. 

PROOF 2. Since L is central and K/L is nilpotent, it follows that K is nilpotent. Let 
p be a prime divisor of \K : L\9 and write P £ Syl̂ AT). We pick Q £ Ha\\p>(K) and 
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note that QL < K. We know that K = PQ and that PL and QL are both normal in G. 
Since K is nilpotent, it follows that [P, Q] — 1, and because L is central, this implies 
that [PL, QL] = 1. Thus, we now have that PL and QL are subgroups as in Step 1. Since 
QL < K, we can conclude that K = PL, and the result follows. • 

Let U/L be a G chief factor such that U/L C Z(K/L), and since K/L is not abelian, 
we know that U < K. Let V = CK(U), and because K and U are both normal in G, we 
note that V is normal in G. Since L is central, it follows that L C V and by Lemma 3.5 
since (p is linear and faithful, that V — UL. 

STEP 3. <p extends to U. 

PROOF 3. By the Going-Up theorem (Problem 6.12 of [5]), (p being invariant in G 
implies either that ip extends to U or that ip is fully ramified with respect to U/L, and 
so, we assume that <p is fully ramified with respect to U/L. From Section 3, we know 
that ((•, -))ip is nondegenerate on U/L and so VC\ U = L. From Corollary 3.3, we see that 
\K: V\ = \U:L\ = \VU: V\ and so K = VU. Since V centralizes U, it follows that U 
and K are subgroups as in Step 1. Because U < K and V < K, we get a contradiction. 
Therefore, we see that <p extends to U. m 

We observed after Step 2 that V — UL. Since U/L is central in K/L and <p extends 
to V, we may use Lemma 3.4 to see that V is the stabilizer of 8 in K. 

STEP 4. 7f xL and yL are L-cosets in gK that are good with respect to the triple 
(K, L, (p), then xU andyU are conjugate by an element ofK. 

PROOF 4. Let A / U = Cv/V(x). We notice that {A, U9 L) is a normal triple, that L is 
central in A, that U/L is central in A/L, that A/L is ap-group (by Step 2), that (7/L is 
an elementary abelian/7-group, that [A,x] C (/, and that [L,x] = 1. Furthermore, since 
g is good with respect to the triple (K,L, (p) and since ip is linear and faithful, we may 
use Lemma 3.5 to observe that if C/L = CA/L(x), then x centralizes C. Finally, since 
<p has a F-invariant extension to U (by Step 3 and Lemma 3.4), we see that (p has an 
,4-invariant extension to U. Therefore, we may apply Lemma 4.1, to see that there exists 
ax-invariant extension<5 £ lrr(U) of ip such that [A,x] C ker(<5). 

Since 8 is linear, this implies that xL is good with respect to the triple (F, U,5). We 
write T to be stabilizer in G of 6, and by Lemma 3.4, we see that TDK = V. By Clifford's 
theorem (6.11 of [5]), we know that | Irr(K | S)\ = | lrr(K | S)\. Since (p is fully ramified 
with respect to K/L, we recall that | lrr(K | ip)\ = 1. Therefore, it follows that | Irr(F | 
6)| = 1, and since 5 is invariant in V, we see that 8 is fully ramified with respect to V j U. 
Similarly, for yL there exists an extension 8' of ip to U such that 8' is ̂ -invariant and that 
yL is good with respect to the triple (V, U,8'). 

We know, since <p> is fully ramified with respect to K/L, that there exists an element 
k £ K such that (8'f = 8 and thus the stabilizer of 8' in G is conjugate to T via k. Since 
<pk = (p, we have that conjugation by A: takes L-cosets that are good with respect to the 
triple (V, U,8') to L-cosets that are good with respect to the triple (V, U,8). Since yL is 
good with respect to the triple (V, U,8'), we have that (yL)k E T is good with respect to 
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the triple (V, U,b). Thus, we may assume, up to conjugacy, thaty £ T. Since x G T, we 
then have that xy~l E TDK = V and so x and;; lie in the same F-coset of T. Note that 71, 
V, U, and 6 satisfy the hypotheses of the theorem with 6 linear and | V\ < \K\. Therefore, 
since x andy lie in the same F-coset of T, we see that xU and yU are conjugate by an 
element of K. m 

Step 4 implies that we may assume that all the L-cosets in gK that are with respect to 
the triple (K, L,ip) lie in gU. This is true since any L-coset in gK that is good with respect 
to the triple (K, L,(p) must be conjugate to some L-coset in gU. Thus, we assume that it 
is in gU. It follows that gL is not the only L-coset in gU that is good with respect to the 
triple (K,L, tp). Also, we write C/L — CK/L(g). 

STEP 5. \U\L\ = pandUC C 

PROOF 5. Observe that g normalizes C D U and since U/L is central in K/L, we 
see that K normalizes CC\U. Because G — (K,g), it follows that C Pi U is normal in 
G. Since U/L is a G-chief factor, we know that either CP\ U — U or CD U = L. It is 
easy to see that \U : UDC\ is equal to the number of L-cosets in gU that are conjugate 
to gL by elements of U. If CPi U = L, then we have that there are \U : L\ conjugates 
of gL in gU. We also note that the number of L-cosets in gU is \U : L\ and so gL is 
conjugate by an element of U to every L-coset of gU. By Step 4, this implies that gL is 
conjugate to every I-coset in gK that is good with respect to the triple (K,L, <p)9 and so, 
this is a contradiction to the choice of G, K, L, and ip. Thus, we see that CDU = U or 
equivalently that U C C. This implies that g centralizes U/L. Since U/L C Z(K/L), 
we remark that U/L C Z(G/L). Because U/L is a chief factor for G, we conclude that 
| t / : I | = / 7 . 

STEP 6. C c F. 

PROOF 6. By Step 5, we know that \U : L\ = p, and by Step 4, there exists an 
element u lying in £/ but not in L such that gu is good with respect to the triple (K, L, ip). 
Thus, we observe that U = (Z,,w). Recall that F = CK(U)9 and since L is central, it 
follows that V = CK(u). Because uL e Z(K/L), it follows that C/L = CK/L(gu\ and 
since </? is linear and faithful and g and gw are good with respect to the triple (K,L, ip), 
we may use Lemma 3.5 to see that g and gu centralize C. This implies that C centralizes 
u. The result is now clear. • 

STEP 7. C/U=CK/U(g). 

PROOF 7. Let B/U= CK/U(g), and note that C C 5 . B y Step 2 we know that \B : C\ 
is a/7-power. Observe that \B : C| is the number of conjugates of gL in gU. By Step 5, 
we have that \U : L\ = /?, and so, it follows that gL is either conjugate by elements of 
K only to itself in gL^ or to all the L-cosets in gt/. Thus, if B > C, then we know that 
gL is conjugate to all the L-cosets of gU. As a consequence of Step 4, we see that this 
contradicts the choice of G, K, L, and (p, and so, we conclude that B — C. m 
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STEP 8. Let 6 G lrr(U) be any extension of (p. Then g is good with respect to the 

triple (V,U,S). 

PROOF 8. Since g is good with respect to the triple (K, L, if), we have, by Lemma 3.5, 
that [C,g] C ker(ip) = 1. From Step 7, we have that C/U= CK/V(g) On the other hand, 
by Step 6, we see that C/U = (CDV)/U = Cv/U(g). This implies that [C,g] = 1 C 
ker(<5), and so by Lemma 3.4, we may conclude that g is good with respect to the triple 
(V,U,6). 

STEP 9. Final contradiction. 

PROOF 9. Let 6 G lrr(U) be any extension of if. (By Step 3, we know that if has 
an extension to U.) From Lemma 3.4, we know that V is the stabilizer in K of 5. Since 
V centralizes in (7, it follows that all the members of lrr(U | if) are invariant in V. By 
Step 4, we know that U C C. Because g is good with respect to the triple (K,L, if) and 
if is linear and faithful, we may apply Lemma 3.5 to see that g centralizes U. Because g 
acts trivially by conjugation on U, it follows that [K,g] centralizes U, and so, we have 
that [K,g] C V. Thus, we have that (gVf = gV for all k G K. 

Since Â  fixes gF, we observe that K permutes the £/-cosets in gV. Let T — IG(^), 

and note that 7*, F, (7, and <5A satisfy the hypotheses of the theorem with 8k linear and 
| V\ < \K\ for all the elements of A: G K. Thus, we have that they satisfy the conclusion of 
the theorem that all the £/-cosets in gV that are good with respect to the triple (V, U,6k) 
are conjugate by elements of V for every element k EK. 

Observe that conjugation by an element k G K takes a £/-coset that is good with 
respect to the triple (V, U, 6) to a £/-coset that is good with respect to the triple (V, U, 5k). 
Since gU is good with respect to the triple (V, U, 6), we have that gk U is good with respect 
to the triple (V, U,Sk). On the other hand, by Step 8, we also know that gU is good with 
respect to the triple (V, U, 8k). Hence, there exists v G V such that gvU — gkU. Therefore, 
we know that gU is ^-conjugate to every £/-coset that is ^-conjugate to gU. Since C is 
the stabilizer of gU in K, we may now use a Frattini Argument to see that K — VC. By 
Step 6, we have that C C V, and so K = V. This, however, contradicts Corollary 3.3 
which says that \K : V\ = \U : L\ > 1. • 

The abelian analog of the following corollary is not explicitly in [4] but is clearly an 
immediate consequence of the results in Section 3 there. 

COROLLARY 4.4. Let (G, K, L, e, if) be a nilpotent fully-ramified configuration with 
stabilizing complement H, and let \ G Irr(G | if). Assume that all the elements of H are 
good with respect to the triple {K, L, if). Then we have that \{g) = 0 if the element g G G 
is not conjugate to an element ofH. 

PROOF. Let g £ G, and assume that x(g) ^ 0. We must show that g is conjugate to 
some element of//. Since x(g) ^ 0, we know by Lemma 3.1 that g is good with respect 
to the triple (K,L, if) and by Theorem 4.3 that all the L-cosets of gK that are good with 
respect to the triple (K, L, </?) are conjugate by elements of K. We know that gKP\H is not 
the empty set, and thus, there exists h G gK D H such that hL — gKP\ H. Since h G //, 
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we know that hL is good with respect to the triple (K,L, if), and so, hL is conjugate to 
gL by an element of K. Therefore, we may conclude that g is conjugate to an element of 
H, as desired. • 

We close this section with a question that the author has not been able to resolve. 
Throughout this paper the standard hypothesis is that K/L is nilpotent. While we were 
able to use this hypothesis to prove Theorem A, it would be more straightforward if we 
instead had assumed only that K/L is solvable. Thus, the question is: given a G-invariant 
character if G Irr(L) which is fully ramified with respect to K/L, are all of the good L-
cosets with respect to the triple (K,L, if) conjugate by an element of K when K/L is 
solvable (i.e., not nilpotent). 

5. Character correspondences. Before we can prove Theorem A, we need to 
present two character correspondences. The first of these is Lemma 10.5 of [4]. 

EXTENSION CORRESPONDENCE (EC). Let (G,K,L,e,(f) be a basic configuration, 
and assume that ti — if. If H is a stabilizing complement, then restriction defines a 
bijection Irr(G | e) —> lrr(H | if). m 

When we use the Extension Correspondence, we will normally mean the inverse of 
the bijection found in EC. 

LEMMA 5.1. Let (G, U, L, 8, if) be an abelian configuration with stabilizing comple­
ment H, and assume thatbi — f. Then there exists a bijection ": Irr(G | if) —> Irr(G | if) 
satisfying for every character a G Irr(G | if): 

(a) ocH = 6cH, 

(b) a — a, and 
(c) if\G:L\ is odd, then a = a if and only if a G Irr(G | 6). 

PROOF. By Gallagher's theorem (6.17 of [5]) we know that lrr(U \ if) = {6X | A G 
lrr(U/L)}. Since 6 is G-invariant, it is easy to see for every character A G lrr(U/L) that 
the stabilizer of 8X in G is the stabilizer of A in G. We will use the notation ( ) to denote 
the complex conjugate. For every element h G H and every character A G lrr(U/L), we 
know that (A/* = Xh, and thus, it follows that the stabilizer of A in G equals the stabilizer 
of A in G. We conclude for every such A that the stabilizer of £A in G equals the stabilizer 
of £A, and since U/L is abelian, it follows that <5A and <5A are both extensions of if. 

Given a character a G Irr(G | if), we need to produce a character a G Irr(G | if). We 
will construct the '-bijection in several steps. 

Fix a character A G Irr(U/L), and let The the stabilizer of <5A in G. Since if, SX, and 
<5A are all T-invariant, we may use EC to see that restriction defines bijections between 
Irr(7 | <5A) and Irr(THH | <p) and between Irr(7 | <5A) and lrr(TnH | if). We define 
the map g\: Irr(T \ 8X) —* lrr(T \ 8X) in the following manner. For any character f3 G 
Irr(r | <SA), write 7 = PTHH, and using EC, we observe that 7 G lrr(Tr\H \ if). Thus, by 
EC again, there exists a unique character extending 7 lying in Irr(T \ bX), and we will 
define g\((3) to be this character so that gx(f3)rnH = 7. 
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We construct the map/A^In^G | <5A) —> Irr(G | <5A) as follows. First, consider a 
character a G Irr(G | 6X). By Clifford's theorem (6.11 of [5]), we know that there exists 
a unique character such that f3G = a. We now define the character fx(a) = (g\((3J) , 
and using Clifford's theorem again, we conclude that j\(a) G Irr(G | 6X). Observe that 
fx is a well-defined map. 

We want to define a as/\(ar), where the character A G ln(U/L) is chosen so that <5A is 
a constituent ofay. For this to be well-defined, we must show that fx (a) is independent 
of the choice of A. If we have [i G \n(U/L) so that <5/i is also a constituent of ay, then 
8X and <5/i lie in the same //-orbit. We know that any character in the same //-orbit as 
<5A is of the form (6X)h — 5Xh for some element h G //, and so, by Gallagher's theorem 
(6.17 of [5]), we have that \i — \h. Hence, we must show that/A(a) = fxh(a) f° r every 
element h G H. 

As before, we write Tfor the stabilizer of <5A in G and j3 for the Clifford correspondent 
(see Theorem 6.11 of [5]) for a with respect to 6X. Fix an element ofh G //, and observe 
that Th is the stabilizer of (8X)h in G and that (3h is the Clifford correspondent for a with 
respect to (8X)h. We know that conjugation by h is an isomorphism from 7 to Th carrying 
m H to Th H //, and so, it follows that gXh(l3h) = g\(J3)h. Thus, we have the following 
equalities: 

A*(«) = {gAPh))G = {gxWff = {gxW)f =fx(a). 

It is easy to see that/^ (/A(or)) = a, and so, we see that a = a. Hence, the map a \—> a 

is a bijection from Irr(G | (p) to Irr(G | ip). 

By Problem 5.2 of [5], we have that 

OCH = (PG)H = (Prnnf = 1H = {gxiPhnnf = {gx(P)G)H = (f\(<*J)H = &H, 

where A, /3, and 7 are the same characters as before. 
We now assume that \G : L\ is odd, and prove that (c) holds. If a G Irr(// | 8\ then we 

know that the character A in the above construction equals 1 u. If we let (3 be the Clifford 
correspondent (see 6.11 of [5]) for a with respect to <p, then we have that giL,(/?) = /?, 
and so, 

a =A /C8) = {gM)° = /3C = ^ 

On the other hand, when a $ Irr(// | 5), it follows that the character A in the above con­
struction does not equal 1 u, and since | U : L\ is odd, we know that A ̂  A. Furthermore, 
we will prove that A and A lie in different orbits under the action of//. Suppose that A and 
A lie in the same orbit under the action of// and hence, that there is some element h G H 
such that AA = A. It is easy to see that {X)h — X = A, and because L fixes the characters 
of Irr((7/L), this implies that 2 divides \H : L\. Since this contradicts the assumption that 
\H : L\ is odd, we observe that A and A lie in different orbits of//, and because S is also 
//-invariant, it follows that <5A and <5A lie in different orbits under the action of//. Since 
a lies in Irr(G | 5X) and a lies in Irr(G | <5A), we conclude that a ^ a. m 
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6. Theorem A. We are now ready to prove Theorem A of the Introduction. The fol­
lowing result is the induction step and contains most of the work for proving Theorem A. 

THEOREM 6.1. Let (G, K,L,e,(p)bea coprimefully-ramified configuration such that 
\G : L\ is odd, and let H be a stabilizing complement. Assume that U is a normal H-
invariant subgroup ofG that lies in K and contains L so that U/L is an abelian group. 
Fix the character 9 G ln(H | p). 

(i) Assume that <p is fully-ramified with respect to U/L, and let 8 be the unique irre­
ducible constituent ofpu. Then there exists a character 7 that is the unique irreducible 
constituent of9HU having odd multiplicity. Furthermore, assume that \ is the unique ir­
reducible constituent oflG having odd multiplicity and that 7 is the unique irreducible 
constituent ofxHU having odd multiplicity. 

(ii) Assume that 8 G In(U) is an H-invariant extension of (f. Write Vfor the stabilizer 
of 6 in K and a for the Clifford correspondent for e with respect to p. Then there is a 
character 7 G lrr(HU \ 8) such that 7// = 9. Assume that r\ is the unique irreducible 
constituent oflHV having odd multiplicity and that 7 is the unique irreducible constituent 
ofrjHu having odd multiplicity. Then \ = r]G is irreducible. 

Then \ is the unique irreducible constituent of0G such that [\//, 9] is odd, and fur­
thermore, 9 is the unique irreducible constituent ofxH such that [\H, 9] is odd. 

PROOF. Assume first that we are in case (i). By Isaacs' theorem in the Introduction, 
there is a unique character 7 G lrr(HU \ 8) having odd multiplicity as constituent of9HU. 
Thus, we can write 1G — \ + 2Y and 9HU = 7 + 20 for some possibly reducible or zero 
characters Y G Char(G) and 0 G Char(HU). Putting these together, we conclude that 
QG _ ^G + 2YG = x + 2(0 + TG), and therefore, \ is the unique irreducible constituent 
of 9G having odd multiplicity. In a similar manner, we can write 7// = 9 + 2A and \HU = 

7 + 2A for some possibly reducible or zero characters A G Char(//) and A G Char(HU). 
Combining these, we have \H = (7 + 2A)// = 9 + 2(A + A//). Therefore, 9 is the unique 
irreducible constituent of x// having odd multiplicity. 

Suppose now that we are in case (ii). Write T for the stabilizer of 8 in G, and so, 
V = T fl K and T = HV. By EC, there exists a character 7 G \n{HU \ 8) such that 
7// = 9, and we can write 1T = r\ + 2Y for some possibly reducible or zero character 
r G Char(r). Similarly, we may write TJHU = 7 + 2S for some possibly reducible or zero 
character S G Char(T). By Clifford's theorem (6.11 of [5]), we know that \ = 7]G and 
that \T = V + A, where the (possibly reducible or zero) character A G Char(r) consists 
of all the irreducible constituents of XT that are not constituents of 8T. 

Assume that U/L is a/?-group for some prime p. By Lemma 5.1, we have a bijection 
": lvr(HU | (p) —> \rr(HU \ p) such that every character a G ln(HU \ ip) satisfies 
&H = &H> Thus, we have that [9, aH] = [9, dH] for every character a G ln(HU \ (p), 
and so, we see that a and a have equal multiplicities in 9HU. By EC, we know that 7 is the 
unique irreducible constituent of 9HU lying in \rv(HU \ 8). The remaining constituents 
of 9HU come in pairs a and a for characters a G ln(HU \ 8X) where the character 
A G ln(U/L) satisfies A ^ \y. Thus, we pick the characters a, G ln(HU \ p), such that 
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we have one character from each pair, and since \G : L\ is odd, we apply Lemma 5.1(c) 
to see that a, ^ d, for each index i. Therefore, we may write 9HU = 7 + E/ a^a,- + d,) 
where the coefficients are nonnegative integers. 

Since (\H : L|, \K : L\) = 1, we have by Glauberman's lemma (13.8 of [5]) that H 
normalizes some Sylow p-subgroup P/L G Sy\p(K/L). Since U is a normal subgroup 
of K, we see that U C P, and by Theorem 2 of [1], it follows that ip is fully ramified 
with respect to P/L. Let K G Irr(P) be the unique irreducible constituent of tpp, and 
note that HP is a group. Since (\H : L|, \P : Z,|) = 1, we know by Lemma 3.6 that all 
the elements of H are good with respect to the triple (P, L, ip). Because (HP, P,L,K, (p) 
is a nilpotent fully-ramified configuration, we may use Corollary 4.4 to observe that if 
f3 G Irr(HP \ <p), then /3(g) = 0 if g is not conjugate to an element of//. Consider some 
character a G Irr (HU \ (p). Since a7775 and dHP are sums of elements of Irr(//P | (/?), we 
have that aHP and d777* vanish on elements of HP that are not conjugate to elements of 
//. Thus, if (aHP)H = (dHP)H, then it follows that a777" = d777*. We are ready to prove the 
following equalities for each element h G //: 

where each of the sums are over those elements y G HP such that hy G HU. Except for 
the middle equality, all of these are clear by the definition of induced characters, and so, 
we work to prove the middle equality. We consider an element hy G HU. We know that 
o(hyL) = o(hL) and that H/L G Ha\\pf(HU/L). We see that hyL G (HjLf for some 
element u G U, and so, hy G //". Thus, there exists h\ £ H such that /zy = /*". Since 
a, a G \n(HU) and since /^ = /*", we observe that a(hy) — a(h\) and d(ff) = d(h\). 
Because a and d are class functions, we have that oc(h\) = a(/*i) and d(/z") = d(/zi). 
Since OCH — d//, we have that a(h\) = d(h\). Thus, we observe that ocQ?) = d(/^) for all 
elements h G //and j G HP such that /^ G HU. We may now conclude that aHP — dHP, 
and this implies that aG — dG. In particular, we know that \ has the same multiplicity 
in aG as in dG. 

We now have that 

9G = {1T)G + ^ fl .(0f. + rfi }c = ( | / + 2 r ) G + 2 ^ fl / ( a / )G = x + 2 /rc + ^ atiptif). 
i i i 

Therefore, x is the unique irreducible constituent of 6G such that [x//, 0] is odd. 
We now show that 9 is the unique irreducible constituent of \H having odd multiplic­

ity. Since 6 is invariant in Z/F, it follows that the irreducible constituents of AHU are not 
constituents of6HU. Consider an irreducible character (3 of HU that is not a constituent 
of 8HU. Using Frobenius Reciprocity (Lemma 5.2 of [5]) and the fact that 77 is the unique 
irreducible constituent of xr that is a constituent of <5r, we have that 

[A/H/,/3] = [A,/?7] = [XT9f] = [X,/3G] - [X,/3G] = [xr,/3r] = [A,/3r] = [A^/3] . 

Thus, the constituents of AHU come in pairs (3 and /3 for characters (3 G ln(HU | 6A) 
where the character A G Irr(£//Z,) satisfies A ^ l̂ y. Thus, we pick the characters (3i G 
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ln(HU | (f), such that we have one character from each pair, and since \G : L\ is odd, 
we apply Lemma 5.1(c) to see that /?,- ^ /?/ for each index /. Therefore, we may write 
AHU — Hi bj((3j + (3i) where the coefficients are nonnegative integers. We have 

XH = (<n + A)// = (7 + 2E + £ 6,-09,. + ft:)) H = fl + 2 (S// + £ ^ ) / / ) • 

We conclude that 9 is the unique irreducible constituent of \H having odd multiplicity. 
Assume that we are in the general case of (ii), and let/7 be a prime divisor of | U : L\. If 

U/L is a/?-group, then we are done by the previous paragraphs, and so, we assume that 
U/L is not ap-group. Let P/L be the Sylow p-subgroup of U/L, and observe that P is 
//-invariant. We write // = Sp, and it is easy to see that \i is irreducible and //-invariant. 
We write Q for the stabilizer of// in K, and 1/ E Irr((? | /x) for the Clifford correspondent 
of e with respect to \i. By Lemma 3.4, we know that /1 is fully ramified with respect to 
Q/P, and so, (HQ, Q, P, v, /1) is a coprime fully-ramified configuration with stabilizing 
complement HP. Observe that this configuration satisfies the same hypotheses as the 
original configuration with \Q : P\ < \K : L\. We write u — 1HP and ip = r\H®. Thus, we 
may apply induction on \K : L\ to see that ^ is the unique irreducible constituent of a/^ 
having odd multiplicity and that u is the unique irreducible constituent of X^HP having 
odd multiplicity. Observe that we may now apply the /7-group case to get the result. • 

The following corollary is Theorem A of the Introduction. 

COROLLARY 6.2. Let (G, K, L, e, (/?) be a coprime fully-ramified configuration such 
that \G : L\ is odd. Then there exists a stabilizing complement H so that for each charac­
ter9 E Irr(// I (p) there is a unique irreducible constituent \ of9G having odd multiplicity 
and 9 is the unique irreducible constituent ofxu having odd multiplicity. 

PROOF. Since (G, K, L) is a coprime triple, we know by the Schur-Zassenhaus the­
orem that there exists a complement //, and since ip is G-invariant it follows that H is a 
stabilizing complement. 

We work by induction on \K : L\. If L = K, then it is clear that we are done, and so, we 
may assume that L < K. Thus, there is a subgroup UofK such that U/L is a chief factor 
for G. Since K/L is solvable, it follows that U/L is an abelian/?-group for some prime/?. 
Since (f is G-invariant, we know by the Going-Up theorem (Problem 6.12 of [5]) either 
that (f extends to U or that ip is fully ramified with respect to U/L. If ip extends to U9 

then by Lemma 2.1 we know that there exists an //-invariant extension 8 in U9 and let 7 
correspond to 9 via EC. If (p is fully ramified with respect to U/L, then we let 6 E Irr((7) 
be the unique constituent of(pu, and we write 7 for the unique irreducible constituent of 
9HU having odd multiplicity. 

Let V be the stabilizer for 8 in K, and let a be the Clifford correspondent for e with 
respect to S. Observe that if <p is fully-ramified with respect to U/L, then V = K and 
a = e. Since ip is fully-ramified with respect to K/L, we know by Clifford's theorem 
(6.11 of [5]) that a is the unique irreducible constituent of (8)v. Because 8 is invariant 
in V, it follows that 8 is fully ramified with respect to V/ U. In any case, we know that 
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(HV, V, U,cr96) is a coprime fully- ramified configuration with \HV : U\ odd. We may 
then apply the inductive hypothesis to see that 1HV has a unique irreducible constituent 
of odd multiplicity 77 and that 7 is the unique irreducible constituent of I]HU having odd 
multiplicity. Therefore, we may apply Theorem 6.1 to conclude that 9G has a unique irre­
ducible constituent \ with odd multiplicity and that 9 is the unique irreducible constituent 
of \H with odd multiplicity. • 

PROOF OF THEOREM B. Since (p is S-invariant and 7 and e are the unique irreducible 
constituents of <pH and pG, it is obvious that 7 and e are ^-invariant. 

We note that (SG, G,L, e, ip) and (SH,H,L,1, ip) are fully-ramified coprime configu­
rations. By the Schur-Zassenhaus theorem, we know that all complements for (SG, G, L) 
are conjugate. Similarly, we know that all complements for (SH,H,L) are conjugate. 
Thus, we may use Corollary 6.2 to see that ((p*)SH and (<p*)SG have unique irreducible 
constituents t/> G ln(SH) and \ G Irr(SG) having odd multiplicity. In fact, there are re­
ducible or zero characters *F and O so that (^?*)s// = x/j + 2^ and (<^*)5G = x + 20. This 
implies that i/;5G +2VPSG = x +20. Therefore, we observe that x is the unique constituent 
of xpSG having odd multiplicity. To prove the result, it now suffices to show that ip = 7* 
and \ = c*. 

Define E to be the extension of the rational numbers containing all the roots of unity 
dividing | GS\. Write F for the subfield of E containing roots of unity that have order 
dividing |G|, and observe that the Galois group for E over the rational numbers is the 
direct sum of the Galois group for E over F with the Galois group of F over the rational 
numbers. It follows that there is a Galois automorphism r of E over the rational numbers 
that fixes the roots of unity having order that divide | G\ and acts like complex conjugation 
on roots of unity that divide \S\. It easy to see that (/?*, 7*, and e* are the unique irreducible 
constituents of (pLS, 1HS, and eGS fixed by r (see the discussion following Lemma 13.3 
of [5]). Combining the observation that ^ and ^T have the same multiplicity in {<p*)HS 

and x and x r have the same multiplicity in {ip*)GS with the fact that xjj and \ are the 
unique irreducible constituents of (<p*)HS and ((p*)GS having odd multiplicity, it follows 
that 1/; = i/>r and \ = XT- Hence, we conclude that xjj — 7* and \ — e*. m 
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