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CONTINUITY OF ATTRACTORS 
AND INVARIANT MEASURES 

FOR ITERATED FUNCTION SYSTEMS 

P. M. CENTORE AND E. R. VRSCAY 

ABSTRACT. We prove the "folklore" results that both the attractor A and invari­
ant measure \x of an iV-map Iterated Function System (IFS) vary continuously with 
variations in the contractive IFS maps as well as the probabilities. This represents a 
generalization of Barnsley's result showing the continuity of attractors with respect to 
variations of a parameter appearing in the IFS maps. Some applications are presented, 
including approximations of attractors and invariant measures of nonlinear IFS, as well 
as some novel approximations of Julia sets for quadratic complex maps. 

1. Introduction. In this paper we derive some results regarding the continuity of 
attractors and invariant measures for A -̂map Iterated Function Systems (IFS) with respect 
to changes in the contractive maps as well as the associated probabilities. Barnsley [1, 
Section 3.11] has already shown that the attractor A of a contractive IFS varies continu­
ously with respect to parameters in the IFS maps. There are obvious applications when 
one considers both animation, where images (IFS attractors) are deformed and possibly 
translated in time in an apparently continuous manner and rendering, where the shad­
ing of an image is manipulated. The results reported here represent a generalization of 
Barnsley's results. A primary motivation is in the inverse problem, where a local "fine 
tuning" of the IFS maps and probabilities is performed to optimize the approximation of 
sets or measures with IFS attractors or invariant measures. 

The layout of the paper is as follows. Section 2 provides a glossary of the notation 
employed in this paper, followed by a very brief review of "traditional" IFS. In Sec­
tion 3, a basic continuity property of fixed points of contractive maps is first shown. The 
continuity results for IFS attractors and invariant measures then follow. In Section 4 are 
presented some applications, including the approximation of attractors and measures of 
nonlinear IFS, as well as the approximation of Julia sets of quadratic maps with attractors 
of IFS composed of nonanalytic maps. 

2. Glossary of notation and brief review of IFS. In this paper, the following no­
tation will be employed: 

(X, d) a compact metric space. (In applications, where X is the "base" space of the 
IFS, X is typically a compact subset of R", e.g. [0,1], [0, l]2 . In this case, 
the norm on X will be denoted as ||JC||, i.e. \\x — y\\ = d(x, y).) 
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D diam(X) = supxyeX d(x,y). 
C(X) = {f: X —• R}, the space of continuous real-valued functions on X. 

Lip(X) = {/:X — R | [/(*) -f(y)\ < d(x,y),x,y G X}. 

Con(X) = [w:X -> X | d(w(jc), w(y)) < sd(jc,y), 0 < 5 < 1, VJC, y G X}: the set of 
contraction maps on X. We shall refer to s as the contractivity factor of w. 

[Con(X)]* = {w = (wi, w2 , . . . , WAT) | W; G Con(X), i = 1,2,.. .N}, the set of iV-map 
contractive IFS on X. 

KN = {p = (PUP2,...,PN) I A > 0 , E ^ A = 1}, the set of probability 
vectors for the N-map IFS on X. 

S?¥S(X) = [Con(X)]* x H*', the topological space of N-map contractive IFS on X 
with associated probabilities. 

9~t(X) the set of non-empty compact subsets of X. 

h Hausdorff metric on H{X)\ Let the distance between a point* G X and a set 
A G M(X) be given by 

J(x,A) = inf d(x,y). 
y€A 

Then for A, 5 G #(X), 

h(A,B) = max[supd(;c,i?), supd(y,A)|. 

(9{(X), h\ is a complete metric space. 
!M(X) the set of Borel probability measures on J3L(X), i.e. jz(X) = 1, where A{X) 

denotes the cr-algebra of Borel subsets of X. 
du a metric on fM(X), often called the Hutchinson metric due to its use in [2]: 

(2.1) dud*, v) = sup Iffdfi- ffdv] ji, v G 5tf(X). 

(fM(X), J//) is a complete metric space. Now note the following: 
(i) / G Lip(X) implies that g = / + c G Lip(X) for c G R constant, and 

(ii) J g d\x — J g dv — Sfd/i — Jfdv. Thus, the supremum in the definition of 
du may be restricted to the subspace/ G Lip0(X), where Lip0(X) = {f G 
Lip(X),/(0) = 0}. 

Let (w, p) denote an Af-map contractive IFS on X with probabilities, that is, a set of 
N contraction maps, w = (wi, w>2,..., vv#), w, G Con(X), with associated probabilities 
P = (Pi>/?2> • • • >PN)I Ej=i A; = 1, and contractivity factors S[. The contractivity factor of 
the IFS is defined as 

(2.2) 5 = max s,-. 
\<i<N 

There are two fundamental results [2,3]: 
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UNIQUE ATTRACTOR. Define a set-valued mapping w: ?{(X) —• 9{{X) as follows. 
For a subset S E 9((X) denote wt(S) = {wt(x\ X € 5}, / = 1,2,..., TV and let the action 
of w on S be given by 

(2.3) w (« = (J "«•(«• 
1=1 

Then there exists a unique compact set A E Ji(X), the attractor of w (independent of 
p), such that 

(2.4) A = w(A) = U w;(A) 
i—\ 

and h(wn(S),À) —• 0 as n —> oo for all S E M(X). This result follows from the fact that 

w is a contraction mapping on (#(X),/i), i.e. for A, 5 € #(X), 

(2.5) ft(w(A), w(£)) < sh(A, B). 

UNIQUE INVARIANT MEASURE. Define a "Markov operator" on the probability mea­
sure space, M: M(X) —• M(X) as follows: For v E M(X), let 

N 

(2.6) Mi/ = ^2pii/owYl. 

Then there exists a unique measure \i E M(X), the invariant measure of the IFS, for 
which Af/Li = ^. M is a contraction mapping on ($/(X), J//), i.e. for /x, i/ G lW(X), 

(2.7) d#(M/i, Mi/) < ,sdff(/x, v). 

In addition, supp(/i) Ç A. 

3. Continuity of IFS attractors and invariant measures. In both cases, we make 
use of a simple yet important consequence of the Banach Contraction Mapping Principle 
which establishes the continuity of fixed points with respect to contraction maps on a 
complete metric space. Let (F, dy) be a complete metric space and Con(F) the set of 
contraction maps/: Y—+Y. Consider the following natural metric on this function space: 

(3.1) dCon(Y)(fnf2) = supd(fi(y),f2(yj), fufi € Con(F). 
yeY 

Note that the metric space (Con(F), dcon(F)) itself is not necessarily complete. 

THEOREM 3.1. Define a mapping F:Con(Y) —• Y as follows: For f E Con(F), 
F:f —• x, where x E X denotes the unique fixed point off, i.e. f(x) — x. Then F is 
continuous at eachf in Con(F). 

PROOF. Le t / E Con(F), with contractivity factor s and fixed point x. For a given 
e > 0, let/c E Con(F)> with fixed point Jcc, such that dcon{Y)ifJt) < e(l — s). Then 

d(x,xc) = d(f(*),/c(.Xe)) 

< d(f(x\f(xe)) + d(f(xeXfe(xe)) 

< sd(x,xc)+e{\ — s). 
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A rearrangement gives the desired result, 

d(x,xe) < e. 

We now proceed to apply this result to TY-map IFS over a base space (X, d). It is conve­
nient to consider the IFS as an element of a topological space 5^S(X) = [Con(X)]N x HN. 
(See the glossary at beginning of this section. Note, however, that the usual restriction that 
all probabilities be nonzero has been relaxed so that IFS with different numbers of maps 
may be compared.) Thus, ^pS(X) C SJF£(X) forN= 1,2, In cases where more than 
one IFS are considered at a time, it is convenient to denote them as (wk, pk) E S^S(X), 
k = 1,2,..., where each map and probability N-vector is given by 

(3.2) w* = (w*i, wkl,..., wkN\ pk = (pkuPia* • • • >Pw). 

Let skj denote the contractivity factors of the wkj; the contractivity factor of the IFS 
(Wfc, p*) is then sk = max\<j<N skj. Now define the following natural metric on [Con^)]^: 

(3.3) d£(wi, w2) = max dCon(X)On, w2l-). 
1 <i<N 

(Note that this metric does not take into consideration the permutational symmetry of 
the IFS map vector: the IFS vectors w and 7rw, where IT E 5N, the symmetric group 
on n elements, obviously possess the same attractor A even though d^(w, 7rw) is not 
necessarily zero. This is not a serious issue (it can be rectified with a little extra work) 
since we are concerned only with the continuity of A with respect to variations in the vv/ 
and not the structure of the mappings from w to X or from (w, p) to !M(X), respectively. 
Thus, the J^ metric will suffice.) 

COROLLARY 3.2. The mapping F^: [Con(X)f -> tt{X) defined by Fatt(w) = A, 
where w(A) = A, is continuous at each w in [Con(X)]^. 

This is a generalization of Barnsley's result [1, Section 3.11], where the variations in 
the IFS maps were essentially made with respect to a single parameter in the IFS. As will 
be discussed in Section 4, the above result allows us to construct approximations to A by 
using IFS composed of approximations to the contraction maps wkj. 

Now let Con^(5Vf (X)) denote the space of contractive Af-map IFS Markov operators 
on ïM(X). The operators Mk G Con^(5V/̂ (X)) associated with the indexed IFS (w*, pk) 
are given by 

(3.4) Mkv = 5>*,i/ o w^\ ve M{X). 
7=1 

Now define the following metric on this space: 

(3.5) dN
M(MuMi)= sup dff(Mii/,M2i/). 
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COROLLARY 3.3. The mapping Fmeas« Con^(^(X)) -+ M(X) defined by 

^measC^O = H> where M\x = /i, is continuous at each M in Conj^(5l^(X)). 

3.1 Continuity of invariant measures with respect to IFS maps and probabilities. From 

a practical perspective, the continuity properties expressed by the two corollaries above 

contain no information: it would be useful to express the distance d^f(M\,M2) and ul­

timately the Hutchinson distance between respective invariant measures, d//(/ii, \xj), in 

terms of the IFS components w and p. This will now be done in order to show that a 

continuous variation of the invariant meausure \i of an IFS is possible by means of con­

tinuous variations in the contractive map vector w as well as the probability vector p. 

Given two N-map IFS (w*, p*), k — 1,2, we define the following natural distance func­

tions in [Con(X)]" and H^: 

(3.3) £#(wi, w2) = max dCon(X)(w\h w2i), 
\<i<N 

(3.6) <^(Pi>P2) = max \pu -p2i\. 
r \<i<N 

THEOREM 3.4. Let (wi,pi) € vS ŝ(X), with contractivity factor s\, associated 

Markov operator M\ 6 Con^( !M(X)j and invariant measure \x\. Then for every e > 0, 

there existai, S2 > 0 such that for all N-map IFS(W2, P2) 6 ^ ( X ) satisfying 

(3.7) <#(wi,w2)<«i, <(pi ,P2)<«2, 

it follows that du(\x\, ji2) < e where ji2 is the invariant measure of the IFS(W2, P2). 

PROOF. Given an e > 0, let (W2, P2) € i^s(X), such that 

(3.8) <#(wi,w2)<«i, < (p i , p 2 )<«2 , 

where S\, 82 > 0 are such that 

(3.9) 6i+ND82<e(l-si). 

(D = diam(X)). The existence of such a W2 has been dicussed elsewhere [1]. Then, from 
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equation (3.5), 
(3.10) 
4 ( ^ 1 , Af2) 

= sup sup \[fdMi(jjL)- ffdM2(p)\ 
M e ^ / e L i P o ( X ) L - / J -I 

ïN r l 
= sup sup J ] / \piif(wu(xj) - pvf(w2i(xj)} dp 

/i65^r/eUp^)(X)Lï•=l• , L J 

[ N r l 
= SUp SUp 53 / [Pli'/O^liC*)) -P2i/(wi,-W) + P2i/(wiiW) - P2if(w2iW) 1 d/i 

/xe /̂eLipoCX)1-̂ !-7 J 

r AT » N r 

= sup sup 5Z(Pi« ~ P2») //(w i i-W) ^M + Z)P2i / |/(wi,-(*)) -/(w2/(x)) 1 rf/x 
M 6i^ /eLip 0 (X) L /= l ^ ,=1 J 

< sup sup ^(pu-pii) f(wu(x))dp 
/ i6fW/eUpo(X)i=i ^ 

w -
+ SUp SUp Y,P2i \f(wli(x)) -f(w2i(x)))dp,. 

M e ^ / e L i p 0 ( X ) i = i ^ 

We now proceed to simplify the two expressions on the right side of this inequality. 
Starting with the latter term, 

SUp X>2f [\f(wii(x)) -f(^7i(x))]dfJL 
ELip 0 (X) /= l J 

< sup 5^/?2/ / \f(wu(x)) -f(w2i(x)) I d\x 
/6Upo(X)i=l J 

N f 

(3 n) < Y,P2iJ IKito - W2i(x)\\ dp, 

i 5 3 P 2 i SUp \\wu(x) ~ W2i(x)\\ / dp 
;—i r c Y ^ *6X 

A7 

< max sup \\w\j(x) - w2j(x)\\ 53/?2i 

= J^(wi,w2). 

Returning to the first term on the right side of (3.10), 
(3.12) 

sup sup 53(Pi«' ~ P2i) [f(w\i(x)) dp 
/ i€ f^ /eUpo(X) i= i ^ 

A' . 

< max |pv -p 2 ; i sup sup 53 f(wu(xj) dp 

N 

< max |piy-p2/| sup sup ^ /V(wii(*)) |^-
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Now,/ E Lip0(X) implies that \f(x) —f(y)\ < d(x,y) for x,y G X. Choosing y = 0, we 
have \f(x)\ < d(x, 0), x € X. Thus |f (wi/(x))| < diam(X) = D. Therefore, 

N f 

(3.13) sup sup Y^(Pu ~P2i) f(wii(xj) dV < NDd%(pup2). 
nefMfeUp0(X)i=i J 

Substitution of (3.12) and (3.13) into (3.10) yields 

(3.14) dN
M(MuMi) < Si +NDS2 < e(l - *i). 

Therefore, from equation (3.5), 

(3.15) duiMxvMiv) <dN
M(MuM2) < e(l - sx). 

From the proof of Theorem 3.1, letting Y = M(X) and Con(F) = Con^(5^(X)), we 
have the result 

(3.16) dH(jJiuH2)<e, 

and the proof is complete. 

4. Some examples and applications. Barnsley's "continuity with respect to a pa­
rameter" result [1, Section 3.11] is quite useful with regard to animation in images. In 
most practical cases, linear IFS transformations are employed. By varying the parameters 
in these maps, an IFS attractor/image can be made to vary in time in an apparently contin­
uous fashion. Here, however, we wish to address a different problem: the approximation 
of attractors and measures of IFS with those of "nearby" IFS. 

4.1 Piecewise linear approximations to nonlinear IFS. As an illustrative example, con­
sider the following polynomial IFS on X = [0,1]: 

1 2 1 2 2 1 
(4.1) wi(x) = -x, w2(x)=-x+-, Pl=p2 = -. 

The attractor A of this IFS, studied in [4], is a Cantor-like set with nonuniform invariant 
measure \x. Now consider a second IFS with the same probabilities, (u(w), p), whose maps 
u^ are piecewise linear interpolations of the w;, constructed as follows. For n > 1, let 
0 = xo <x\ <x2 < "• < xn-\ < xn = 1 define a partition of [0,1]. Then let 
(4.2) 

u) ' = (x — xjc-i) + Wi(xk-\) for Xfc-i < x < je*, K = 1,2,..., n. 
Xk — Xk-\ 

In other words, the graph of w-n)(x) is obtained by connecting the contiguous points 
Pk-i = (xk-uwi(xk-ij) andPk = (xk,Wi(xkj), k = 1,2,.. .,n, of the graph of wfa) 
with straight lines. Thus, the graph of uf\x) is composed of n line segments. It is conve­
nient to construct a regular partition of [0, l],i.e.Xk = k/n,k = 0 ,1, . . . ,«. The nonlinear 
IFS maps w; and their approximations u\n) forn= 1 and 2 are shown in Figure 1. (Note 
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that in the case n = I, i.e. the IFS (u(1), p), the attractor is the ternary Cantor set on [0,1], 
with invariant measure \x = uniform Cantor-Lebesgue measure.) For n > 1, it is easy to 
show that 

(4. 3) 4 ( W , U("}) = dCon(X)(Wl, uf) = < W ) ( W 2 , uf) ^ 
\2n2' 

If we let A(n) and /x(n) denote, respectively, the attractor and invariant measure of this IFS 
(u(n), p) then, by Corollary 3.2 and Theorem 3.4, 

(4.4) /i(A,A(n)) — 0, dH(^ //n)) — 0, as n -+ oo. 

The convergence of the sequence of measures /x(n) to \i in Hutchinson metric implies 
convergence of respective power moments, i.e. 

(4.5) gf-^gk as rc->oo, 

where 

(4.6) gM = Jxj*dit"\gk = Jxx*dp, k =1 ,2 , . . . . 

This follows from the definition of the Hutchinson metric in equation (2.1): For any 
/ 6 Lip(X), 

(4.7) dH(n,u)> Jxf(x)dfi-Jxf(x)du\. 

For a given k > 1, let/(x) = **/£, 1/ = /x(n) and take limits « —• oo of both sides of the 
inequality. 

The first five moments for the measures /x(/t), n = 2,4,8,16,100 and the "target" 
measure [x are shown in Table 1. The convergence of measures is clearly demonstrated. 
In all cases the moments were computed by using the following property [5], 

(4.8) (Tnf)(x)-+JAfdti, xEX. 

Here \x is the invariant measure of an IFS(w, p). The operator T: C(X) —• C(X) is given 
by 

(4.9) Cr/)(x) = 2>( f °w, ) (x ) . 

(The Markov operator M in equation (2.6) is the adjoint of T.) The iterate in equation (4.8) 
is given by the nested sum 

(4. io) (r/)w = f: • • • E pn • • • PiJ^h ° • • • ° HOW, 

which involves the enumeration of an N-tree to n generations. For n > 15, the estimates 
yn = (Tnf)(xo), where/(x) = **, 1 < k < 5, were in agreement to one part in 107 in all 
cases. As well, the accuracy of these estimates was independent of the choice of starting 
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point xo G [0,1]. (Note: for affine IFS, the moments of an invariant measure may be 
computed recursively [3,6]. This is not the case for nonlinear IFS, since the recursion 
relations involving the moments are not complete. The estimation of moments using (i) 
Hausdorff inequalities and (ii) perturbation methods has recently been investigated [4].) 

4.2 Approximations to Julia sets of complex quadratic maps. In this final section, we 
present some rather novel approximations to Julia sets of the one-parameter family of 
quadratic complex maps R(z) = z2 + c, c E C. (The Julia-Fatou theory of iteration of 
rational functions is discussed in detail by Brolin [7]. An excellent review of more recent 
work on complex dynamics is given by Blanchard [8]. See also the very readable book 
by Devaney [9].) The Julia set J(R) of a rational function R(z) may be defined as the 
closure of all repulsive ^-cycles of R(z). It is invariant, i.e. J = R(J) = R~l(J), perfect 
and non-null. For the quadratic maps studied here, some special cases of the Julia sets 
are: 

c = 0:J is the unit circle C = [z G C \\z\ = 1}, 
c = — 2: J is the real interval [—2,2], 
c < —2: / is a Cantor-like set on the real line. 

/ is the repeller set under forward action of the map R(z) and the attractor under the 
action of R~~x(z). In this case, / is the attractor of the IFS composed of the two branches 
of the inverse of R(z): 

(4. 10) Rï\z) = yfz^c, R^\z) = -y/T^c. 

(Here, *J~x denotes the principal square root of x E C.) The invariant measure \x under 
forward iteration of R(z) [7, Section III. 16] is obtained when/?i = p2 = 1/2 [3]. Note 
that this IFS is not contractive so the theory developed in Section 3 does not rigorously 
apply. However, the existence of a unique attractor is guaranteed by the dynamics of 
iteration of the analytic map R(z)- We present below some numerical evidence to support 
a conjecture that similar continuity results for attractors and invariant measures will hold 
for this case, on compact subsets Kc CC which are large enough to contain 7C, the Julia 
set of the quadratic map z2 + c, and for which R~X:KC-^KC. 

In polar coordinates, the action of the map z —• z2 is given by (r, 0) —• (r2,20). Our 
approximations to R(z) will consist of replacing the quadratic radial part of this map 
f(r) = r2 by piecewise linear interpolation functions over the infinite interval r > 0. 
Because of the appearance of the inverse maps R~l(z) in the IFS, it is convenient to 
consider the approximation of the inverse radial map/_1(r) = yfr, r > 0. We partition 
each interval [k,k+1], k = 0,1,2, . . . on the r-axis into n subintervals of equal length and 
construct the piecewise linear interpolation function to/_1(r) on this partition for r > 0. 
We shall denote the resulting nonanalytic approximation to R~l(z) (which include the 
angular dependence of the branches) as u\n\z) i — 1,2. (Note that n now refers to the 
number of linear maps per unit interval on the r-axis.) As before, the corresponding IFS 
will be denoted as (u(rt), p), where/?i =pi = \ /2 . Based on the graphical and numerical 
evidence presented below, we make the following: 
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CONJECTURE 4.1. For c € C, let Jc denote the Julia set for the complex map 
Rc(z) = z2 + c, with invariant measure \ic. Let (u(n),p), with p\ = p2 = 1/2 be the 
(noneontractive) IFS obtained by the piecewise linear interpolation of the radial func­
tion y/r as discussed in the previous paragraph. Then: 

(i) There exists a unique attractor A^ and invariant measure /z(n) for this IFS. More­
over, 

(ii) h{A{n\ Jc) —• 0 and dH{^n\ /xc) —• 0 as n —• oo. 

FIGURE 1. GRAPHS OF THE FOLLOWING NONLINEAR IFS MAPS ON [0,1]: 

wi(*) = - x 2 , w2(x) = -x2 + -

AS WELL AS THEIR 1- AND 2-POINT PIECEWISE LINEAR INTERPOLATIONS, U^\x) AND uf\x), RESPECTIVELY 

AS DEFINED IN EQUATION 4.2. 

For c = 0, A(n) = J = C, the unit circle in C, for n > 2, i.e. all approximations 
coincide with the Julia set. This property is insured by the attractive nature of the point 
r = 1 under the action of the inverse maps w(n) for n > 2. This is not the case for 
c ^ 0. As n increases, however, computer plots of the approximations A(n) appear to 
converge to the Julia sets / . Some converging approximations for the cases c = —0.75 
and —0.5 + 0.5/ are shown in Figures 2 and 3, respectively. 

https://doi.org/10.4153/CMB-1994-048-6 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-1994-048-6


CONTINUITY OF IFS INVARIANT MEASURES 325 

1 

0 

1 

0 

n = 2 

i 

& 

m 

i.... 1 

l L 

- 2 

1 

/i = 3 

L ^ -

V-̂  

1,. 

r 
^ 

i. _., 

- 2 

FIGURE 2. APPROXIMATIONS TO THE JULIA SET J{r) OF THE COMPLEX QUADRATIC MAP R{Z) = z2 +c,c = 

- 3 / 4 , AS GIVEN BY THE ATTRACTORS OF THE IFS (MJ1*, U^\pi =P2 = \ \ WHERE THE u\n) PIECEWISE LINEAR 

APPROXIMATIONS (n SEGMENTS PER UNIT INTERVAL) TO THE INVERSE FUNCTIONS Rj~l(z) = (-\)i+lyJz + 3/4. 

THE ACTUAL JULIA SET J(R) IS ALSO SHOWN FOR COMPARISON. IN ALL CASES, THE REGION OF C SHOWN IS 

- 2 < Re(z) < 2, - 2 < Im(z) < 2. 

We would also expect the convergence of measures d#(/ i , / /n )) as n —• oo. (Here, 

fM(X) is the space of probability measures on the a-algebra of Borel subsets of X C C 

compact.) This, in turn, implies the convergence of two-dimensional complex power 

moments of the measures, Le 

(4.11) 8 
• ( « ) . as n —• oo, ij > 0, 
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where 

(4.i2) gf=jAfHdn(n\ g^y-id». 

When c < —2, Jc C R and it is sufficient to consider the action of real valued maps 
Rc(x) = x2 + con a finite interval [—x,Jc], where x = (1 + \ / l — 4c)/2 is the positive and 
repulsive fixed point of R(z). We now present some numerical calculations to indicate 
the convergence of moments for the special case c = —2, for which J = [—2,2]. The 
invariant measure \x is absolutely continuous with respect to Lebesgue measure with 
(normalized) density function [10] 

(4.13) p(x)= ^ — 
7TV 4 - X2 

All odd moments of this measure vanish; the even moments are given by 

1 fi x2k (2k)\ 

(4.14) ^ = -L7TTT2dX=W' * = 0 '1 '2-"-

The approximation /(rt) becomes a linear interpolation of the map x2 — 2 composed of 
An line segments over the interval [—2,2]. The first five moments for the approximating 
measures /x(n), n = 2,4, 8,16,100 as well as for the target measure \x are shown in Table 2. 
As in the previous case, the moments of the /x(n) were computed by means of the iteration 
procedure of equation (4.9). 

5. Closing remarks. Continuity of IFS attractors and invariant measures with re­
spect to the component maps w; and associated probabilities pi has been established. The 
continuity followed naturally from the rather simple structure of IFS: the metrics em­
ployed for the map vectors w and the probability vectors p are easily and directly related 
to the Hutchinson metric du on !M(X). This continuity is important for practical purposes 
like animation or the inverse problem of fractal construction [6], where it is desirable that 
the attractor or invariant measure be varied in a continuous fashion by varying the IFS 
components. As well, these elementary continuity properties provide a starting point for 
an approximation theory of nonlinear IFS. 

The continuity properties of attractors of Iterated Fuzzy Set Systems (IFZS) 
[11], which have shown much promise in the treatment of the inverse problem of 
fractal/measure construction, have recently been derived [12]. The situation for IFZS 
attractors is more complicated than for the IFS case, primarly because a composition of 
functions is involved. One must consider continuity at each specific attractor subject to 
some restrictions on the variations of the so-called grey-level maps (j>(. More recently, 
however, the original IFZS method has been modified [13]. One of the modifications 
involves a new distance function which, in special cases, becomes the Ll(X) distance 
with respect to a measure \i on X. The attractors of this new IFS method on l) (X) then 
trivially become continuous with respect to the grey-level maps </>,. This new approach 
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FIGURE 3. AS IN FIGURE 2, BUT APPROXIMATIONS TO THE JULIA SET J(R) OF R(Z) = Z2 +C FOR C = — \ + \ i. 

has proved to be very effective in solving the inverse problem of function approximation 
. and image representation. 
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TABLE 1. Moments of the invariant measures pSn\ n = 2,4,8,16,100 of the IFS 
(u(n),p), p\ = p2 = 1/2, where the uf\ defined in equation (3.2), are piecewise linear 
approximations (n segments per unit interval) to the following polynomial IFS maps on 
[0,1]: 

^ l 2 , , 1 2 2 1 
wi(x) = -x , w2(x) = -x + - , px = p2 = -. 

Final column: Moments of the invariant measure \i of the above polynomial IFS. In all 
cases, the moments were computed using the iterative method of equation (3.6). 

Si 

82 

83 

84 

85 

n = 2 

0.458333 
0.333781 
0.266854 
0.221913 
0.188984 

n = 4 

0.442725 
0.318676 
0.250234 
0.203893 
0.169980 

n = 8 
0.439290 

0.315288 

0.246457 

0.199751 

0.165553 

n= 16 
0.438294 
0.314296 
0.245356 
0.198542 
0.164202 

n= 100 
0.438019 
0.314041 
0.245077 
0.198245 
0.163953 

8k 

0.438011 
0.314034 
0.245069 
0.198236 
0.163943 

TABLE 2. Moments of the invariant measures /x(n), n = 2,4,8,16,100 of the IFS 
(u(n),p), p\ = p2 = 1/2, where the uf\ defined in equation (3.2), are piecewise linear 
approximations (n segments per unit interval) to the two branches of the inverse of R(z) = 
z2- 2 on [-2,2]: 

RYl(x) = Vx + 2, R2l(x) = -Vx + 2. 

The moments of the //rt) were computed using the iterative method of equation (3.6). 
Final column: Exact moments of the invariant measure \x of the Julia set J(R) as given 
by equation (4.14). 

82 

84 

86 

8s 
#10 

n = 2 
1.981200 
5.961977 
19.83123 
69.29426 
249.2348 

n — 4 
1.993000 
5.987957 
19.94348 
69.76274 

251.0834 

n = 8 
1.997547 
5.996290 
19.98162 
69.92289 
251.7064 

n= 16 
1.999128 
5.998804 
19.99382 
69.97410 
251.9026 

n = 100 
1.999944 
5.999936 
19.99964 
69.99851 
251.9945 

8k 

2.0 

6.0 
20.0 

70.0 

252.0 
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