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Droplets impinging on solid surfaces, as well as the countless varieties of the resulting
possible dynamics, are found frequently in both natural and industrial environments.
Among such dynamics, the contact time with the surface, the amount of deformation
and the occurrence of breaking induced by geometrical singularities of the solid surface
are key aspects in a wide range of applications. We report the results of an extensive
experimental activity investigating the capability of liquid droplets to jump over a
gap while sliding/rolling over a hydrophobic solid plane. These drops impact on the
downstream sharp edge of the gap and undergo the amount of deformation that allows them
to climb the edge. We ascribe this unique behaviour to the transformation of rotational
momentum into linear momentum. Such conversion can take place only if the right amount
of deformation occurs upon impact. Indeed, within the explored range of Weber number
(0.5 S We < 40), we show the existence of a sub-range for which the drops show a
significantly higher probability of jumping over the gap if compared to solid spheres,
whose behaviour is predicted accurately by a purely ballistic and elastic impact model. We
formulate a minimal energy balance in order to show that such peculiar drops are indeed
the ones featuring high rotational energy. The results of this study also contribute to shed
light on the debate about the amount of rotational speed characterizing liquid droplets
running over hydrophobic surfaces.
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1. Introduction

The interaction between liquid droplets and solid surfaces is a widely investigated topic
(Varagnolo et al. 2013, 2014; ’t Mannetje et al. 2014; Sbragaglia et al. 2014). Despite the
apparent simplicity of the phenomenon, complex interactions occurring at the solid/liquid
interface can result in counterintuitive behaviours (Liu ez al. 2015; Guzowski & Gim 2019).

Liquid droplets impacting on solid surfaces are studied extensively since the resulting
dynamics deeply influence a vast number of phenomena pertaining to scales ranging from
micro (Seemann et al. 2011) to macro (Gent, Dart & Cansdale 2000; Tokay, Kruger &
Krajewski 2001; Kinnell 2005). Icing of supercooled water droplets, belonging to the
latter set, represents a serious hazard to aircraft operational safety. Being triggered by
the impact of high-speed travelling droplets with a solid surface (Lizer et al. 2017), icing
is highly dependent on drop diameter and contact time between droplet and surface (Bird
et al. 2013), therefore bouncing mechanisms and possible breakup are crucial aspects to
be taken into account to reliably locate icing-prone areas. The case of flat solid surfaces,
analysed deeply in the literature (Bobinski et al. 2014), covers only a small amount of
possible interactions that can develop. Indeed, the growth of rime ice on fuselage and
wings, triggered by water droplets hitting solid surfaces, starts at stagnation points like
gaps and cavities. These aerodynamically quiet areas include flap hinges, control horns,
fuselage frontal area, windshields, windshield wipers, wing struts, fixed landing gear, and
gaps between panels. Remedies such as superhydrophobic coatings of solid surfaces (Cao
et al. 2009) have been proposed widely, but the systematic prediction of a wide range of
droplet dynamics is still needed.

The dynamics of droplets interacting with solid edges of orifices has been studied
for low-impact (Reyssat et al. 2010; Bordoloi & Longmire 2014) and high-impact speed
(Lorenceau & Quéré 2003; Delbos, Lorenceau & Pitois 2010; de Maleprade et al. 2021).
The different regimes arising are due to the balance between inertia and gravity on one
side, and surface tension and capillary forces on the other. These studies focus on impacts
perpendicular to the orifice plane.

In this work, we explore a unique property of droplets running over a flat solid plane
featuring a transverse gap. With reference to figure 1, the overall dynamics can be
summarized as follows. A liquid of density p, surface tension o, is cast in the form of
a drop of diameter D. The drop runs down an inclined plane, approaches the gap and takes
off from the upstream edge of the gap with velocity Uy, flies towards the downstream
edge, and possibly hits it. Impact features are fully determined at take-off time, therefore
the impact is entirely described by the Weber number defined as

U?D
We = 2217 (11)

o

This study focuses on impacts able to extensively deform the drop. Indeed, the
deformation is identified as the mechanism that allows the drop to climb the edge,
whereas a rigid sphere of the same size, approaching the gap with the same kinematics,
would instead have fallen down the gap. However, deformation alone cannot justify the
peculiar ability to climb the edge; indeed, droplets sliding down a hydrophobic plane
have been shown to develop a rolling motion (Richard & Quéré 1999; Reyssat et al.
2010). Deformation, by inducing a sudden rise in contact area, promotes the conversion
of the previously stored rotational momentum into an uplifting linear one. We employ an
experimental set-up aimed at investigating a wide range of impacts by exploring different
values of gap widths and, consequently, jump velocities to achieve a significant number of
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Figure 1. Sketch of the experimental apparatus showing the trajectory of a drop of diameter D running over
an inclined plane of slope y approaching a gap of width b with velocity Uy and rotational velocity w;. Three
different states are depicted: the drop takes off from the upslope edge (I), hits the downslope edge (II), and
deforms as a consequence of the impact (III). The impingement on the downslope edge is indicated by a
blue shaded drop, while the two trivial cases of falling and passing with no impingement are depicted by red
and green shaded drops, respectively. The falling line f is shown as a vertical green line passing through the
downstream edge of the gap and ideally dividing the domain into upslope and downslope parts.

droplets impinging on the downstream edge of the gap. We interpret the data by means of
an analytical model that simulates the asymptotic behaviour of an infinitely rigid droplet
with vanishing We (i.e. a hard sphere). The differences between the drop and hard sphere
behaviours emerge only in a specific range of We. The observed divergence between solid
and deformable systems stands in clear contrast with previous studies where analogies
between the two are hypothesized instead (de Maleprade et al. 2021).

The paper is structured as follows. In § 2, the employed methodologies are described,
namely the experimental apparatus, the energy balance approach and the analytical model
of hard spheres. Section 3 is dedicated to the illustration and discussion of results.
Conclusions and outlooks are drawn in § 4.

2. Methods
2.1. Experimental set-up

With reference to figures 1 and 2(a), the experimental set-up consists of an acrylic wedge
fixed on a steel frame whose slope angle y can be finely adjusted by means of an endless
screw. Gaps of different widths b have been carved on the wedge faces by means of a
numerically controlled mill. To evaluate the sharpness of the edge, its radius of curvature
has been estimated through stereo-microscopy to be = 10~>~1073 times the drop diameter
(see the supplementary material available at https://doi.org/10.1017/jfm.2022.750 for
further details). The plane of motion can be divided into ‘upslope’ and ‘downslope’
parts by a vertical line (hereinafter referred to as the falling line f) passing through the
downstream edge. It is worth highlighting that the gap width has been varied to achieve
a significant number of droplets impinging on the edge. Indeed, such cases are the ones

949 A27-3


https://doi.org/10.1017/jfm.2022.750
https://doi.org/10.1017/jfm.2022.750

https://doi.org/10.1017/jfm.2022.750 Published online by Cambridge University Press

V. Lombardi, M. La Rocca, A. Montessori, S. Succi and P. Prestininzi

(b)

t=0ms —i 2 mm 1=5ms —i 2 mm t=7ms —i2 mm

t=9 ms f" ——2 mm
\

t=8ms — 2 mm t=10 ms ——2 mm

t=11 ms —2 mm t=12 ms —2 mm #=13 ms ——2 mm

Figure 2. (a) Experimental apparatus. The needle, fed by a modified medical syringe filled with the working
fluid, is shown closer to the gap for the sake of clarity. (») Graphical illustration of static contact angle
measurement. (¢) Typical evolution of a droplet jumping over the gap. Frames are not equally spaced in
time; timing from the instant of jump is shown in each frame. A train of droplets is shown; the droplet under
investigation is highlighted with a cross. Droplet trajectory is drawn as a dotted curve in all frames. The impact
frame ( = 9 ms) is magnified and includes further information: the vertical line (falling line f) passing through
the impact point is drawn as a dashed line; the red circle is the corresponding rigid sphere at the impact
position — the sphere is not able to climb the edge, and bounces back with post-collision velocity pcv, denoted
with a black arrow. The red arrowed line is the post-collision trajectory of the rigid sphere.

exposing the novel observed behaviour. The surface has been treated with a commercial
coating (Ultra-Ever-Dry 2022), in order to obtain a hydrophobic surface. Measurements
on the static contact angle provided a value 175° for dyed (Methylthioninium chloride)
tap water at room temperature (see figure 2b), which is the fluid employed in all the
experiments. The measurement has been repeated during the experiment in order to
rule out any change in hydrophobic properties. Throughout the study, surface tension is
assumed to be that of undyed water. Dye concentration has been maintained constant
throughout the whole experiment, to exclude any spurious effects on the surface tension
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and thus on the estimate of the Weber number. Small inaccuracies that may affect the
estimation of the dyed water surface tension would then induce a uniform shift of the
explored We range.

To achieve high-impact speeds (up to roughly 1 ms~!) over a small distance, the droplet
generation has been obtained by placing a thin (22 gauge) needle parallel to the wedge
face, pointing downslope, even though droplets on superhydrophobic inclined surfaces
accelerate even faster than solid spheres (Reyssat et al. 2010). The above set-up allows us
to either gently release single droplets or shoot droplet trains with consistent initial speed.

Images of the droplets sliding down the wedge have been recorded by a 1000 frames
per second (f.p.s.) side-mounted camera. See the supplementary material for explanatory
movies of experimental runs. A mirror has been used to obtain a simultaneous top view
of both the sliding and jumping phases. The scene is lit from both the opposite side of the
camera and the bottom, taking advantage of the transparency of the acrylic wedge. Images
have been analysed by means of in-house software tracking each individual droplet in the
sequence. Pre-processing of acquired frames has been carried out in order to correct for
focal distortion and remove the background. All the connected components (i.e. drops),
identified through a segmenting procedure of the resulting image, have been detected, and
a set of geometrical properties has been extracted for each one, namely centroid position,
perimeter P, and area A. A spherical-equivalent drop diameter D has been determined
by the analysis of a frame acquired during the drop jump over the gap, to exclude any
deformation induced by the contact with the solid surface. A statistical analysis of the
droplets’ circularity x = 4m(A/P?), evaluated at the same instant, yielded mean value
n = 1.0062 and variance o = 0.0403, confirming a negligible deformation during the
jump.

2.2. Energy balance analysis

Drop deformation, as a consequence of the impact on the edge, causes a transfer from
kinetic energy (both translational E1T< and rotational Eﬁ) to surface energy E;. Both viscous
AE), and geodetic potential AE, losses can occur during such evolution. With reference
to figure 1, state I refers to the time of take-off, state II is the instant of first contact
with the downslope edge, and state III is the instant of maximum deformation. A minimal
energy balance across these three states can then be enforced. We assume that all the
rotational kinetic energy is converted to other forms of energy during deformation. Such
an assumption is justified by considering the large amount of deformation undergone
during the impact, which is expected to strongly hamper the previously stored rotational
motion. The assumption is supported further by the extremely low values of the residual
translational kinetic energy at maximum deformation; indeed, a heavily deformed droplet,
which also features a slow-moving centre of mass, is unlikely to possess a significant
residual rotation. We assume that no viscous losses occur between states I and II (i.e. the
flight duration). The formulation of the energy terms, employed to estimate the rotational
energy, are listed in table 1, where W is the drop volume; Ahj; and Ahyy are the losses
in geodetic height between states I and II, and II and III, respectively; w is the dynamic
viscosity; g is the gravitational acceleration; and U; and Uy are the take-off and impact
velocities, respectively. Quantities involved in the definition of energy terms for state I1I
are defined as follows: U, is the residual velocity after deformation; At is the time span
required to achieve maximum deformation (state III) from the first contact with the edge
(state II); Uyger is the characteristic velocity during the deformation process, defined as the

949 A27-5


https://doi.org/10.1017/jfm.2022.750

https://doi.org/10.1017/jfm.2022.750 Published online by Cambridge University Press

V. Lombardi, M. La Rocca, A. Montessori, S. Succi and P. Prestininzi

State EY Eq AE, AE,

I % pWU? onD? — —

11 szUlz, onD? 0 , pgW Ahy
U,

I LoWU2, o2 m <ﬂ) WAL pgW Ahyy
Laer

Table 1. Energy content of each state: EIT( is the kinetic translational energy, E; is the surface energy, AE),
is the viscous dissipation (the characteristic time scale is defined as Lyer/Uger by considering a dissipation
function ¢ = w(d;v; + 9;v;) djv; ~ M(Udef/Ldef)z as in Montessori et al. 2021), and AE, is the loss of geodetic
potential energy. The reader is referred to the text for the definitions of quantities appearing in the formulation
of energy terms.

Figure 3. Example of (a) a trajectory of a drop and (b) its velocity component perpendicular to the sloping
plane. Symbols pinpoint the three instants employed in the energy balance analysis: state I (A), state IT (H)
and state IIT (% ). The drop at hand is one able to climb up after impinging onto the edge, as opposed to the
corresponding sphere.

average velocity over At; and Ly, is the characteristic size during the deformation process,
defined as the minimum value of the drop thickness measured during deformation. The
definition of E; at state III is based on the perimeter C of the drop measured by image
analysis at its maximum deformation.

In order to evaluate the quantities needed to calculate the energy contributions at each
state, the instants corresponding to the three states were determined on the basis of the
kinematics of the drop. With reference to figure 3, states I and III occur when the drop
is aligned with the upslope and downslope edges of the gap, respectively, and state 11
is assumed to be where U, the velocity component perpendicular to the sloping plane,
reaches its minimum value during the deformation process.
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2.3. The analytical model for the impact of a hard sphere with the edge

To provide the reference asymptotic behaviour of a drop with vanishing We (i.e. large
surface tension/vanishing velocity), an analytical model of both flight and purely elastic
impact of a hard sphere has been developed. The accuracy of the model has been assessed
by comparing its prediction with experiments on solid spheres (see § 3.1). With reference
to figure 1, the trajectory of a hard sphere of diameter D, approaching a gap of width b with
velocity Uy, can be predicted by integrating the two-dimensional equations of the motion
accounting for the sole acceleration due to gravity. The formulation of the set of equations
is reported in Appendix A. The impact with the downslope edge occurs when the latter is at
a radius distance from the centre of the sphere. The sphere is assumed to undergo a purely
elastic rebound as if it had hit the plane passing through the contact point with the edge.
Moreover, the sphere, as well as the droplet, is assumed to fall in the gap if the rebound
velocity vector, namely post-collision velocity pcv, lies in the ‘upslope’ midplane. This
purely elastic energy-conserving impact stands as the asymptotic limit of the dissipative
impact experienced by a deformable droplet. See Appendix A for a thorough description
of the possible impact scenarios.

3. Results
3.1. Validation of the analytical model for hard spheres

The model described in § 2.3, though minimal, is proven to be able to predict accurately
the fate of hard spheres analysed experimentally. The same experimental set-up has
been used to perform further runs employing hard spheres rolling along the plane to
gain the experimental data required to validate the analytical model reproducing the
behaviour of a rigid body subject to the same dynamics as the drops. The employed
hard spheres are plastic softair pellets of weight 0.16 mg with diameter D = 5.7 mm and
density p = 1650kg m~3. Markers have been drawn on the spheres in order to quantify
the amount of rolling motion before and after the impact. The measured angular velocity

of the spheres ranged between 140rads™! and 190rad s~!, with results compatible with

pure rolling motion with translational velocity 0.4l ms~! to 0.54ms™!.

The angle o at which the drop approaches the downslope edge is given by the ratio
of the two velocity components in the plane, that is, tano = U, 1/U; ;1. To quantify
the agreement between analytical and experimental results of the hard sphere runs,
experimental values of tan o, have been measured for the impacts of the sphere and
compared with the analytical ones (tanay,,4). The comparison between tana,y, and
tan ;04 1s shown in figure 4. To provide a clearer insight into how the model can predict
the values of the impact velocity Uy, the percentage difference between theoretical and
experimental values of tan« is shown in the scatter plot (figure 4). The agreement is
remarkable, and allows us to rely on the results of the model. Measurements confirmed the
rolling motion (the reader is referred to the supplementary movies) not changing before
and after the impact, therefore ruling out any contribution of the rotational energy of the
hard spheres to the ability to climb the edge. In other words, the model confirms that when
no deformation occurs (i.e. punctual and instantaneous impact), no rotational momentum
can be converted into enough vertical acceleration to make it to the other side of the
gap. The results in figure 4 confirm further that the dynamics underlying the jump/fall
behaviour of the rigid spheres is much simpler than that of the droplets, the former being
determined by the approach angle alone.
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Figure 4. Validation of the ballistic impact model for hard spheres: comparison between experimental and
analytical values of the approach angle tangent tan«. The inset reports the definition of both the approach
angle and the velocity components Uy j7, U; j7. The fate of the sphere is depicted by the different markers.
Error percentage in the prediction of the approach angle is reported in the point labels. The dashed trace is the
45° line.

3.2. Experiments on droplets

The experimental set-up is designed to be capable of generating a large amount of
drops covering the portion of the diameter—velocity plane spanning roughly 0.3 mm <
D <4mmand 0.199ms™! < Uy < 1.37ms™!. The investigated gap widths are 2.5 mm <
b < 4.6mm, and the slope angles are 6.7° < y < 29.7°. The resulting We covers two
orders of magnitude, 0.5 < We < 40 (see the supplementary material for the complete
dataset of experimental droplets). Given the investigated range of diameters, the resulting
Bond number (Bo = Ap g(D/2)? /o), which compares the importance of gravitational to
surface tension forces, falls within the range 0.003-0.5, therefore ruling out any substantial
influence of gravity on the analysed dynamics. In the above, Ap is the water—air density
difference.

A statistical analysis has been carried out on 1627 droplets, employing a set of We classes
of uniform width AWe = 1. The size and kinematics of each experimental droplet are also
employed to run the analytical model for hard spheres. The outcome of the model, in terms
of jump/fall behaviour, is then analysed with the same procedure as for the droplets.

For a discrete binary distribution, the success probability Py of the kth class, i.e. the

jump probability, can be constructed as
y Pe(l =Py o)
Nk ' ’

where N is the number of samples in the kth class, and 13k = ny /N is the success ratio,
with n; being the number of successes. Since the number of droplets belonging to each
class of We is not uniform, a confidence interval is included in (3.1) in order to assess how
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Figure 5. Empirical probability function of successful jump of droplets (black trace with triangles) and hard
spheres (red trace with circles). Shaded areas represent 95 % confidence intervals. The dashed line with
asterisks indicates sample size N for each We class. There exists a range of We, roughly 0.5-9, where the
liquid droplets develop a significantly higher probability of climbing over the downslope edge.

significant the mean value is to describe the behaviour of each class, and z is the quantile
for the 95 % confidence interval (1.96 for the binary distribution).

3.3. Discussion

A typical evolution of an experimental run is depicted in figure 2(c), where nine frames of
a train of four droplets are shown. The inner part of each droplet is highlighted in white
for the sake of clarity. In the following, we focus on the second droplet, whose trajectory
is drawn, featuring We = 3, which is able, after a considerable deformation, to climb the
downstream edge of the gap and therefore make it to the other side. The centroid of the
droplet under investigation in each frame is drawn as a cross. Up to the collision instant
(i.e. t = 9ms), the sphere of equal diameter is also shown by a red circle. At the impact
time, its post-collision velocity vector (pcv) and post-collision trajectory, yielded by the
analytical model, are depicted as a black arrow and a red arrowed line, respectively. Since
the pcv vector points to the left of the falling line, indicated at the impact time by a dashed
line, the behaviour of this specific droplet differs from that of the corresponding sphere,
which is not able to climb the edge.

The main finding of this study is condensed in figure 5, where the jump probability
is plotted against We for droplets and hard spheres. Shaded areas indicate the 95 %
confidence interval according to (3.1). The number of droplets available to the analysis for
each class of We class is also shown. It is clear that a range of We exists for which a droplet
exhibits a significantly higher probability of jumping over the gap. The upper bound of
such range is roughly at We = 9, while the lower bound (roughly We = 0.5) is set by the
employed experimental set-up: indeed, a way of consistently generating sub-millimetre
slow droplets (i.e. low We) would be required while, at the same time, preventing them
from bouncing instead of smoothly sliding/rolling over the inclined plane.
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Figure 6. Scatter plot of the ratio of rotational to translational kinetic energy at state I (E§ /E[T(), as estimated
by (3.2), versus Weber number; state I refers to the instant of take-off. Black circles filled with red indicate that
the drop is able to climb up the edge while the hard sphere is not; hollow black circles indicate that both are
able to climb. Lines are mean values and linear fits for the former (solid trace) and latter (dashed trace) subsets.
The former subset features a higher fraction of rotational energy compared to the latter. Such a difference in
stored rotational energy is more pronounced at low We.

A further confirmation that the development of a rolling motion before the jump is the
key feature for the ability to climb up the edge is given by the energy analysis. The balance
described in § 2.2 can be employed to estimate the rotational energy at state I, which is
assumed to be equal to that at state II:

ER() = ER(I) + E,(I) — Efx (1) — E;(Il) + AE, + AE,(IIN). (3.2)

The initial ratio of rotational to translational kinetic energy can then be plotted against
We as in figure 6. Two sets of experiments are shown, both comprising drops which
are able to climb up the edge: the first set, however, comprises the cases for which the
corresponding spheres fall in the gap, while the second contains the remaining ones. By
inspecting the mean values of the ratio, it is clear that the drops featuring a better ability to
climb up the edge, compared to the corresponding hard spheres, are the ones that stored a
higher rotational energy before the jump. Moreover, this analysis provides an explanation
for the fact that, as shown in figure 5, the probability of finding a drop that develops the
distinctive climbing ability is higher for low We; indeed, the energy balance suggests that
such low-speed droplets are more prone to develop a rolling motion during the run over
the sloping plane, as demonstrated by the markedly different slopes of the two fitting lines
in figure 6. With reference to figure 6, it is worth mentioning that the droplets featuring
a ratio E§ /E,T( > 1 at state I have been generated with a rotational speed larger than the
speed of pure rolling. Such an occurrence is compatible with the employed method of
droplets generation, i.e. ejection from a needle parallel to the sliding plane.

The energy balance also explains why the probabilities in figure 5 converge for high We;
indeed, the rotational energy is less prominent for high-We droplets (see decreasing fitting
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lines in figure 6), which, in turn, develop a lower ability to jump the gap. In summary, the
above analysis supports the initial conjecture that the different behaviour is triggered by
the deformation, since the latter exposes a larger contact area, which, in turn, allows for
the conversion of rotational to translational energy.

Moreover, our study contributes to the debate on the ability to develop rolling motion
while sliding by droplets running over hydrophobic surfaces. Previous studies (Richard
& Quéré 1999; Reyssat et al. 2010) have shown a rolling behaviour at limit speed, and
we show that such a limit speed is reached by droplets featuring a low We within the
investigated range.

The dynamics observed in our experiment shows that between the two systems featuring
the same amount of mechanical energy, namely the droplet and the hard sphere, it is the
one able to enact a deformation process that has more chances to survive and maintain a
higher gravitational potential energy.

4. Conclusions

In this work, a previously unexplored droplet dynamics has been investigated
experimentally. A droplet faces a transversal gap while sliding/rolling over a hydrophobic
plane, and possibly impinges on the downslope edge of the gap. The resulting deformation
of the droplet allows for the previously stored kinetic rotational energy to be employed
to climb up the edge. A critical Weber number exists, below which the droplet has a
significantly higher probability of successfully jumping the gap compared to an equivalent
hard sphere. An energy balance, carried out across the jump phases, shows that the ability
to climb the edge is the result of the conversion of the rotational energy stored by the
droplet before the jump. The deformation during the impact plays the main role in allowing
such a conversion to occur.

The study provides novel quantitative observations of droplet dynamics interacting
with geometric singularities of surfaces. Such geometric gaps are often found in many
technical contexts, and comprehensive studies covering two order of magnitude of the
Weber number are missing.

Supplementary materials and movies. Supplementary materials and movies are available at https://doi.
org/10.1017/jfm.2022.750.
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Figure 7. Sketch of the framework employed to determine the fate of the rigid spheres. The blue circles depict
two possible impact positions of a sphere; f is the falling line, i.e. the vertical line through the edge; the radius
of the sphere belongs to the r line; cases (a) and (b) differ by the position of the r line with respect to the
falling line; s is obtained by mirroring the falling line with respect to r, and bounds the yellow shaded angle:
any sphere whose impact velocity vector lies within such an angle is able to jump over the gap.

Appendix A. Hard sphere ballistic motion and purely elastic impact

With reference to figure 1, a sphere of diameter D rolls down the plane and approaches the
upslope edge of the gap with velocity Uy = (Uy j, U ;) (i.e. state I in figure 1). Neglecting
the influence of the surrounding air, the subsequent motion is determined only by gravity,
and can be described by the following set of equations:

xc(t) = S gsin(y) £ + Uy gt + xc(0), (Ala)
D gt2
2c(t) = 5 = = cos(y) + Us it + 2c(0), (A1b)

where (xc(f), zc(?)) is the position of the centre of the hard sphere at time ¢. The final
terms of the right-hand sides of (A1) account for the initial actual droplet position at the
frame where the centre is closest to the upslope edge. The impact instant (i.e. state II in
figure 1) is then given by the lowest 7 that satisfies the contact equation

(xc (1) + b)° +2c ()* = @)2 (A2)

Once the impact time is found, the pre-collision velocity, i.e. the impact velocity Uy, can
be estimated easily through differentiation of sphere position. With reference to figure 7,
the post-collision velocity is found by mirroring Uy with respect to the line r directed
along the radius of the sphere passing through the edge of the gap. We refer to the vertical
line passing through the edge of the gap as the ‘falling line’, namely f; the sphere is
assumed to jump the gap if its post-collision velocity vector points to the right (downslope)
of the falling line. Therefore, in order for the sphere to jump the gap, its impact velocity
vector must lie within the shaded angle, bounded by the x axis and the line s obtained by
mirroring the falling line with respect to r.
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