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Abstract

The ability of plants to sense and orient their root growth towards gravity is studied in many
laboratories. It is known that manual analysis of image data is subjected to human bias. Several
semi-automated tools are available for analysing images from flatbed scanners, but there is no
solution to automatically measure root bending angle over time for vertical-stage microscopy
images. To address these problems, we developed ACORBA, which is an automated software
that can measure root bending angle over time from vertical-stage microscope and flatbed
scanner images. ACORBA also has a semi-automated mode for camera or stereomicroscope
images. It represents a flexible approach based on both traditional image processing and deep
machine learning segmentation to measure root angle progression over time. As the software
is automated, it limits human interactions and is reproducible. ACORBA will support the plant
biologist community by reducing labour and increasing reproducibility of image analysis of
root gravitropism.

1. Introduction

Plants constantly update their internal state to adapt to the surrounding conditions, and the
signalling pathways involved in this process can be extremely fast. This is particularly exemplified
by the root response to gravity. Root gravitropism allows to correctly orient the seedling
primary root in the soil. In a matter of seconds after gravistimulation, the root columella
cells sense the new gravity vector and trigger a signalling cascade to adjust the root growth
towards it (Band et al., 2012). Gravitropic response depends on the rapid redirection of fluxes
of the phytohormone auxin in the columella cells, on auxin flux towards the lower side of
the root (Luschnig et al., 1998) and on auxin accumulation, perception, and response in the
lower epidermis of the root (e.g., Bennett et al., 1996; Swarup et al., 2005). Quantification of
gravitropic performance is therefore often used as a benchmark for mutants of genes involved in
auxin transport, perception, and response (Liu, 2012; Luschnig et al., 1998; Retzer et al., 2019;
Samakovli et al., 2021).

Technologies and methods in imaging are continuously evolving, increasing in sensitivity
and spatiotemporal resolution (Fendrych et al., 2018; Goh, 2019; Grossmann et al., 2011;
Ovečka et al., 2015; von Wangenheim et al., 2017). However, image analysis represents a
bottleneck in data acquisition as it is time consuming and laborious. Turning images into
numbers is particularly important to avoid cherry picking and misinterpretations. Furthermore,
quantifications allow researchers to make conclusions based on proper statistical analysis. For
these reasons, reproducibility of measurements is crucial, especially for tasks that are subjective
(Lee & Kitaoka, 2018). This is particularly the case for manual measurements of root bending
as the lines to quantify the angle are usually set subjectively in software such as ImageJ. This
process is then prone to human unconscious bias (Jost & Waters, 2019; Lazic, 2018; Nickerson,
1998). Furthermore, manual measurement of root angles is a very laborious process, and there
is no consensus on how to measure the angle of a root bending over time. In most cases,
only the angle after a certain amount of time is measured (e.g., Cséplő et al., 2021; Samakovli
et al., 2021). However, there is a growing number of scientific articles reporting gravitropism
dynamics over time (e.g., Marquès-Bueno et al., 2021; Platre et al., 2019; Prigge et al., 2020). This
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approach is a relevant way to quantify root bending as a mutant can
respond similarly to a wild type after a defined amount of time but
have phenotype restricted in the first stages of gravitropic bending
(Serre et al., 2021; Shih et al., 2015). In this context, implementing
tools and workflows such as semi or fully automated image analysis
is essential to limit the interaction of the scientists with the images
and to produce trustworthy and reproducible results.

Several software tools dedicated to measuring root angles of
Arabidopsis thaliana and other species growing on agar media
are already available. However, most of them are semi-automated.
Furthermore, some require specific imaging setups PlaROM (Yaz-
danbakhsh & Fisahn, 2012) and RootReader 2D (Clark et al., 2013)
or protocol Kinoroot (Basu et al., 2007). Others require manual
user input such as fine tuning of various parameters or manually
indicating each seedling, e.g., Rootrace (French et al., 2009; Naeem
et al., 2011). BRAT (Slovak et al., 2014) is fully automated but
measures the angle between the root vector and the vertical axis
of the image and thus could produce artefacts at angles bigger than
90○. These programs mostly rely on traditional image processing
such as ridge detection and thresholding. However, machine learn-
ing and especially image segmentation by deep machine learning
combined with the traditional methods can provide outstanding
segmentation results (Bernotas et al., 2019; Fischer et al., 2020;
Hamidinekoo et al., 2020; Yasrab et al., 2019). Deep machine learn-
ing segmentation requires prediction models trained with image
libraries containing images and corresponding masks. These mod-
els can be retrained with updated libraries to expand the range of
accuracy.

In parallel to scanned petri dishes, vertical stage microscopy
allows high spatiotemporal observation of roots in their natural ori-
entation with respect to gravity. Although this microscopy setup is
still not a standard equipment, it continues to grow in popularity as
it allows experiments such as the observation of the root gravitropic
response in high spatiotemporal resolution and thus, quantification
of very small bending angles (Serre et al., 2021; Shih et al., 2015).
However, there is still no solution to efficiently measure root bend-
ing angle over time, and measurements of small angles create noisy
outputs, so it is important to have reliable measurements for small
bending angles.

To provide a standard for unbiased automated measurements
of root bending angles, we developed ACORBA, which is a fully
automated workflow to measure root bending angle dynamics in
a 360○ space from microscope, scanner, stereomicroscope micro-
scope or camera images. The software offers a flexible workflow
based on both traditional image processing (automated or manual)
and deep machine learning segmentation to measure root tip angle
progression over time from images of gravitropic or waving roots.
As the software is automated, it limits human interactions and
has high reproducibility. ACORBA will support the plant biologist
community by reducing time and labour and by producing quality
results from various types of input data.

2. Methods

2.1 Plant material and growth conditions

Wild-type A. thaliana ecotype Columbia (Col0) and aux1
(SALK_020355) were used in this study. The genotype of aux1
was verified by PCR genotyping using the following primers:
SALK LB1.3 primer (ATTTTGCCGATTTCGGAAC), aux1-R
(AGCTGCGCATCTAACCAAGT), and the aux1-L primer. Poppy
seeds (Papaver somniferum) were purchased from a grocery store.

Seeds were surface sterilized by chlorine gas for 2 hr (Lindsey
et al., 2017). Seeds were sown on 1% (w/v) agar (Duchefa) with
½ Murashige and Skoog (MS, Duchefa, 1% (w/v) sucrose, adjusted
to pH 5.8 with KOH 1 M, and stratified for 2 days at 4○C. Seedlings
were grown vertically for 5 days in a growth chamber with 23○C by
day (16 hr), 18○C by night (8 hr), 60% humidity, and light intensity
of 120 μmol photons m−2 s−1.

2.2 Plant imaging

In the microscopy Sandwich setup, seedlings were placed onto a
thin layer of ½ MS medium placed inside a custom 3D printed
chambered coverglass (24 × 50 mm). The seedlings were allowed to
recover vertically for at least 30 min before gravistimulation. In the
Through setup, the roots were growing unobstructed on the surface
of the agar, and the imaging was performed through the coverglass
and the agar.

Imaging was performed using a vertical stage (von Wangenheim
et al., 2017) Zeiss Axio Observer 7 coupled to a Yokogawa CSU-
W1-T2 spinning disk unit with 50 μm pinholes and equipped
with a VS-HOM1000 excitation light homogenizer (Visitron Sys-
tems). Images were acquired using the VisiView software (Vis-
itron Systems) and Zen Blue (Zeiss). We used the Zeiss Plan-
Apochromat 20 × /0.8, Plan-Apochromat 10 × /0.45 and EC Plan-
Neofluar 5 × /0.16 objectives. Brightfield signal was retrieved using
a PRIME-95B Back-Illuminated sCMOS Camera (1200 × 1200 px;
Photometrics), Orca Flash 4.0 V3 (2048 × 2048 px; Hamamatsu)
and the camera from a LSM 700 confocal microscope (Zeiss).

For the scanner setup, seedlings were transferred to ½ MS,
1% sucrose (unless specified otherwise) and imaged every 30 min
using an Epson Perfection v370, v600, or v700 flatbed scanner. The
procedure followed to automate the scanning process is described
in the Supplementary User Manual.

2.3 Programming

All the scripts used in this study were written in the Python pro-
gramming language. The latest versions of the ACORBA software
and user manual can be found at: https://sourceforge.net/projects/
acorba. The software is maintained by N.B.C.S.

The models were trained using Google Colaboratory Pro High
RAM/GPU accelerated servers. The software was programmed and
the analyses were conducted on a Windows 10 computer with
an Intel Core i5-7300HQ 2.50 GHz processor, a CUDA-enabled
NVIDIA GeForce GTX 1060 Max-Q design 6Go GPU, and 16Go
of RAM.

The deep machine learning part of this work was partially
inspired by Sreenivas Bhattiprolu Python image analysis and
machine learning tutorials (https://github.com/bnsreenu/python_
for_microscopists).

The Python dependencies used to create and run ACORBA are
listed below: Scikit-Image (0.18.1), Scikit-Learn (0.24.1), Tensor-
Flow (2.6.0), Keras (2.6.0), Keras-unet (0.1.2), OpenCV (4.5.1.48),
PySimpleGUI (4.34.0), Matplotlib (3.3.4), Pandas (1.2.3), Patchify
(0.2.3), Numpy (1.19.5), Fil Finder (1.7) and Astropy (4.2.1), tifffile
(2021.2.1), and tqdm (4.62.2). The scripts also used a modified ver-
sion of the script at https://github.com/Vooban/Smoothly-Blend-
Image-Patches.

The Python scripts were transformed as .exe files with the
module Auto PY to EXE (2.8.0) to make the scripts portable
for Windows x64. The whole software was compiled as a single
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setup .exe file for Windows x64 using the software Inno Setup
Compiler (6.1.2).

3. Results

3.1 General presentation of the software and its workflow

ACORBA is a minimalist and user-friendly program written in
the Python programming language. The software implements a
fully automated workflow allowing the user to measure primary
root bending angle from images obtained on a microscope or
flatbed scanner. ACORBA can also be used as a semi-automated
approach with manual annotation of roots from various inputs such
as cameras, stereomicroscopes, and mobile phones.

The workflow is divided into two main steps. First, the root
surface is identified in the image by image segmentation creating
a binary mask isolating the root surface(s) (and root tip(s) for
microscopy images). To improve versatility, ACORBA has three
possible segmentation implementations: (a) traditional image seg-
mentation by automatic thresholding, (b) deep machine learning
prediction models and (c) the possibility to use binary masks
created by the user. Roots on scanned images can be challeng-
ing to segment so we added a second traditional method and a
super accuracy mode for deep machine learning. The user can
decide which approach is the best for a given dataset with an
implemented option called ‘test segmentation’. Second, the software
automatically calculates the angle of the root tip(s). The approach
used in ACORBA is the creation of a Euclidean vector that orig-
inates in the centre of the root meristem and points in the direc-
tion of the actual root tip. With this method, the root tip angle
can be determined in a 360○ space. To facilitate interpretation,
the angles are exported in a +180/−180○ space corresponding to
downward/upward gravitropic bending or left/right root waving,
respectively.

ACORBA includes various options including the possibility for
the user to export the segmentation without angle analysis and
use his own deep machine learning models. These models have
to follow rules described in the user manual (Supplementary User
Manual). Uploading custom prediction models to ACORBA can be
used for researchers who want to analyse another species or have a
large number of very specific images.

Data output-wise, the user has the option to normalize the
bending angle data to the initial angle of each root. In other words,
the first angle of one set of bending angles (for one root) can be
automatically subtracted from the rest of the time frames to obtain
relative bending angles. The raw angles are always exported as well.
Users can also save the analysis plots which appear during the anal-
ysis and show the vectors. These options are particularly helpful for
troubleshooting. Finally, to allow debugging any unusual output,
the user has the possibility to save all the root predictions over time
to check if the segmentation method selected is accurate for the
whole stack of frames.

3.2 Establishment of image/mask libraries and neural network
architectures

Deep machine learning models are trained using libraries contain-
ing original images and their corresponding ground truth images.
The lasts are binary masks (black and white pixels) in which the
element to be predicted was manually annotated.

Recently, we developed a method to observe the root gravitropic
response on a vertical stage microscope involving limited mechan-

ical stress compared with the classical method of sandwiching the
root between a layer of agar and the coverglass (Serre et al., 2021).
In this method, which we will refer to as the ‘Through’ method, a
thin layer of ½ MS agar is casted directly on a microscopy chamber
coverglass, and the seedlings are placed on the top (Figure 1a). The
Through method is adapted to experiments in which the user is
not interested in fluorescence signals while the standard Sandwich
method allows classical imaging of root fluorescence.

We created libraries and trained root surface prediction models
for both microscopy methods. In parallel, we also trained root tip
area detection models. Indeed, the estimation of the middle line
of the root for the angle calculation requires a skeletonization step
which is more accurate if restricted to a smaller area such as the
root tip. Both predictions are relevant as the root surface, as a
whole, is a defined structure in a picture while the root tip area is a
subjective zone. The subjective aspect of the root tip area prediction
makes it untrustworthy for determining the root angle directly. The
original libraries created for both microscopy methods consisted
of 302 and 189 images/masks for the Through and the Sandwich
methods, respectively. These numbers are in general considered
small for deep machine learning training as they are unlikely to
display enough diversity to obtain a prediction model with a wide
range accuracy. To mitigate this problem and artificially increase
the diversity and the final model accuracy, we used a method
called image augmentation in which the original images and their
masks are duplicated and then modified (rotation, cropping, Figure
1b). The final libraries contained 785 and 757 images/masks for
the Through and Sandwich methods, respectively. For the root tip
prediction models, the images were not cropped to avoid losing the
overall context of the root and increase accuracy. All the models
were trained with images/masks resized to 256 × 256 pixels for
faster training and analysis. The images were obtained from several
microscopy cameras (see Materials and Methods).

For images obtained with a flatbed scanner, the process was
different. On the one hand, skeletonization of long and thin objects
is comparably easy, so we only trained a root surface prediction
model. On the other hand, images of scanned square plates are large
with small objects to be detected (at 1200 dpi, the root thickness
is approximately 10 pixels), and the images contain cotyledons and
hypocotyls which are not relevant to the analysis. Therefore, cotyle-
dons and hypocotyls were manually cropped out of the images,
only leaving root parts (Supplementary Figure S1a). It was not
possible to simply resize the raw images to 256 × 256 padded
squares as this produced extreme inaccuracy in angle measure-
ments. To circumvent this, the raw images of various original
sizes were first padded to a rectangular image that can further be
divided into 256 × 256 tiles (Figure 1c). The pre-library contained
340 original images/masks with 5–30 roots in one row obtained
using commonly used Epson flatbed scanners (see Materials and
Methods). The library was augmented (horizontal flip and contrast
adjustments) to a final library containing 21,816 images/masks
containing background or pieces of roots.

The neural networks trained in this study are modified UNET
architectures (Ronneberger et al., 2015) (Supplementary Figure
S1b). This architecture is commonly used for its efficiency for
semantic segmentation in biology. The network was implemented
using TensorFlow implementing Keras, https://github.com/
tensorflow) and the package Keras-UNET (https://github.com/
karolzak/keras-unet). The super accuracy mode for scanner images
is using the same prediction model. However, the prediction is
averaged from mirrored and rotated pictures to increase accuracy.
We used the ADAM optimizer (Kingma & Ba, 2017) and the
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Figure 1. Establishment of the deep machine learning libraries. (a) Comparison of the Through and Sandwich methods. (b) Establishment of the microscopy libraries. From

original images, the roots were annotated to create binary masks. Then, the original images were augmented (cropped, scaled up, rotated) and reduced to 256 × 256 pixels

images. (c) Establishment of the flatbed scanner library. From original images, the roots were annotated to create binary masks. Then, the original images and their masks were

padded with a black border to a size divisible by 256. Finally, the last images were divided into 256× 256 tiles.

Dice coefficient metric to quantify the prediction accuracy over
the training periods. The accuracies of our trained models are
presented in Supplementary Table I. The root surface prediction
accuracies for the microscopy methods were above 93% (For
comparison with manual annotations, see Supplementary Figures
S1–S4). Given the size of the root surface, these scores are more
than satisfying to allow accuracy in further angle measurements.
The accuracies for the root tips were lower, as expected. Indeed, the
root tip area is not a defined area and was subjectively annotated.
Overall, the trained models managed to recognize the pixel pattern
created by the root tip shape. Furthermore, the root tip area
detection is only intended to grossly detect the root tip in space. The
scanner root surface prediction accuracy was 85% (Supplementary
Figure S5). However, consistent manual annotations of thin objects
are difficult. Most of the time, the final model predictions were
visually more accurate than the manual annotations (for compar-
ison with manual annotations, see Supplementary Figures 5–10).
Deep machine learning model accuracies were also assessed using
a test dataset by comparing manual and prediction segmentation
of images unknown to the models. The accuracies of our models on
test datasets are presented in Supplementary Table I, which showed
similar accuracies than on the libraries, with the exception of root
tip predictions which were lower. These root tips were annotated
separately and thus, the subjective annotations of the root tips
might have been different. Regardless of the differences, the
performances of the models were visually more than satisfactory
(https://doi.org/10.5281/zenodo.6410167).

3.3 Traditional image segmentations

As deep machine learning is unlikely to be accurate in every con-
dition, we developed an alternative automatic solution using tradi-
tional image segmentation approaches. However, for microscopy,
the root tip detection method is always conducted by deep machine
learning as we could not find a satisfying method to detect the
root tip area by traditional methods. For the images obtained
by the Through method, an automatic Otsu threshold is applied
followed by a binary closing function to fill the possible holes
in the binary thresholded image (Figure 2a). For the Sandwich
method, the image goes through a texture detection filter based on
entropy (complexity of the grey levels in a given area). Then, the
image is automatically thresholded, and a binary closing function
is applied to fill the possible holes (Figure 2b). It is worth not-
ing that unlike in case of the deep machine learning prediction,
detached root caps and other objects with sufficient contrast are
also segmented and could create angle measurements artefacts
(Figure 2b).

For scanned images, we implemented two methods similar to
both methods in microscopy (Figure 2c).

Deep machine learning predictions and traditional methods
can be compared using the ‘test segmentation’ option to decide
which one is the most suitable for a given dataset (Figure 2d, e).
In case none of the automated methods are satisfying, the software
allows the users to import their own binary masks for root surface
(and root tip for microscopy). Ways to create those masks are
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presented in the user manual. Using custom binary masks avoids
any bottleneck from image segmentation.

3.4 Calculation of the angle for microscopy and flatbed scanner
images

Even though the angle calculations are based on a root tip vector for
both microscopy and scanner images, the size of the root surface
and the number of roots in every image is different. Determining
the root tip vector for microscopy images is a more complex process
than for scanner images.

Once the segmentation of roots in microscopy images is carried
out, both root surface and tip masks are preprocessed before the
actual determination of the root tip vector. The first step is a
series of binary pixel dilation and erosion to remove potential non-
specific pixel detection conducted on both root tip and root surface
masks. Then, the particles are analysed, and only the largest surface
(root surface/tip) is kept for analysis. Finally, to ensure that the
angle orientation in space is similar for every root, the root tip is
automatically oriented towards the left side of the frame.

To focus the analysis on the root tip and not on the rest of
the root, the root tip area is isolated. For this, a circular region
of interest (40 pixels width by default, customizable) around the
centroid of the root tip mask is created (Figure 3a). This circular
selection is used to crop and isolate the root tip area on the root
surface mask. Finally, this cropped area is enclosed into a circular

bounding box (using the circle() function in Python OpenCV
package), and the root tip area perimeter is determined (Figure 3b).

The creation of the vector starts by first determining the central
pixel position of the root tip area. The result of enclosing the root
tip perimeter into a bounding box is the creation of two intersecting
pixel clusters present both in the bounding box and the root tip area
perimeter: (1) the actual root tip and (2) the root tip area shootward
(Figure 3b). These two clusters are identified by K-mean clustering.
The smallest cluster central coordinates are kept for further use as
they correspond to an estimated root tip position (Figure 3b).

Second, the software goes back to the isolated root tip surface
area for skeletonization (Figure 3c). The skeleton pixels are ordered
from the closest to the previously determined root tip cluster to
the shootward side by a closest-to-closest pixel approach. From this
ordered single line of pixels, the middle pixel is set as the origin of
the vector for angle calculation (Figure 3d).

Finally, the root tip pixel’s (vector’s direction) precise location
is determined by creating a straight line from the middle of the
skeleton to the image frame (Figure 3e). The intersection between
this line and the root perimeter is set as the root tip pixel and
vector’s direction.

From this vector, the angle of the root tip is determined with the
formula to determine the angle of a vector in a 360○ space. However,
to facilitate interpretation, 180○ is automatically subtracted from
the angle resulting in arbitrarily negative values for upward bending
and negative values for downward bending.
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This process is carried on every time frame of a stack (Sup-
plementary video 1), and the angles are compiled into a table for
export.

Creation of root tip vectors from thin and long surfaces is
simpler than from large surfaces. However, working with several
objects in one image creates new challenges that we describe below.

Once the full binary mask is reconstructed from the 256 × 256
segmentation patches (Figure 3f, g), the mask size is reduced by
40% to increase analysis speed without significantly decreasing
accuracy.

The first step of the analysis is to detect every root in the
images and isolate them as individuals before skeletonization which
represents the roots as a single line of pixels (Figure 3h). Next, both
ends of the skeleton are detected (Figure 3h). The identification of
the shootward end and the root tip is facilitated by the mandatory
step required from the users to orient the root tips towards the right
side. The shootward end is determined as the leftmost coordinate
and the root tip is identified as the second skeleton end. This step
is followed by the reorganization of the skeleton pixels from the

shootward end to the root tip by a closest-to-closest coordinate
approach.

Finally, the angle vector is determined individually for each root
tip. The root tip direction is determined as the root tip end iden-
tified above. The vector’s origin is set, by default (customizable),
as the 10th pixel on the skeleton starting from the end of the root
(shootward) (Figure 3i).

We previously stated that the segmentation of several thin
objects in a large image can come with challenges such as a not fully
segmented root which appears as two roots. To mitigate this and
ensure that all the roots are in one piece, a function calculates the
distance between all the skeleton ends and origins. If one skeleton
end is less than 50 pixels (by default, customizable) from another
skeleton origin, the software assumes that these two pieces belong
to one root and those two pieces are linked to recalculate the angles.

Similarly, to the microscopy images, the whole process from
reconstructing the images from tiles to the calculation of the angles
is carried out in every time frame (Supplementary video 2), the
angles are then compiled into a table for export.
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3.5 Evaluation of microscopy models and method
To assess the accuracy of the angle calculation method for
microscopy, we first compared manual and automated analyses of
the same roots bending over time in a vertical stage microscope. For
the manual analysis, we used the manual equivalent of ACORBA’s
method (Supplementary Figure S4). ACORBA and manual
measurements, overall, produced comparable results (Figure 4a,
Root 1 and 2). However, in some cases, manual measurements
produced significant differences between repeated measurements
of the same roots, in contrast to ACORBA which always produced
the same result for one root (Figure 4a, Root1 and 4). This
demonstrated that ACORBA is more reproducible than the human
eye and hand in manual measurements. Moreover, the analysis
time by ACORBA is roughly 10–20 times faster (depending on the
computer hardware) than the manual analysis and does not require
oversight.

Next, to test whether ACORBA can measure angles bigger than
the maximum 15○ measured in our first experiment (Figure 4a),
we gravistimulated and measured Col0 roots bending during the
course of 5 hr (Figure 4b). We recorded angles up to 68○. In theory,
the method would be able to measure angles higher than 90○.
However, this scenario is unlikely to happen with a gravistimulated
root observed with a vertical-stage microscope.

Further, we compared our recently published gravitropic data
analysed using a different method (Serre et al., 2021). In this exper-
iment, we studied the afb1 mutant impaired in the rapid response
to auxin and rapid gravitropic response. We showed that afb1
was slower to trigger gravitropic bending with an approximative
12 min delay compared with the wild type Col0. The image stacks
from this experiment were re-analysed using ACORBA and showed
similar results (Figure 4c). However, ACORBA was faster than our
previously published method as it is fully automated.

Further, to demonstrate the performances of ACORBA in
another biological context, we compared the gravitropic response
of Col0 and the aux1 mutant impaired in the main auxin influx
carrier (Bennett et al., 1996) in plants. This mutant is known to
be agravitropic as auxin is not correctly redistributed during the
gravitropic response. As expected, Col0 initiated bending towards
the gravity vector with recorded downward angles ranging from
5 to 21○ (Figure 4d). In contrast, aux1 roots displayed a typical
agravitropic behaviour with growth orientation independent of
the gravity vector with roots bending upward, downward or not
bending, again well analysed by ACORBA (Figure 4d).

We previously described two methods used in our laboratory
to assess the gravitropic response using a vertical-stage microscope
(Figure 1a). Here, we used ACORBA to compare the dynamics of
root bending imaged with the Through and Sandwich methods.
This experiment showed that the roots imaged with the Through
method are, overall, bending faster than the roots imaged with the
Sandwich method (Figure 4e). This confirmed that the Through
method is allowing a better gravitropic response probably by pro-
viding less mechanical stress and unobstructed growth.

To quantify ACORBA’s accuracy, we measured the root tip
angles of an artificial set of roots with set angles from −89 to +89○
as the microscope method is not adapted to angles bigger than 90○.
These measurements showed that ACORBA can measure angles in
this range with a small margin of error (in average 0.74%, Figure 4f).

This set of experiments allowed us to confirm that ACORBA can
be used to accurately determine the bending angles of roots imaged
with a vertical-stage microscope.

Furthermore, we measured poppy roots gravitropic response
using the software in semi-automated mode (Supplementary

Figure S4e,f). This experiment showed that using handmade binary
masks, the software can measure bending angles of other species
than A. thaliana.

3.6 Evaluation of the scanner model and method

We progressed further with the evaluation of the scanner angle
calculation. We first compared ACORBA and manual measure-
ments (method described in Supplementary Figure S4a) of root
bending on agar plates measured over 15 hr after gravistimulation
(Figure 5a). We showed that ACORBA and manual measurements
were strikingly similar. However, ACORBA produced more noisy
data. Nevertheless, in most cases the bending angles of roots in
plates are averaged and the overall average and error bars between
methods were almost identical. Furthermore, the analysis time is
considerably shorter with ACORBA (up to 10 times depending on
hardware) and does not require oversight.

Next, we also compared Col0 and the agravitropic mutant aux1
responses and showed that while Col0 bent downward up to 130○
over 15 hr, the mutant bent slightly downward or upward, showing
a typical agravitropic behaviour (Figure 5b).

To push the limits of the software, we imaged a root curling,
a phenomenon appearing when agar plates are horizontally posi-
tioned. In this scenario, the deep machine learning segmentation
showed untrustworthy accuracy above 158○ bending. However, the
automatic traditional segmentation method and the angle calcu-
lation method showed that ACORBA can measure relative angles
up to 180○. Passing the 180○ threshold up/downward bending
resulted in a complex output, with difficult interpretation as the
root tip is changing horizontal direction (Figure 5c). The complex
interpretation is a direct consequence of working in a +180/−180○
space instead of a 360○ one. However, this situation is not common,
and the gain in interpretation facility obtained by working in a
+180/−180○ space for regular gravitropic experiments overcomes
this specific limitation. These results demonstrate the limitations
of the software for measurements of curling behaviour, and we
conclude that ACORBA should not be used for measuring curling
and/or touching roots.

Further, to quantify ACORBA’s precision, we quantified the root
tip angles of a set of artificial root images with set angles ranging
from −90○ to +90○ (Figure 5d). This experiment allowed us to
demonstrate that the software can measure root tip angle from
scanned images with an average margin of error of 1.05%.

To demonstrate the software’s ability to measure angle of waving
roots, we imaged seedlings growing vertically on 1/2MS medium
without or with 3% sucrose, known to induce waving (for review,
see Oliva & Dunand, 2007) for 20 hr. The seedlings transferred
from 1% sucrose to no sucrose showed almost straight root growth
after 6 hr (Figure 5e). However, seedlings transferred to 3% sucrose
medium displayed heavy waving with a waving amplitude of
approximately ±60○ (Figure 5f).

Finally, to illustrate the semi-automated use of the software, we
imaged seedlings growing in agar plates using a stereomicroscope
and a mobile phone (16 megapixels resolution) (Figure 5g). After
resizing the images, so that the roots were approximately 10 pixels
in width (similar to 1200 dpi scanned images), we prepared the
binary masks manually in ImageJ (Method in Supplementary User
manual, Figure S5a,c). It is worth noting that seedlings from the
mobile phone image and the stereomicroscope were also correctly
segmented by the deep machine learning model Supplementary
Figure S5b,d). In these conditions, ACORBA was able to measure
single time frame angle from mobile phone image (Supplementary
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Figure 5. Characterization of the angle calculation method for flatbed scanner images. (a) Comparison of manual and ACORBA measurements of Col0 gravitropic bending angles.

n = 9 individual seedlings. (b) Comparison of Col0 and aux1 gravitropic bending angles. n = 9 (Col0) and 8 (aux1) individual seedlings. (c) Measurement of root tip angles during
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Table II) and angle dynamic of horizontally growing seedlings
observed with a stereomicroscope (Figure 5g).

4. Discussion

ACORBA is, to our knowledge, the only software dedicated to auto-
mated or semi-automated measurements of root bending angles
dynamics from various image inputs. We demonstrated that it can
quantify root bending towards gravity and root waving in vertical
conditions. The software implements semantic image segmentation
with deep machine learning and can be fully automated which is
still a rare case in plant biology image analysis. We implemented
an innovative, deep machine learning based method to detect the
root tip area in microscopy images even if the root is over-bending
or spiralling over itself. This method is more accurate than our
previously published method (Serre et al., 2021).

The models provided in the software were trained on libraries
containing images taken from different inputs to fit other lab-
oratory setups. Furthermore, the models can still be retrained
with contributions from the scientific community to expand the
range of accuracy. On the other hand, as long as the input format
follows our model input pre-formatting, custom deep machine
learning prediction models can also be implemented for various
applications. Otherwise, to avoid analysis bottlenecks and flex-
ibility at the root segmentation step, the software can also do
traditional automatic segmentation or can be semi-automated by
using manually annotated roots. This opens the range of usage
to researchers working with different species than A. thaliana,
specific image types (e.g. images from a camera, mobile phone, or
stereomicroscope).

The software showed similar or better accuracy than the manual
measurements of root angles from microscope. For the scanner
images, we showed that ACORBA produced strikingly similar mea-
sures as the ones obtained by manual measurements. Moreover,
ACORBA measurements are highly replicable in contrast to the
manual subjective approach.

We demonstrated that it can reproduce and quantify already
published data such as the delayed gravitropism of afb1 (Serre et al.,
2021), aux1 agravitropism, and sucrose-induced waving in vertical
conditions (Oliva & Dunand, 2007). We showed that the software
was producing complex data to interpret passing the 180○ angles
which were induced by curling in horizontal conditions. These
extreme bending angles are unlikely to happen in regular vertical
bending experiments, and this experiment had for only purpose
to demonstrate the limitations of interpretation passed the 180○
threshold.

ACORBA was not designed to measure angles from a single
timeframe. However, by duplicating the single frame to obtain a
two-frame stack prior to analysis, we showed that it can be used for
single-time frame angle measurements.

A direct benefit but also disadvantage of the fully automated
approach is that the user has less control on the measurement.
This is especially striking when a root or row of seedlings displays
unforeseen characteristics. Nevertheless, with the export related to
the analysis steps (original/prediction overlay and analysis graph-
ics), users can quickly identify problems and, most of the time, fix
it by image preprocessing (e.g. remove an agar bubble or a detached
root cap, see user manual for troubleshooting).

The program was written in the Python programming language
which is not as fast a compiled language like C++ but offers very
good support and modules for machine learning and image pro-
cessing.

In this context, ACORBA offers a broad range of measurements
possibilities by producing unbiased and highly replicable datasets
by automatization of a time and laborious process.
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Cséplő, Á., Zsigmond, L., Andrási, N., Baba, A. I., Labhane, N. M., Pető,
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