
Canad. J. Math. Vol. 57 (4), 2005 pp. 724–749

Some Results on Surfaces of General Type

Dedicated to M. Pavaman Murthy

B. P. Purnaprajna

Abstract. In this article we prove some new results on projective normality, normal presentation and

higher syzygies for surfaces of general type, not necessarily smooth, embedded by adjoint linear series.

Some of the corollaries of more general results include: results on property Np associated to KS ⊗B⊗n

where B is base-point free and ample divisor with B ⊗ K∗ nef, results for pluricanonical linear systems

and results giving effective bounds for adjoint linear series associated to ample bundles. Examples in

the last section show that the results are optimal.

Introduction

In this article we prove new results on higher syzygies associated to adjunction bun-
dles for a surface of general type. To motivate the results, we need to introduce some
definitions, notations and concepts.

Let L be a very ample line bundle on a variety X and let

0 → Fn
ϕn

−→ · · ·
ϕ3

−→ F2
ϕ2

−→ F1
ϕ1

−→ F0 → R → 0

be the minimal graded free resolution of the coordinate ring R of the image of X by
the embedding induced by L. Let IX be the ideal defining X under the embedding
given by L. The property Np is defined as follows

– L satisfies the property N0 (or embeds X as a projectively normal variety) if R is
normal.

– L satisfies the property N1 (or is normally generated) if in addition IX is gener-
ated by quadrics, that is, if the entries of the matrix of ϕ1 have degree 2.

– L satisfies the property Np if in addition to satisfying property N1, the resolution
is linear from the second step until the pth step, i.e., if the matrices ofϕ2, . . . , ϕp have
linear entries.

Several precise results on projective normality, normal presentation and higher

syzygies have been proved for the case of an algebraic curve. For algebraic surfaces
and higher dimensional varieties, the terrain of higher syzygies and its connections
to geometry are not well charted.

We will now mention some basic questions in this area. Reider [R] showed that

for an algebraic surface S, KS ⊗ A⊗n is very ample for all n ≥ 4 if A is ample. This
motivated the following conjecture of Mukai, which is a two dimensional analogue
of Green’s result [G2] for curves: Let S be an algebraic surface and A an ample line
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bundle on S, then KS ⊗ A⊗n satisfies property Np for all n ≥ p + 4. Not even the first
case is settled in all its generality: p = 0. A closely related question is the following

(Q1): What happens if you replace an ample bundle in Mukai’s conjecture with an
ample and base-point free bundle? This question is still open for a surface of positive
Kodaira dimension. An interesting weaker question would be to ask for an effective
bound towards Mukai’s conjecture analogous to effective Matsusaka’s results on free-

ness and very ampleness. More explicitly, it would be nice to have an answer to the
following (Q2): Given an ample line bundle A on an algebraic surface S, can one
prove KS ⊗A⊗n satisfies Np with n depending for instance on the Hilbert function of
A? These questions are addressed in various generality in this article for a surface of

general type.
We will start with some of the known results that are in the spirit of this paper.

For an algebraic variety of arbitrary dimension, in [EL] the authors prove a beauti-
ful general result on adjoint linear series associated to a very ample line bundle. The

article [Bu] deals with higher syzygies for ruled varieties over a curve obtaining a
uniform bound in the line of Mukai’s conjecture. In [Hb] the author has proved re-
sults on projective normality for rational surfaces. For Abelian varieties, results on
syzygies related to multiples of ample bundles can be found in [Pa] (see also [K].)

For projective spaces, higher syzygy results have been proved in [OP]. In [GP2], the
authors obtain uniform bounds towards Mukai’s conjecture and also answer (Q1) for
a surface of Kodaira dimension zero and prove results on syzygies of pluricanonical
embeddings of surfaces of general type. In [GLM], the authors study questions on

projective normality of Enriques surfaces. In [GP1] it is shown that a strong con-
jecture, which recovers Mukai’s conjecture as a special case, is shown to be true for
rational surfaces. Also in [GP1], the authors show the connections between algebra
of free resolutions and the geometry for a rational surface (see also [V] for results

connecting the geometry and algebra.) In [GP4, GP5], the authors study Np prop-
erty of arbitrary bundles (not necessarily adjoint linear systems) over an elliptic ruled
surface (see also [Ho1, Ho2].)

In this article we prove new results on projective normality, normal presentation

and higher syzygies for a surface of general type, not necessarily smooth, embedded
by adjoint linear series associated to an ample and base-point free line bundle. In
Section 3, we prove some precise results on projective normality and normal presen-
tation for adjoint linear systems. From more general results namely, Theorem 3.3,

Theorem 3.4, Theorem 3.9 and Theorem 3.11, we obtain in particular an answer to
a stronger version of (Q1) for ample and base-point free line bundles B with B ⊗ K∗

S

nef. Other corollaries of the above mentioned results include new cases, missing in
[GP2], on projective normality and normal presentation of pluricanonical linear sys-

tems. Besides proving new cases, these results also improve the bounds on the results
in [GP2] and unify results of other authors including [Bo, Ci, G1].

In Section 4, we prove results on higher syzygies associated to adjoint bundles;
we answer (Q1) whenever B ⊗ K∗

S is nef. This result generalizes to higher syzygies

the results in Section 3 and results in [GP2]. Further applications of these theorems
include higher syzygy results for pluricanonical embeddings of surfaces of general
type, which recover results in [GP2] and answer to (Q2) giving effective bounds for
adjoint linear systems satisfying property Np associated to ample line bundles.

https://doi.org/10.4153/CJM-2005-029-3 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2005-029-3


726 B. P. Purnaprajna

In Section 5, we construct some examples to show that the results in the previous
sections are optimal in several ways.

For proving results on higher syzygies for surfaces and higher dimensional vari-
eties, some methods are available (see [EL, Pa, OP, Bu]). The methods of this article
are different from those used in the above works and have some common features

with [GP2]. The techniques for proving results on projective normality and nor-
mal presentation in Section 3 differ from those in [GP2]. But the methods to prove
results on higher syzygies build upon the methods in [GP2], where results that are
similar in spirit to the present article are proved for Kodaira dimension zero surfaces.

The situation for surfaces of general type, needless to say, is more involved due to
the “big and nef-ness” of KS. The proofs involve vanishing of a Koszul cohomology
group. Standard methods using Castelnuovo–Mumford regularity do not work. To
study curves lying on the surface is important for us in the context at hand. Going

to curves on a surface to understand the geometry of the surface is not new, but the
way it is done here and in [GP2] in the context of higher syzygies is different from
the previous works of other authors. Also, the last section of this paper shows that
the property Np of a line bundle L on the surface is closely related to property Np

of L restricted to some curves lying on it. These are the so-called “extremal” curves
introduced in [GP3]. Unlike in the case of surfaces with Kodaira dimension zero
dealt with in [GP2], the choice of the divisor to which one reduces the problem is
not always clear. In particular in Theorem 4.5 on higher syzygies, to make the induc-

tion work in a reasonable way, one has to make some non-canonical choices of these
divisors.

1 Preliminaries and Notation

Some Notation and Conventions Unless otherwise stated, all surfaces in this paper
have at worst canonical singularities and are all minimal. But it must be mentioned
that all of the results go through almost word-for-word but with weaker bounds even

for normal surfaces with log terminal singularities. But we will stick to the former to
get cleaner statements.

If L is a line bundle on a surface S, L∗ denotes the dual of L.

Since we are working over singular surfaces as well, all divisors that appear in this
article are assumed to be Cartier divisors.

If C is an effective divisor and E any vector bundle on S,

H0(E ⊗ OC ) = H0(C, E ⊗ OC ).

We will not make a notational distinction between divisors and line bundles when
dealing with inequalities.

Throughout this article we work over an algebraically closed field of characteristic

zero.

Green [G2] interpreted the Betti numbers of the minimal free resolution of the
coordinate ring of an embedded projective variety in terms of Koszul cohomology.
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Concretely, let X be a projective variety, and let L be a globally generated vector bun-
dle on X. We define the bundle ML as follows:

(∗) 0 → ML → H0(L) ⊗ OX → L → 0.

This sequence will be used repeatedly in this article. If L is an ample and globally
generated line bundle on X and all its positive powers are non-special one has the

following characterization of the property Np:

Theorem 1.1 Let L be an ample, globally generated line bundle on a variety X. If the

group H1(
∧p ′+1

ML ⊗ L⊗s) vanishes for all 0 ≤ p ′ ≤ p and all s ≥ 1, then L satisfies

the property Np. If in addition H1(L⊗r) = 0, for all r ≥ 1, then the above is a necessary

and sufficient condition for L to satisfy property Np.

We use this theorem as a definition for property Np. We obtain higher syzygy

results by proving the above vanishing. We will always prove in this article, except

in section 5, the vanishing of H1(M
⊗p ′+1

L ⊗ L⊗s). This in turn implies the vanishing

of the Koszul cohomology group H1(
∧p ′+1

ML ⊗ L⊗s) as we will be working over an

algebraically closed field of characteristic 0.

2 Some Technical Lemmas and Propositions

In this section we will recall some lemmas that were proved in [GP2]. These lemmas
together with a lemma in the next section are necessary to obtain results on higher
syzygies.

Lemma 2.1 Let S be a surface of general type. Let B be an ample and base-point-free

line bundle with H1(B) = 0 and B2 ≥ B · KS. Then H1(B⊗m) = 0 for all m ≥ 1.

Proof Let C be a smooth curve in |B|. Since deg(B⊗m ⊗OC ) > 2g(C)− 2 when m ≥
3, we only have to prove H1(B⊗2) = 0. If B⊗2 ⊗ OC 6= KC , then H1(B⊗2 ⊗ OC ) = 0,
hence H1(B⊗2) = 0 because H1(B) = 0. If B⊗2 ⊗OC = KC , then B⊗OC = KS ⊗OC .
Consider the sequence

0 → H0(K∗

S ) → H0(B ⊗ K∗

S ) → H0(B ⊗ K∗

S ⊗ OC ) → H1(K∗

S ).

Since in this case S is a surface of general type, H0(K∗
S ) = H1(K∗

S ) = 0, therefore
B ⊗ K∗

S is effective and since B is ample, it must be B ⊗ K∗
S = OS. Hence H1(B⊗2) =

H1(K⊗2
S ) = 0.

Lemma 2.2 Let S be an algebraic surface with nonnegative Kodaira dimension and let

B be an ample line bundle. Let m ≥ 1. If B2 ≥ mKS · B, then KS · B ≥ mK2
S .

Proof We assume the contrary, i.e., that KS · B < mK2
S , and get a contradiction. Let

L = B ⊗ K−m
S . We have that L2 > 0. By Riemann–Roch,

h0(L⊗n) ≥
n2L2 − nKS · L

2
+ χ(OS) − h0(KS ⊗ L−n).
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If B2 > mKS · B, (KS ⊗ L⊗−n) · B < 0, for n large enough, and since B is ample,
KS ⊗ L⊗−n is not effective, so finally L⊗n is effective for n large enough. But in that

case nKS · L ≥ 0, because KS is nef, contradicting our assumption.
Now if B2

= mKS · B, we have that L2 > 0, B2 > 0 (because B is ample), and
L · B = 0, but this is impossible by the Hodge index theorem.

The following is a very useful observation and will be used repeatedly:

Observation 2.3 Let E and L1, . . . , Lr be coherent sheaves on a variety X. Consider

the map H0(E) ⊗ H0(L1 ⊗ · · · ⊗ Lr)
ψ
−→ H0(E ⊗ L1 ⊗ · · · ⊗ Lr) and the maps

H0(E) ⊗ H0(L1)
α1−→ H0(E ⊗ L1),

H0(E ⊗ L1) ⊗ H0(L2)
α2−→ H0(E ⊗ L1 ⊗ L2),

. . . ,

H0(E ⊗ L1 ⊗ · · · ⊗ Lr−1) ⊗ H0(Lr)
αr−→ H0(E ⊗ L1 ⊗ · · · ⊗ Lr).

If α1, . . . , αr are surjective then ψ is also surjective.
The following from [GP2] is an elementary observation relating the surjectivity of

multiplication maps on a variety to the surjectivity of its restrictions to divisors.

Lemma 2.4 Let X be a regular variety (i.e., a variety such that H1(OX) = 0). Let E be

a vector bundle on X, and let C be a divisor such that L = OX(C) is globally generated

and H1(E ⊗ L−1) = 0. If the multiplication map H0(E ⊗ OC ) ⊗ H0(L ⊗ OC ) →
H0(E ⊗ L ⊗ OC ) is surjective, then the map H0(E) ⊗ H0(L) → H0(E ⊗ L) is also

surjective.

The following result is from [Bu]. This technical result deals with multiplication
maps of global sections of semistable vector bundles on curves. In the proposition

below, µ will denote the slope of a vector bundle. That is, for a vector bundle E on C

of rank r and degree d, µ(E) = d/r.

Proposition 2.5 (Proposition 2.2, [Bu]) Let E and F be semistable vector bundles over

a curve C such that E is generated by its global sections. If

(1) µ(F) ≥ 2g, and

(2) µ(F) > 2g + rank(E)
(

2g − µ(E)
)

− 2h1(E),

then the multiplication map H0(E) ⊗ H0(F) → H0(E ⊗ F) is surjective.

The following lemma from [GP2] is frequently used in Section 4.

Lemma 2.6 ([GP2], Lemma 2.9) Let X be a projective variety, let q be a non-negative

integer and let F be a base-point-free line bundle on X. Let Q be an effective line bundle

on X and let q be a reduced and irreducible member of |Q|. Let R be a line bundle and

G a sheaf on X such that

1. H1(F ⊗ Q∗) = 0

2. H0(M
⊗q ′

(F⊗Oq)
⊗ R ⊗ Oq) ⊗ H0(G) → H0(M

⊗q ′

(F⊗Oq)
⊗ R ⊗ G ⊗ Oq) is surjective for

all 0 ≤ q ′ ≤ q.
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Then, for all 0 ≤ q ′′ ≤ q and for all 0 ≤ k ≤ q ′′,

H0(M⊗k
F ⊗ M

⊗q ′′
−k

(F⊗Oq)
⊗ R ⊗ Oq) ⊗ H0(G) → H0(M⊗k

F ⊗ M
⊗q ′′

−k
(F⊗Oq)

⊗ G ⊗ R ⊗ Oq)

is surjective.

The lemma below, a generalization of the base point-free pencil trick, is due to
Green and is used in Section 3.

Lemma 2.7 (H0 Lemma [G2], Theorem (4.e.1)) Let C be a smooth and irreducible

curve. Let L and M be line bundles over C. Let W be a base-point free linear subsystem

of H0(C, L). Then the multiplication map W ⊗ H0(M) → H0(L ⊗ M) is surjective if

h1(M ⊗ L−1) ≤ dim W − 2.

The following lemma called the Castelnuvo-Mumford lemma (see [Mu]) will be

sometimes used in this article.

Lemma 2.8 (CM Lemma, [Mu]) Let L be a base-point free line bundle on a variety

X and let F be a coherent sheaf on X. If Hi(F ⊗ L−i) = 0 for all i ≥ 1, then the

multiplication map

H0(F ⊗ L⊗i) ⊗ H0(L) → H0(F ⊗ L⊗i+1)

is surjective for all i ≥ 0.

3 Cohomology Vanishings, Projective Normality and Normal Presen-
tation

In this section we prove theorems on projective normality and normal presentation of
adjunction bundles associated to globally generated line bundles. These yield corol-
laries for pluricanonical linear systems and effective bounds on adjunction bundles
associated to ample line bundles.

We will first prove a lemma that is needed for the theorems in Section 3 and 4.

Lemma 3.1 Let S be an algebraic surface of general type with an ample divisor B such

that B 6≡ KS, (B⊗K∗
S )2 ≥ 0 and B2 ≥ B ·KS. If either K2

S > 1, or K2
S = 1 but B 6≡ 2KS,

then KS · B + B2 ≥ 2K2
S + 6. In particular, if |B| has an irreducible member C, then its

genus g(C) ≥ K2
S + 4.

Proof Denote A = B ⊗ K∗
S . Note that

(3.1.1) A · (KS ⊗ B) = 2KS · A + A2.

By Lemma 2.2, we have KS ·A ≥ 0. We will break the proof into two cases: (i) A2
= 0.

By hypothesis B 6≡ KS, so by Hodge index theorem KS · A cannot be zero and by
Riemann–Roch, KS · A cannot be 1. So KS · A ≥ 2. But this implies B · KS ≥ K2

S + 2
and by (3.1.1) we have B2 ≥ K2

S + 4. Hence we get the desired inequality KS ·B + B2 ≥
2K2

S + 6.
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We now deal with case (ii), where A2 > 0. By hypothesis we have B2 ≥ KS · B. In
the light of Lemma 2.2, it is enough to prove that B2 ≥ K2 +6. By (3.1.1), if KS ·A ≥ 3

or KS · A ≥ 2 and A2 ≥ 2, we are done. By hypothesis K2
S ≥ 2 and A2 > 0 and since

KS · A is (an integer) greater than 1 by Hodge Index Theorem, we have KS · A ≥ 2.
The only possibility left is when KS · A = 2 and A2

= 1. This cannot happen by
Riemann–Roch.

Note that we did not use the fact that K2
S ≥ 2 when A2

= 0, we used it only when
A2 > 0. So let K2

S = 1 and A2 ≥ 1. Hodge Index shows that B · A > 0 (that is
B2 > B · KS) and KS · A > 0 (that is B · KS > K2

S = 1.) So it is enough to show that
B2 ≥ K2

S + 5. In view of (3.1.1), this holds if KS · A > 1 or A2 > 2. The possibilities

KS · A = 1 and A2
= 2 cannot happen simultaneously. The only possibility that we

need to consider is KS · A = 1 and A2
= 1. This implies by Hodge Index Theorem

that 2KS ≡ B as asserted.

Remark 3.1.1 Let K2
S ≥ 2 or K2

S = 1 but B 6≡ 2KS. Then any ample B with B ⊗ K∗
S

nef satisfies the inequality in Lemma 3.1 since (B⊗K∗
S )2 ≥ 0. This is a geometrically

interesting assumption that occurs in various contexts including in the later part of
this article.

We will now prove a theorem that is new for irregular surfaces. The theorem also
recovers and improves Theorem 5.1 in [GP2] for regular surfaces as well. The proof
below is a uniform proof covering the case of regular as well as irregular surfaces. In
Section 5, we give examples to show that the theorem is optimal. Before stating the

theorem, we make the following necessary remark.

Remark 3.2 As already noted after Theorem 1.1, we need to prove the vanishing of
H1(M

⊗p
L ⊗ L⊗s) for all s ≥ 1. Throughout this article we will prove this vanishing

for s = 1. We point out that using Observation 2.3 repeatedly, the proof for s ≥ 2
follows in exactly the same way as the case s = 1 (due to algorithmic nature of the
proofs.)

In the theorem below, let E = KS ⊗ B⊗n and L = KS ⊗ B⊗l with n ≥ 2 and l ≥ 2.

Theorem 3.3 Let S be a surface of general type. Let B be an ample and base-point-free

line bundle such that H1(B) = 0 and B2 ≥ B · KS with B 6≡ KS. Assume that KS ⊗ B is

base-point free.

(1) If S is regular, let pg ≥ 3 or h0(B) ≥ 4, K2
S ≥ 2 and pg ≥ 1.

(2) If S is irregular, let pg ≥ 2 and h0(B) ≥ 4.

Then H1(ML ⊗ E⊗k) = 0 for all k ≥ 1.

Proof We will prove the theorem for k = 1 as noted in Remark 3.2. By tensoring (∗)
on page 4 (which will recall for the benefit of the reader)

(∗) 0 → ML → H0(L) ⊗ OX → L → 0

with E and taking long exact sequence one sees by the Kawamata–Viehweg (K–V)
vanishing theorem that H1(ML ⊗ E) is the cokernel of the following multiplication
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map of global sections:

(3.3.1) H0(KS ⊗ B⊗n) ⊗ H0(KS ⊗ B⊗l) → H0(K⊗2
S ⊗ B⊗n+l).

We will prove the theorem for l = 2, the cases l ≥ 3 are similar to the proof given

here for l = 2. Applying Observation 2.3, we will first show that

(3.3.2) H0(KS ⊗ B⊗n) ⊗ H0(B) → H0(KS ⊗ B⊗(n+1))

is surjective for all n ≥ 2. Let C ∈ |B| be a smooth and irreducible curve in its linear
system. We construct the following commutative diagram:

(3.3.3)

H0(E) ⊗ H0(OS) →֒ H0(E) ⊗ H0(B) ։ H0(E) ⊗W

↓ ↓ ↓
H0(E) →֒ H0(E ⊗ B) ։ H0(E ⊗ B ⊗ OC ).

Here W denotes the cokernel of the inclusion map H0(OS) → H0(B). The surjectivity
of the left hand vertical map is obvious. We will show that the right hand vertical
map is also surjective. Note that H0(E) → H0(E ⊗ OC ) → 0. The right hand map is

surjective if the following map is surjective for all n ≥ 2:

(3.3.4) H0(KS ⊗ B⊗n ⊗ OC ) ⊗W → H0(KS ⊗ B⊗n+1 ⊗ OC ).

By Lemma 2.7, the map (3.3.4) is surjective if h1(KS ⊗ B⊗n−1 ⊗ OC ) ≤ dim W − 2.
This is obvious if n ≥ 3. If n = 2, then h1(KS ⊗ B⊗(n−1) ⊗ OC ) = 1, and the
needed inequality follows provided h0(B) ≥ 4. For regular surfaces this follows from

Riemann–Roch and hypothesis (1) (that is pg ≥ 3), as h2(B) = 0. If S is irregular,
this follows from hypothesis (2). Next step is to show that

(3.3.5) H0(KS ⊗ B⊗n+1) ⊗ H0(KS ⊗ B) → H0(K⊗2
S ⊗ B⊗n+2)

is surjective for all n ≥ 2. Let C ′ ∈ |KS ⊗ B| be a smooth and irreducible curve. Let
W ′ be the linear subseries of H0(KS ⊗ B ⊗ OC ′) defined as below:

0 → H0(OS) → H0(KS ⊗ B) → W ′ → 0.

Note that W ′ is without base points. By a process similar to the one used above
in (3.3.3), we can reduce the multiplication map (3.3.5) on the surface to C ′. It is
enough to show that

(3.3.6) H0(KS ⊗ B⊗n ⊗ OC ′) ⊗W ′ → H0(K⊗2
S ⊗ B⊗(n+1) ⊗ OC ′)

is surjective for all n ≥ 3. The map in (3.3.6) is surjective by Lemma 2.7 provided

h1(B⊗n−1 ⊗ OC ′) ≤ dim W ′ − 2 for all n ≥ 3. If n > 4, it is easy to see that
h1(B⊗n−1 ⊗ OC ′) = 0. If n = 4, it is not hard to see this vanishes; the only troubling
case would be if B⊗n−1 ⊗OC ′ = KC ′ . But in view of B2 ≥ B ·KS and Lemma 2.2, this
can happen only if B2

= B · KS = K2
S . But the Hodge Index theorem rules out this
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possibility since B 6≡ KS. The case n = 3 needs some work, and we show it below. We
assume from now on that n = 3. Since H1(B) = 0 by hypothesis and B2 ≥ B · KS,

H1(B⊗l) = 0 for all l ≥ 2 by Lemma 2.1, we have the following short exact sequence
of vector spaces:

0 → H0
(

KS ⊗ (B⊗2)∗
)

→ H0(K⊗2
S ⊗ B∗) → H0(K⊗2

S ⊗ B∗ ⊗ OC ′) → 0.

Since h0
(

KS ⊗ (B⊗2)∗
)

= 0, we have h0(K⊗2
S ⊗ B∗) = h0(K⊗2

S ⊗ B∗ ⊗ OC ′). By

adjunction on C ′ and duality, we see that h1(B⊗2 ⊗OC ′) = h0(K⊗2
S ⊗ B∗ ⊗OC ′). In

view of all these equalities, it is enough to show that

(3.3.7) h0(K⊗2
S ⊗ B∗) ≤ h0(KS ⊗ B) − 3.

Under the hypotheses in (1) and (2) (note that if S is irregular then K2
S ≥ 2, since all

minimal surfaces of general type with K2
S = 1 are regular by Noether’s inequality),

K⊗2
S is base point free by [Ca], Theorem 1.11(i) and since B is ample, B ·KS > 0 so we

have h0(K⊗2
S ⊗ B∗) ≤ h0(K⊗2

S ) − 2. It is not hard to see that h0(KS ⊗ B) ≥ h0(K⊗2
S )

by Riemann–Roch, Lemma 2.2 and the fact that B2 ≥ B · KS. It is an equality if and
only if B2

= B · KS = K2
S . By the Hodge Index Theorem this can happen only if

B ≡ KS thus contradicting our assumption on B, hence h0(KS ⊗B) ≥ h0(K⊗2
S ) + 1, so

the needed inequality (3.3.7) follows. So the map (3.3.6) is surjective which in turn
implies the surjectivity of (3.3.1). This completes the proof of the theorem.

We now state an addendum to the above theorem. We state it separately so that
special cases do not get lost in the generalities.

Remark 3.3.8 If S is regular with pg ≥ 4, Theorem 3.3 holds dropping the hypoth-

esis B 6≡ KS. The case B ≡ KS can be proved along the same lines as Theorem 3.3.
This recovers the case B = KS proved in [GP2] for regular surfaces.

If the genus of the general member in |B| is big enough, one proves the following
stronger vanishing theorem. We need this result for Section 4 dealing with results on

higher syzygies.
In the following theorem, C ∈ |B| will denote a smooth and irreducible curve of

genus g(C). Also, let E = KS ⊗ B⊗n and L = KS ⊗ B⊗l with l ≥ 1 and n ≥ 2.

Theorem 3.4 Let S be a surface of general type. Let B be an ample and base-point-free

line bundle such that H1(B) = 0 and B2 ≥ B · KS. Assume that

(1) KS ⊗ B is base-point free, and

(2) g(C) ≥ K2
S + 4.

Then H1(ML ⊗ E⊗k) = 0 for all k ≥ 1.

Proof We prove it for k = 1 as noted in Remark 3.2. The group H1(ML ⊗ E) is
the cokernel of the following multiplication map of global sections as seen in Theo-

rem 3.3:

(3.4.1) H0(KS ⊗ B⊗n) ⊗ H0(KS ⊗ B⊗l) → H0(K⊗2
S ⊗ B⊗n+l).
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We will first prove the surjectivity of (3.4.1) for the case l = 1. Let us denote L ′
=

KS ⊗ B.

Unlike in Theorem 3.3, reduction to a smooth member in |B| will not work this
time. The reduction to curves has to start with a smooth C ′ ∈ |KS ⊗ B| = |L ′|. Such
a curve exists by Bertini. By constructing a commutative diagram like (3.3.3) and
using the fact that H1(B⊗n−1) = 0 for all n ≥ 2 by Lemma 2.1, it is enough to show

that the following multiplication map is surjective for all n ≥ 2:

W ⊗ H0(KS ⊗ B⊗n ⊗ OC ′) → H0(K⊗2
S ⊗ B⊗n+1 ⊗ OC ′).

Here W denotes the cokernel of the inclusion map H0(OS) → H0(L ′).

We will apply Lemma 2.7 to prove this. In order to apply Lemma 2.7, we need to
show that h1(B⊗n−1 ⊗ OC ′) ≤ dim W − 2.

To show this, consider the following sequence:

(3.4.2) 0 → OS(−C ′) → OS → OC ′ → 0.

Tensoring this sequence with B⊗n−1 and taking long exact sequence of cohomology,
we have

H1(B⊗n−1) → H1(B⊗n−1 ⊗ OC ′) → H2(B⊗n−2 ⊗ K∗

S ) → H2(B⊗n−1).

The term on the extreme left is zero by Lemma 2.1. Hence, h1(B⊗n−1 ⊗ OC ′) ≤
h2(B⊗n−2 ⊗K∗

S ) = h0(K⊗2
S ⊗B⊗2−n) for all n ≥ 2. But h0(K⊗2

S ⊗B⊗2−n) ≤ h0(K⊗2
S )

for all n ≥ 2, as B is an effective divisor. In the light of the above, it would be enough
to show that h0(K⊗2) ≤ h0(KS ⊗ B) − 3. By Riemann–Roch for surfaces, this is
equivalent to the inequality 2K2

S + 6 ≤ KS · B + B2. But this is assumption (2) in the
statement of the theorem. The proof can be completed for l ≥ 2, either by applying

Observation 2.3 and going through the above process but taking into account that
reduction to curves this time will be to a smooth general member C ∈ |B|, or by the
CM Lemma, that is Lemma 2.8.

Imitating the proof in the above theorems, one can prove the following result with
the hypothesis as in Theorem 3.3, for multiples of base-point free and ample bundles
B with h0(B) ≥ pg + 3. Note that this hypothesis is a mild one, especially for regular
surfaces since in that case h0(B) ≥ pg + 1. This result has some nice applications to

pluricanonical bundles that will be derived in Corollary 3.8. We now state the result
for the multiples of B and leave the proof to the reader:

Proposition 3.5 Let S be a surface of general type. Let B be as in Theorem 3.3 and also

satisfying h0(B) ≥ pg + 3. Let L = B⊗n. Then, H0(ML ⊗ L⊗k) = 0 for all n ≥ 2 and

k ≥ 1.

The following lemma regarding base point freeness (see [GP2]) will be used fre-

quently from now onwards:

Lemma 3.6 Let S be a surface with nonnegative Kodaira dimension and let B be an

ample and base-point-free line bundle such that B2 ≥ 5. If B ′ ≡ B, then KS ⊗ B ′ is

ample and base-point-free.
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Proof Assume S smooth (and by our convention minimal) first. The line bundle B ′

is ample because ampleness is a numerical condition and has self-intersection greater

than or equal to 5. If KS ⊗ B ′ has base points, by Reider’s theorem (see [R]) there is
an effective divisor E such that:

(a) B ′ · E = 0 and E2
= −1 or

(b) B ′ · E = 1 and E2
= 0.

The former cannot happen because B ′ is ample. We will also rule out (b). The
divisor E must be irreducible and reduced because B ′ is ample and B ′ · E = 1. On
the other hand, the arithmetic genus of E is greater than or equal to 1. Now B · E =

B ′ · E = 1 so h0(B ⊗ OE) ≤ 1. Since B is base-point-free, E should be a smooth

rational curve and this is a contradiction.
If S is singular with canonical singularities, then arguing as above but now apply-

ing results from Theorem 1, [KM] shows that KS ⊗ B is base point free.

In view of Lemma 3.6 the following remark shows that the assumption, KS ⊗ B is
base-point free in Theorems 3.3 and 3.4, is a very mild one.

Remark 3.6.1 Let B be a base-point free and ample divisor on S and let C ∈ |B| be a

smooth curve of genus g(C). Then B2 ≥ 5 if one of the following holds:

(a) B2 ≥ B · KS, g(C) ≥ K2
S + 4 and K2

S ≥ 2, or
(b) B2 > B · KS and K2

S ≥ 2 or S is irregular with h0(B) ≥ 4, h1(B) = 0, or
(c) B 6≡ KS, B ⊗ K∗

S is nef and K2
S ≥ 2.

Proof The case (a), namely B2 ≥ B · KS and B2 + B · KS ≥ 2K2
S + 6 (equivalently

g(C) ≥ K2
S + 4), shows that, as long as K2

S ≥ 2, B2 ≥ 5 as claimed. Similarly, (c)
follows immediately from Remark 3.1.1 and (a). Now to see (b) implies B2 ≥ 5, we

make some observations. The inequality B2 > B · KS implies that B2 ≥ B · KS + 2
since B · (B − KS) has to be even by Riemann–Roch. But the Hodge Index implies
that B · KS ≥ 2 as K2

S ≥ 2. Hence B2 ≥ 4. Applying the Hodge Index again to B · KS

shows that B · KS ≥ 3. This together with B2 ≥ B · KS + 2 implies that B2 ≥ 5. If S

is irregular with h0(B) ≥ 4 as in the second part of (b) the needed inequality B2 ≥ 5
follows from the Clifford inequality applied to B⊗OC and the hypothesis h1(B) = 0.

The following remark shows that under the geometrically interesting assumption
of B ⊗ K∗

S being nef for a non-special divisor B, all the assumptions of Theorem 3.4
and most of the assumptions in Theorem 3.3 are automatically satisfied.

Remark 3.6.2 Let B 6≡ KS be an ample and base-point free divisor with B ⊗ K∗
S nef

and H1(B) = 0. Then the hypotheses (1) and (2) in Theorem 3.4 follows easily for
all surfaces with K2

S ≥ 2. If K2
S = 1, then the same holds in Theorem 3.4 except when

B ≡ 2KS. If K2
S ≥ 2 and pg ≥ 2, then the hypotheses KS ⊗ B free and H0(B) ≥ 4 in

(1) of Theorem 3.3 holds.

Proof Since B 6≡ KS and B⊗K∗
S is nef, Hodge Index implies B2 > B ·KS. Also, the as-

sumptions on B in the remark imply that H2(B) = 0. So the remark for Theorem 3.3
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and Theorem 3.4 follows directly from Lemma 3.1, Remark 3.6.1, Lemma 3.6 and
Riemann–Roch.

We will now state and prove some of the corollaries of the theorems proved so far.
The above remark together with Theorem 3.4 yields the following corollary:

Corollary 3.7 Let S be a surface of general type with K2
S ≥ 2. Let B 6≡ KS be a base-

point free and ample line bundle with H1(B) = 0 and B ⊗ K∗
S nef. Let L = KS ⊗ B⊗l

with l ≥ 2. Then L is very ample and embeds S as a projectively normal variety (i.e. L

satisfies property N0.)

One can get very precise results for pluricanonical divisors. The following corol-
lary proves new cases and recovers and improves results from [GP2] (see also [Ci,
Bo].) Examples in Section 5 show that these results are optimal.

Corollary 3.8 Let S be a surface of general type with KS ample. Let one of the following

conditions hold:

(1) K2
S ≥ 5, or

(2) K2
S ≥ 2 and pg ≥ 1 if S is regular, or

(3) pg ≥ 2 if S is irregular.

Then the following hold:

(a) L = K⊗n
S satisfies property N0 for all n ≥ 5.

(b) If S is regular, K⊗n
S satisfies N0 for all n ≥ 4.

(c) If S is irregular and pg ≥ 6, then K⊗n
S satisfies N0 for all n ≥ 4.

Proof This is a corollary of either Theorem 3.3 or Theorem 3.4. We first remark that
the numerical hypothesis (1), (2), or (3) is assumed to ensure the base-point freeness

of B = K⊗l
S for all l ≥ 2. This follows from [Ca] and Lemma 3.6 for smooth surfaces.

Note that both these results can be used even if S has canonical singularities. The
reason is that one can consider the crepant minimal resolution of S and assume for
the purpose of applying [Ca] that S is smooth. But B ⊗ K∗

S is nef (and even big),

so by Remark 3.6.2 and Theorem 3.4 (or Corollary 3.7) the corollary is proved for
all odd n ≥ 5. For even powers n ≥ 6 the result follows easily by Observation 2.3
taking Li = K⊗2

S and E = K⊗n
S , Lemma 2.8 and the K–V vanishing theorem. To

prove (b) and (c), note that we need to show property N0 of K⊗n
S only for n = 4 since

n ≥ 5 is proved in (a). The statement (b) follows directly from Riemann–Roch and
Proposition 3.5.

To prove (c), we again apply Proposition 3.5. Let B = K⊗2
S . This is base-point

free by Lemma 3.6 as K2
S ≥ 8. We need only to show that h0(B) ≥ pg + 3. Note that

h0(B) = K2
S + χ(OS) by Riemann–Roch and K–V vanishing. But χ(OS) > 0 for a

surface of general type. This follows from the Noether’s formula 12χ(OS) = K2
S + c2,

where c2 is the second Chern class of the tangent sheaf of S and is positive for a surface
of general type. So the needed inequality h0(B) ≥ pg + 3 follows from Noether’s

inequality K2
S ≥ 2pg − 4 and the hypothesis pg ≥ 6.

We will prove a cohomology vanishing which will be used in the inductive argu-
ments to prove higher syzygy results. This theorem refines and improves Theorem 5.1
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in [GP2]. Without this essential technical improvement we cannot proceed towards
the higher syzygy results. Note that in view of Remark 3.1.1, the hypotheses (1) and

(2) in the theorem below are automatic if B⊗K∗
S is nef with B 6≡ KS. But we prove it

in greater generality with a view towards some applications.
In the theorem below, C ∈ |B| will denote a smooth curve of genus g(C) in the

linear system associated to B and L = KS ⊗ B⊗n and L ′
= KS ⊗ B⊗l with n, l ≥ 2.

Theorem 3.9 Let S be a regular surface of general type with pg ≥ 4. Let B be an ample

and base-point-free line bundle such that H1(B) = 0. Assume that

(1) B2 ≥ B · KS.

(2) g(C) ≥ K2
S + 4.

Then H1(M⊗2
L ⊗ L ′⊗k

) = 0 for all k ≥ 1.

Proof As usual we will prove it for k = 1 in view of Remark 3.2. Since pg ≥ 4,
Noether’s inequality implies K2

S ≥ 4, so by Remark 3.6.1 and Lemma 3.6, KS ⊗ B is

base-point free. By Theorem 3.4 we have H1(ML⊗L ′⊗k
) = 0 for all k ≥ 1. Tensoring

(∗) by ML ⊗ L ′ and taking long exact sequence, one sees that H1(M⊗2
L ⊗ L ′) is the

cokernel of the following multiplication map:

H0(ML ⊗ L ′) ⊗ H0(L) → H0(ML ⊗ L ⊗ L ′).

We will prove this for n = 2. The rest follows in the same way. By Observation 2.3,
it is enough to prove

H0(ML ⊗ L ′) ⊗ H0(B)
α1−→ H0(ML ⊗ L ′ ⊗ B)

H0(ML ⊗ L ′ ⊗ B) ⊗ H0(KS ⊗ B)
α2−→ H0(ML ⊗ L ′ ⊗ KS ⊗ B⊗2)

are surjective.
We will prove in detail the surjectivity of α1, the proof of surjectivity of α2 is

analogous. Note that by Theorem 3.4 we have the vanishing of H1(MKS⊗B⊗n ⊗ KS ⊗
B⊗l) = 0 for all n ≥ 2 and l ≥ 1. So we can apply Lemma 2.4. Let C ∈ |B| be a
smooth curve. The idea now is to apply Lemma 2.6. One needs to show that (1) and
(2) of Lemma 2.6 holds. Since H1(L⊗B∗) = 0, (1) of Lemma 2.6 holds. We will now
show that (2) also holds. For this it is enough to check (see (2) of Lemma 2.6) the

surjectivity of

H0(ML⊗OC
⊗ L ′ ⊗ OC ) ⊗ H0(B ⊗ OC ) → H0(ML⊗OC

⊗ L ′ ⊗ B ⊗ OC ).

What Lemma 2.6 has done is to help us pass from an unstable vector bundle ML⊗OC ,
an object difficult to handle, to ML⊗OC

, which we will show is semistable. In ques-

tions like this, these are easier objects to handle. We want to apply Proposition 2.5,
but in order to do this we need to check various things. First we point out that hy-
pothesis (2) implies that B 6≡ KS. Since pg ≥ 3, K2

S ≥ 2pg − 4 ≥ 2 by Noether’s
inequality, hence hypotheses (1) and (2) show that B2 ≥ 5. Now we proceed to
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show that the required inequalities in Proposition 2.5 hold. Let E = B ⊗ OC and
F = ML⊗OC

⊗L ′⊗OC . Note that since deg(L⊗OC ) = (KS ·B + 2B2) ≥ 2g(C), hence

ML⊗OC
is semistable by Theorem 1.2 [Bu]. So one needs to show that the following

hold:

(i) µ(F) ≥ 2g(C);

(ii) µ(F) > 2g + rank(E)
(

2g(C) − µ(E)
)

− 2h1(E).

For the former inequality, µ(F) ≥ µ(ML⊗OC
) + KS · B + 2B2 and this is bigger

than 2g(C) since 2g(C) = KS · B + B2 + 2, B2 ≥ 5 and µ(ML⊗OC
) ≥ −2 by [Bu,

Theorem 1.2]. Inequality (ii) is equivalent to µ(ML⊗OC
) + deg E + deg(L ′ ⊗ OC ) >

4g(C) − 2h1(E). Since deg E + deg(L ′ ⊗ OC ) ≥ 4g(C) − 4, by hypothesis (1) and
h1(E) = pg ≥ 4, inequality (ii) holds. Since B2 ≥ 5, it follows that KS ⊗ B is base-
point free by Lemma 3.6. Since we are on a surface of general type, it is also big.

So there is a smooth and irreducible member C ′ in the linear system |KS ⊗ B|. The
surjectivity of α2 can be proved using the same method as α1. There are no surprises
except to note that in order to start the process of reducing to curve C ′, one needs the
vanishing of H1(ML ⊗ B⊗l) = 0 for all l ≥ 2. This follows from Observation 2.3 and

the surjectivity of (3.3.2) seen in the proof of Theorem 3.3 or follows from pursuing
exactly the same path as that in Theorem 3.4.

Remark 3.9.1 The assumption on pg , in Theorem 3.9 and in the subsequent theo-
rems are made to ensure that the inequality (ii) (more specifically B2−B·KS > 6−2pg

in Theorem 3.9) holds. So if the difference B2−B ·KS is large enough, no assumption
on pg is required.

Corollary 3.10 Let S be a regular surface of general type with pg ≥ 3. Let B 6≡ KS be a

base-point free and ample line bundle with H1(B) = 0 and B⊗K∗
S nef. Let L = KS⊗B⊗l

with l ≥ 2. Then L satisfies property N1 (i.e., the ideal IS defining S in the embedding

given by L is generated by forms of degree 2).

Proof Since B ⊗ K∗
S is nef, Lemma 3.1 together with Remark 3.1.1 shows that the

inequalities (1) and (2) in Theorem 3.9 are satisfied. So Theorem 3.9 holds. Since

B2 − B · KS > 0 by Hodge Index (note B 6≡ KS) and is greater than or equal to 2
by Riemann–Roch, the hypothesis pg ≥ 4 in Theorem 3.9 can be relaxed in view of
Remark 3.9.1, to pg ≥ 3. As we are working over a field of characteristic zero, the

vanishing in Theorem 3.9 implies the vanishing of H1(
∧2

ML ⊗ L⊗n) = 0 for all
n ≥ 1. So L satisfies property N1 by Theorem 1.1.

We will now prove an analogous theorem for irregular surfaces of general type.

This theorem is slightly weaker than the one proved for regular surfaces, but it has
very similar corollaries as Theorem 3.9 on normal generation of pluricanonical bun-
dles. The proof is different and more involved than Theorem 3.9. The proof uses
the fact that irregular surfaces have a “continuous” Picard group, the technique used

above of going to curves and a trick of reducing the “negativity” of ML.

Let us denote L = KS ⊗ B⊗n and L ′
= KS ⊗ B⊗l with B 6≡ KS in the theorem

below.
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Theorem 3.11 Let S be an irregular surface of general type. Let B be a base-point free

and ample divisor such that B2 ≥ 5 and B ′ is free for all B ′ ≡ B and H1(B ′) = 0.

Assume B ⊗ K∗
S is nef, big and effective. Then H1(M⊗2

L ⊗ L ′⊗k
) = 0 for all n, l ≥ 2,

k ≥ 1. In particular, L = KS ⊗ B⊗n satisfies property N1 for all n ≥ 2.

Proof We will prove the theorem for k = 1. The rest are similar in view of Re-

mark 3.2. Let E ∈ Pic0(S) be such that E⊗2 6= OS. Let B1 = B ⊗ E and B2 = B ⊗ E∗.
Note that, KS⊗B1 and B2 are base-point free, by Lemma 3.6 and by hypothesis respec-
tively. For the sake of simplicity of notation, we will prove the theorem for n = l = 2.
The proof for cases n > 2 and l > 2 are exactly the same (after applying Observa-

tion 2.3 repeatedly.) So we have L = L ′. Since H1(ML ⊗ L ′) = 0 by Theorem 3.4, the
needed vanishing follows if

H0(ML ⊗ L ′) ⊗ H0(L) → H0(ML ⊗ L ⊗ L ′)

is surjective for all n = l = 2. We will decompose L = KS ⊗B⊗2
= KS ⊗B2 ⊗B1. We

will use Observation 2.3. We will first prove the surjectivity of

(3.11.1) H0(ML ⊗ L) ⊗ H0(B1) → H0(ML ⊗ L ⊗ B1).

By Lemma 2.8, we need the vanishings of H1(ML ⊗ KS ⊗ B2) and H2
(

ML ⊗ KS ⊗

(E⊗2)∗
)

. To see the first vanishing, use the path followed in Theorem 3.4 by reducing

to a curve C ∈ |KS ⊗ B2|. The needed inequalities, after reducing to the curve, follow
from B⊗K∗

S being nef and Lemma 2.2. The second follows from diagram chase, K–V
vanishing and the fact that H2

(

KS ⊗ (E⊗2)∗
)

= H0(E⊗2) = 0.
We next need to show the surjectivity of the following multiplication map,

(3.11.2) H0(ML ⊗ L ⊗ B1) ⊗ H0(KS ⊗ B2) → H0(ML ⊗ L⊗2).

Let N = KS ⊗ B2. Note that N is base-point free by Lemma 3.6 and Remark 3.6.2.
We remark that the surjectivity of (3.11.2) follows if H1(ML ⊗ MN ⊗ L ⊗ B1) = 0.
To see this replace L in (∗) on page 4 by N as above, and tensor the corresponding

sequence with ML ⊗ L ⊗ B1 and take long exact sequence of cohomology. The proof
of Theorem 3.4 shows that H1(MN ⊗ L ⊗ B1) = 0. So in view of this the above
cohomology group vanishes if

(3.11.3) H0(MN ⊗ L ⊗ B1) ⊗ H0(L) → H0(MN ⊗ L⊗2 ⊗ B1)

is surjective. Note that L = KS ⊗ B⊗ B. We use the methods previously developed in
Theorem 3.4 together with the Observation 2.3 to absorb a B in L. To complete the
proof we need to show that H0(MN⊗L⊗B1⊗B)⊗H0(KS⊗B) → H0(MN ⊗L⊗2⊗B1)
is surjective. Invoking Lemma 2.8, the above multiplication map is surjective if the

following vanishings hold; H1(MN⊗L⊗B1⊗K∗
S ) = 0 and H2(MN⊗B1⊗B⊗K∗

S ) = 0.
Since this kind of argument has been used several times by now, we will give below
only the essential and vital points needed for the proof. The first of these vanish-
ings (i.e. the H1 vanishing which is needed above) follows if the multiplication map
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H0(B⊗3 ⊗E)⊗H0(N) → H0(N ⊗B⊗2 ⊗B1) is surjective. This can be accomplished
by the methods of Theorem 3.4 by reducing to a smooth curve C ∈ |N| as N is base-

point free. The needed vanishing, H1(B⊗2
1 ⊗ K∗

S ) = 0, to reduce the multiplication
map to the curve C can be verified using the hypothesis B ⊗ K∗

S is nef and big and
applying K–V vanishing. After this reduction of the multiplication map to C , the in-
equality h1(B⊗2

1 ⊗K∗
S ⊗OC ) ≤ h0(KS⊗B2)−3 needs to be verified to apply Lemma 2.7

so that the multiplication map on C is surjective. This needs some work which we
will outline below. We first observe that h1(B⊗2

1 ⊗K∗
S ⊗OC ) = h0(K⊗3

S ⊗B∗⊗E⊗3∗).
This follows from tensoring

0 → O(−C) → OS → OC → 0

with B⊗2
1 ⊗ K∗

S and taking long exact sequence of cohomology together with K–V
vanishing and Serre duality. The second point is to note that h0(K⊗3

S ⊗B∗⊗E⊗3∗) ≤
h0(K⊗2

S ). This follows from the fact that B ⊗ K∗
S is effective. So we are reduced to

checking that h0(K⊗2
S ) ≤ h0(KS ⊗ B2) − 3. This inequality holds because of the K–V

vanishing theorem, Lemma 3.1 and Remark 3.1.1 unless B ≡ 2KS and K2
S = 1, but

note that this latter possibility is not tenable since B2 ≥ 5 by hypothesis. So we are
done. The vanishing of H2(MN ⊗ B1 ⊗ B ⊗ K∗

S ) follows from K–V vanishing and a

simple diagram chase using (∗). The proof now follows easily by putting together all
of the above.

Remark 3.12 A careful analysis of the proofs of Theorems 3.3, 3.4, 3.8 and 3.10 show

that the proofs depend on the numerical class of the line bundle. As a consequence
one can prove a slightly more general result. Namely the conclusion drawn for KS ⊗
B⊗n in the above theorems can also be drawn for KS ⊗ B⊗n ⊗ A where A is a nef

divisor with the property that B ⊗ A is base-point free.

The following corollary recovers and improves results in [GP2] and generalizes to
higher syzygies the results in [Ci] on pluricanonical linear systems.

Corollary 3.13 Let S be a surface of general type with KS ample. Let

(1) K2
S ≥ 5 and pg ≥ 1 or pg ≥ 2 if S is irregular,

(2) K2
S ≥ 3 and pg ≥ 1 or K2

S ≥ 2 and pg ≥ 2, if S is regular.

Then L = K⊗n
S satisfies N1 for all n ≥ 5.

Proof The proof follows from Theorem 3.11 and Theorem 3.9 by taking B = K⊗n
S

with n ≥ 2. As noted in Corollary 3.8, we can assume S to be a smooth surface by tak-
ing the minimal crepant resolution. So B is base-point free by [Ca] and Lemma 3.6.
In view of Remark 3.9.1, the hypothesis on pg in Theorem 3.9 can be relaxed, as all

we need to check the surjectivity of α1 and α2 of Theorem 3.9 is a suitable bound
on pg + K2

S . This takes care of odd powers of KS. For even powers the result follows
either from the above remark or by following the method of proof in Theorem 3.11.

Another corollary of the theorems of this section is the following result giving
effective bounds towards Mukai’s conjecture thereby answering (Q2). This is a slight
improvement of Corollary 5.10 in [GP2].
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Corollary 3.14 Let S be a surface of general type, let A be an ample line bundle and let

m = [ (A·(KS+4A)+1)2

2A2 ]. Let L = KS ⊗ A⊗n. If n ≥ 2m, then L satisfies property N0 and

even N1.

Proof Denote B = A⊗m, then by [D] or [BS] B is base-point free with H1(B) =

0. One can easily verify that the numerical condition (2) in Theorem 3.4 and the
numerical condition to apply Lemma 3.6 (for the base-point freeness of KS ⊗ B) are

easily satisfied due to m being so large. So L satisfies N0. The statement for N1 follows
from Theorem 3.9 for X regular and Theorem 3.11 for X irregular. It would help to
keep the following in mind: conditions on pg in Theorem 3.9 is not necessary for
this corollary in view of Remark 3.9.1 and the condition B2 ≥ 5 in Theorem 3.11 is

automatic and since Pic0(S), for an irregular S, is divisible [D] applies also to B ′ in
the statement of Theorem 3.11. Also, it follows from the proof of the main theorem
in [D] or [BS] that B ⊗ K∗

S is nef, big and effective. Hence the corollary follows as
claimed.

4 Higher Syzygies of Surfaces of General Type

In the previous section we proved results on projective normality and normal pre-
sentation. In this section we are going to prove higher syzygy results associated to
adjunction bundles KS ⊗ B⊗n. We carry out the proof in two steps. First we prove a
technical result, which together with a cohomology vanishing result implies property

N2 for the adjunction bundle. This will serve as the first step in the inductive process
towards property Np associated to adjunction bundle. The proofs are different for
N2 and Np. We first need the following technical (and essential) result. This is used
in Theorem 4.2.

In the theorem below we shall denote L = KS ⊗ B⊗n with B 6≡ KS.

Proposition 4.1 Let S be a regular surface of general type with pg ≥ 3. Let B be a

base-point free and ample line bundle such that B ⊗ K∗
S is ne f and H1(B) = 0. Then

H1(M⊗2
L ⊗ B⊗m) = 0 for all n ≥ 2 and m ≥ 4.

Proof In the process of proving Theorem 3.3 we had also proved (see (3.3.2) and
use Observation 2.3) that H1(ML ⊗ B⊗m) = 0 for all n ≥ 2 and m ≥ 1. So the
cohomology group H1(M⊗2

L ⊗ B⊗m) is the cokernel of the multiplication map

(4.1.1) H0(ML ⊗ B⊗m) ⊗ H0(L) → H0(ML ⊗ KS ⊗ B⊗n+m).

Hence it is enough to show this map is surjective. We will do so for the case n = 2.
The rest are easier and can be proved in exactly the same manner. Note that KS ⊗B is
base-point free by Remark 3.6.1 and Lemma 3.6. We will break the proof into several
steps to facilitate a better exposition.

Step 1 We will apply Observation 2.3 to prove the theorem. The idea is to gather
all the B’s first to make the vector bundles involved in the multiplication maps suffi-
ciently positive and then deal with KS ⊗ B. The proof will make this idea precise. We
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will first show the surjectivity of the map β1 below:

H0(ML ⊗ B⊗m) ⊗ H0(B) → H0(ML ⊗ B⊗m+1).

Note we have assumed n = 2 and also by hypothesis of the theorem m ≥ 4.
Since H1(ML ⊗ B⊗l) = 0 for all l ≥ 2, we can apply Lemma 2.4. We want to apply

Lemma 2.6 and since H1(KS ⊗ B) = 0, (1) of Lemma 2.6 holds. For condition (2)
of Lemma 2.6 to hold, it is enough to show that the following multiplication map on
the smooth and irreducible curve C ∈ |B| is surjective:

H0(ML⊗OC
⊗ B⊗m ⊗ OC ) ⊗ H0(B ⊗ OC ) → H0(ML⊗OC

⊗ B⊗m+1 ⊗ OC ).

This surjection follows from the methods used in Theorems N1 and the inequali-
ties needed to apply Proposition 2.5 are checked in the same way as in Theorem 3.9.

There are no new twists. The next surjection that we require has some new twist,
so we will explain in some detail. This includes comparing the positivity of B with
respect to KS and here is the first time that B ⊗ K∗

S is needed. We need to show that:

(4.1.2) H0(ML ⊗ B⊗m+1) ⊗ H0(KS ⊗ B) → H0(ML ⊗ KS ⊗ B⊗m+2).

The idea is to apply Lemma 2.4 and restrict to a smooth curve C ′ ∈ |KS ⊗ B| and for

this we need H1(ML ⊗ B⊗m ⊗ K∗
S ) = 0. To prove this vanishing will be Step 2.

Step 2 Vanishing of H1(ML ⊗ B⊗m ⊗ K∗
S ) = 0 for all m ≥ 4. Since by hypothesis

B ⊗ K∗
S = A is ne f , we have H1(B⊗m ⊗ K∗

S ) = H1(KS ⊗ B⊗m−2 ⊗ A⊗2) = 0 by
the K–V vanishing theorem. So to prove the vanishing of H1(ML ⊗ B⊗m ⊗ K∗

S ) it is

enough to show that

H0(KS ⊗ B⊗2) ⊗ H0(B⊗m ⊗ K∗

S ) → H0(B⊗m+2)

is surjective for all m ≥ 4. We have pg ≥ 3 and B ⊗ K∗
S nef, hence B2 ≥ 5 by

Remark 3.6.1(c). Note that B⊗m ⊗ K∗
S = KS ⊗ B⊗m−2 ⊗ A⊗2 is base-point free.

We will perform the by now familiar “gathering B trick”. First “B to be gathered”

follows from proving the surjectivity of

H0(B⊗m ⊗ K∗

S ) ⊗ H0(B) → H0(B⊗m+1 ⊗ K∗

S ).

This follows from Lemma 2.8 as H1(B⊗m−1 ⊗ K∗
S ) and H2(B⊗m−2 ⊗ K∗

S ) both
vanish. The first vanishing follows from K–V Vanishing and the second follows from
the fact that B 6≡ KS. Next we need to show that,

(4.1.3) H0(B⊗m+1 ⊗ K∗

S ) ⊗ H0(KS ⊗ B) → H0(B⊗m+2)

is surjective. Lemma 2.8 does not work for this case. This would require the method
of reducing to a smooth irreducible curve C ′ ∈ |K ⊗ B|. The multiplication map
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(4.1.3) can be reduced to C ′ using Lemma 2.4 because H1(B⊗m ⊗ (K∗
S )⊗2) = 0. We

therefore need the surjectivity of

(4.1.4) H0(B⊗m+1 ⊗ K∗

S ⊗ OC ′) ⊗ H0(KS ⊗ B ⊗ OC ′) → H0(B⊗m+2 ⊗ OC ′).

We will use Proposition 2.5 to prove the above surjection. For this we need to show
various inequalities. First note that 2g(C ′) = (2KS + B) · (KS + B) + 2. We need these
two inequalities to be satisfied:

(i)
(

(m + 1)B − KS

)

· (KS + B) ≥ (2KS + B) · (KS + B) + 2. This is equivalent to
(mB − 3KS) · (KS + B) ≥ 2. This is true for all m ≥ 4. Next we need,

(ii)
(

(m + 1)B − KS

)

· (KS + B)
> 2(2KS + B) · (KS + B) + 4− (KS + B)2 − 2h1(KS ⊗ B⊗OC ′).

The inequality (ii) is equivalent to (mB−4KS) · (KS + B) > 4−2h1(KS ⊗B⊗OC ′)

for all m ≥ 4. This inequality is true because B ⊗ K∗
S is nef, KS ⊗ B is base-point free

and h1(KS ⊗ B ⊗ OC ′) ≥ 3. The later inequality holds because pg ≥ 3. So (4.1.4) is
surjective.

The above arguments prove that H1(ML ⊗ B⊗m ⊗ K∗
S ) = 0 for all m ≥ 4. This

completes Step 2.

Step 3 We are now ready to prove the surjectivity of (4.1.2). Recall that L = KS⊗B⊗2.
In view of H1(OX) = 0 and the vanishing proved in Step 2, we can apply Lemma 2.4

and Lemma 2.6 to reduce multiplication map (4.1.2) to the following multiplication
map on curves:

H0(ML⊗O
C ′ ⊗B⊗(m+1)⊗OC ′)⊗H0(KS ⊗B⊗OC ′) → H0(ML⊗KS ⊗B⊗(m+2)⊗OC ′).

We want to apply Proposition 2.5 again. Note that H1(B) = 0 and as a result of

Lemma 2.2 and Lemma 3.1, we have (KS + 2B) · (KS + B) > 2g(C ′), so ML⊗O
C ′ is

semistable and has slope bigger than or equal to −2. Let E = KS ⊗ B ⊗ OC ′ and
F = ML⊗O

C ′ ⊗ B⊗(m+1) ⊗ OC ′ . So we need to check only that µ(F) > 2g(C ′) and
that µ(F) > 4g(C ′) − deg(E) − 2h1(E). Both the inequalities follows as B2 ≥ B · KS

since B ⊗ K∗
S is ne f . So (2) is surjective.

The upshot of all of these arguments is that (4.1.1) is surjective. So we have the
needed vanishing.

We will now prove a Koszul cohomology vanishing which will show that KS ⊗B⊗n

satisfies property N2 for n ≥ 3 when B ⊗ K∗
S is nef. The vanishing we now prove will

be the first inductive step in proving the claimed higher syzygy result of adjunction

bundle. The techniques of the proof has already been vetted well in the proofs of the
above technical theorems and lemmas proved above, so we will not give all details but
only sketch it and leave the details to the reader.

Let L = KS ⊗ B⊗n and L ′
= KS ⊗ B⊗l with n, l ≥ 3 with B 6≡ KS.

Theorem 4.2 Let S be a regular surface of general type with pg ≥ 3. Let B be a base

point free and ample line bundle such that B ⊗ K∗
S is ne f and H1(B) = 0. Then

H1(M
⊗p ′+1

L ⊗ L⊗s) vanishes for all 0 ≤ p ′ ≤ 2 and all s ≥ 1.
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Proof Theorem 3.4 and Theorem 3.9 show the vanishing for p ′
= 0, 1. We will now

prove it for p ′
= 2. We will indicate the proof for the case n = 3 and s = 1. The case

n > 3 is similar. Since the result is true by Theorem 3.9 for p ′
= 1, it is enough to

check that the following multiplication map of vector bundles is surjective:

H0(M⊗2
L ⊗ L ′) ⊗ H0(L) → H0(M⊗2

L ⊗ L ⊗ L ′).

Note we are proving a slightly stronger multiplication than necessary involving L

and L ′. This is done to facilitate smoothly the induction argument to be adopted
later on to prove higher syzygy results. Since n = 3, by applying Observation 2.3,
we can “gather two of the B’s” in L = KS ⊗ B⊗3 to make the the vector bundle

involved in the multiplication maps as positive as possible before we deal with the
final multiplication map involving KS ⊗ B. More precisely we want to indicate the
surjections needed in the pecking order:

H0(M⊗2
L ⊗ L ′) ⊗ H0(B)

α1−→ H0(M⊗2
L ⊗ L ′ ⊗ B),

H0(M⊗2
L ⊗ L ′ ⊗ B) ⊗ H0(B)

α2−→ H0(M⊗2
L ⊗ L ′ ⊗ B⊗2),

H0(M⊗2
L ⊗ L ′ ⊗ B⊗2) ⊗ H0(KS ⊗ B)

α3−→ H0(M⊗2
L ⊗ L ′ ⊗ L).

We will indicate the proof for the α1 and α3. The idea is to reduce the multiplication
on the surface to those on curves and lift them back to surfaces. This can be done

using Lemma 2.4 and Lemma 2.6 provided we are able to fulfill the necessary hypoth-
esis. Note that in order to reduce α1 to a smooth member in C ∈ |B|, we need that
H1(M⊗2

L ⊗L ′⊗B∗) = 0. But this is true by Theorem 3.9. Also, deg(L⊗OC ) > 2g(C)
so ML⊗OC

is semistable. So we can reduce the map to a multiplication map on C and

follow the path as in the above results. To check that α3 is surjective, we follow the
path to curves. Note that by now we have “gathered two B’s”. This time we want to
reduce the multiplication map to a smooth curve C ′ ∈ |KS ⊗ B|. To do this we need
H1(M⊗2

L ⊗ L ′ ⊗ B⊗2 ⊗K∗
S ⊗ B∗) = 0. This follows from Proposition 4.1. The neces-

sary inequalities follow and one can check easily that they are comfortably satisfied.

Following the methods of Theorem 3.11, one can prove the analogue of the above
theorem for irregular surfaces. We leave the proof to the reader.

Theorem 4.3 Let S be an irregular surface of general type. Let B 6≡ KS be a base-point

free and ample divisor such that B2 ≥ 5 and B ′ is free for all B ′ ≡ B and H1(B ′) = 0.

Assume B ⊗ K∗
S is nef and big and effective. Then H1(M⊗2

L ⊗ L ′) = 0 for all n, l ≥ 3.

In particular, L = KS ⊗ B⊗n satisfies property N2 for all n ≥ 3.

As a corollary of the above theorems and arguing as in Corollary 3.13 we obtain
the following:

Corollary 4.4 Let S be a surface of general type with ample KS. Let

(1) K2
S ≥ 5 and pg ≥ 1 or pg ≥ 2 if S is irregular,

(2) K2
S ≥ 3 and pg ≥ 1 or K2

S ≥ 2 and pg ≥ 2, if S is regular.

Then L = K⊗n
S satisfies N2 for all n ≥ 7.
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We will now prove a cohomology vanishing theorem, one of whose corollaries
gives a higher syzygy result for adjunction bundles.

Let L = KS ⊗ B⊗n and L ′
= KS ⊗ B⊗m with B 6≡ KS in the theorem below.

Theorem 4.5 Let S be a regular surface of general type with pg ≥ 3. Let B be a base

point free and ample line bundle such that B ⊗ K∗
S is ne f and H1(B) = 0. Then

H1(M
⊗p ′+1

L ⊗ L ′⊗s
) = 0 for all 0 ≤ p ′ ≤ p, n,m ≥ p + 1 and all s ≥ 1. In particular

L = KS ⊗ B⊗n satisfies property Np for all n ≥ p + 1.

Proof The proof rests on an inductive argument. The result is true for p ′
= 0, 1, 2 by

Theorem 3.4, Theorem 3.9 and Theorem 4.2. So we may assume that p ′ ≥ 3. Note
that in view of Remark 3.9.1 (or Corollary 3.10), we can relax the hypothesis pg ≥ 4
in Theorem 3.9 to pg ≥ 3 for this theorem. As usual, we will prove it only for s = 1 as

noted in Remark 3.2. Let us assume the theorem to be true for p ′
= p − 1 and prove

it to be true for p ′
= p. By the induction assumption, we have H1(M

⊗p
L ⊗ L ′) = 0.

So tensoring (∗) with M
⊗p
L ⊗L ′ and taking the long exact sequence of cohomology, it

is enough to show that the following multiplication map of global sections of vector
bundles on S is surjective:

(4.5.1) H0(M
⊗p
L ⊗ L ′) ⊗ H0(L) → H0(M

⊗p
L ⊗ L ⊗ L ′).

We use the by now familiar “gathering B’s” trick to show the first step in the sur-
jection. Note that L = KS ⊗B⊗n with n ≥ p + 1 has p such B’s to spare before we deal
with the multiplication map involving KS ⊗ B. All this will be made precise below.
We will show the surjectivity for the following multiplication map first:

H0(M
⊗p
L ⊗ L ′) ⊗ H0(B) → H0(M

⊗p
L ⊗ L ′ ⊗ B).

The way we proceed is to reduce this map to a smooth curve C ∈ |B|. In order to
accomplish this we need to apply Lemma 2.4. For this we need to check H1(M

⊗p
L ⊗

L ′ ⊗ B∗) = 0. This follows from induction hypothesis. So we can restrict the map to
C . Since H1(KS ⊗ B⊗r) = 0 for all r ≥ 1, we can apply Lemma 2.6. It is enough to
show that the multiplication map

H0(M
⊗p
L ⊗ L ′ ⊗ OC ) ⊗ H0(B ⊗ OC ) → H0(M

⊗p
L ⊗ L ′ ⊗ B ⊗ OC )

is surjective. Denote F = M⊗i
L⊗OC

, E = L ′ ⊗ OC . Using Lemma 2.6 we can reduce the
above multiplication map to the following multiplication map of semistable vector
bundle over C :

H0(F ⊗ L ′ ⊗ OC ) ⊗ H0(B ⊗ OC ) → H0(F ⊗ L ′ ⊗ B ⊗ OC ).

We need to prove this for all 0 ≤ i ≤ p. We will prove it for i = p, the other cases are
easier and follows similarly. This we will prove by applying Proposition 2.5 as before.
Since deg(L ⊗ OC ) ≥ 2g(C), F is a semistable vector bundle. In order to apply it we
need to check two inequalities: (i) µ(F ⊗ E) ≥ 2g(C) = (KS + B) · B + 2. Since (KS +
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nB) ·B ≥ 2g(C), we have that µ(ML⊗OC
) ≥ −2. So µ(F ⊗E) ≥ −2p + (KS + mB) ·B.

To check the above inequality, it is enough to check that that (m − 1)B2 ≥ 2p + 2 for

all m ≥ p + 1. This follows as p ≥ 1 and B2 ≥ 5. Note that B2 ≥ 5 follows from
Lemma 3.1 and Remark 3.6.1. (ii) We need to check that µ(F⊗E) > 4g(C)+4−B2−
2h1(B⊗OC ), or equivalently µ(F⊗E) > 2(KS +B) ·B+4−B2−2h1(B⊗OC ). In view
of the observations made in (i) this follows if (pB −KS) · B > 2p + 4− 2h1(B⊗OC ).

This follows from the following argument; B 6≡ KS, pg ≥ 3 and B2 ≥ 5. Now the
required inequality follows from the fact that p ≥ 3. So what we have done above is
to absorb a B into M

⊗p
L ⊗ L ′. We follow the above procedure to absorb (p − 1) such

B’s. To complete the proof of surjectivity of multiplication map (4.5.1), we finally

need to confront the multiplication map involving KS ⊗ B. That is;

H0(M
⊗p
L ⊗ L ′ ⊗ B⊗p) ⊗ H0(KS ⊗ B) → H0(M

⊗p
L ⊗ L ⊗ L ′).

This multiplication map is surjective and that can be proved either by going to a
smooth curve in the linear system |KS ⊗ B| or by CM-Lemma together with Obser-
vation 2.3. In either case one needs to prove the vanishing of the cohomology group

H1(M
⊗p
L ⊗ L ′ ⊗ B⊗p−1 ⊗ K∗

S ) = H1(M
⊗p
L ⊗ B⊗m+p−1) for all m ≥ p + 1 and p ≥ 3.

We will prove this below. So far the choices of curves that we made to reduce the
multiplication maps on surfaces to a curve have been quite natural, here is where the
proof slightly deviates from the theme of the paper. The choice below is not very

natural in some sense, but this choice gives a quick proof of the vanishing.
Note that D = B⊗2 ⊗ A is base-point free. This is so because A = B ⊗ K∗

S is nef.
So D = KS ⊗ B ⊗ A⊗2 is base-point free by Remark 3.6.1. Let d denote a smooth
irreducible member in the linear system |D|. Consider the exact sequence

0 → OS(D∗) → OS → Od → 0.

Tensor this sequence with M
⊗p
L ⊗KS⊗B⊗(m+p−2)⊗A and take the long exact sequence

of cohomology. Let us denote E = KS ⊗ B⊗(m+p−2) ⊗ A. We have

· · · → H1(M
⊗p
L ⊗ E ⊗ D∗) → H1(M

⊗p
L ⊗ E) → H1(M

⊗p
L ⊗ E ⊗ Od) → · · · .

Note that the left hand side of the above sequence H1(M
⊗p
L ⊗ E ⊗D∗) = H1(M

⊗p
L ⊗

KS ⊗B⊗(m+p−4)). This cohomology is zero by induction provided m+ p−4 ≥ p. But
this holds as m ≥ p + 1 and p ≥ 3. The right side H1(M

⊗p
L ⊗ E ⊗ Od) also vanishes.

To see this, we first make the observation that the vector bundle M
⊗p
L ⊗ E ⊗ Od is

unstable, so a direct computation of the slope of vector bundle is of little use. In order
to show the vanishing, we will construct a semistable filtration of this unstable vector

bundle and then show the needed vanishing. We have H1(L⊗D∗) = 0, it is not hard
to argue that the following sequence is exact:

(4.5.2) 0 → H0(L ⊗ D∗) ⊗ Od → ML ⊗ Od → ML⊗Od
→ 0.

The deg(L ⊗ Od) ≥ 2g(d), hence ML⊗Od
is semistable. The above sequence is

the required semistable filtration that we are looking for. Since we are working over
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a field of characteristic zero, tensor product of semistable bundles is semistable, so
M

⊗p
L⊗Od

is semistable. Tensoring sequence (4.5.2) by M⊗i
L ⊗ E ⊗ Od and by repeated

iteration, the vanishing of H1(M
⊗p
L ⊗E⊗Od) holds if H1(M⊗i

L⊗Od
⊗E⊗Od) vanishes

for all 0 ≤ i ≤ p. Since n,m ≥ p + 1, p ≥ 3 and B2 ≥ 5, it follows that the bundles
M⊗i

L⊗Od
⊗ E ⊗ Od have slope bigger than 2g(d) − 1 for all 0 ≤ i ≤ p. Hence we

have the required vanishing. All of this proves that H1(M
⊗p
L ⊗ B⊗m+p−1) = 0 for all

m ≥ p + 1 and p ≥ 3.

We will complete the proof by applying Lemma 2.8. The only thing left to be
checked is the vanishing of H2(M

⊗p
L ⊗ B⊗m+p−2 ⊗ K∗

S ). This follows by tensoring

0 → ML → H0(L) ⊗ OS → L → 0

with M
⊗p−1

L ⊗ B⊗m+p−2 ⊗ K∗
S and taking long exact sequence of cohomology and

using induction. Ultimately it comes to proving H2(B⊗m+p−2⊗K∗
S ) and H1(M

⊗p−1

L ⊗
B⊗m+n+p−1) for all m ≥ p + 1 and p ≥ 3. The vanishing of the former follows from

the fact that B ⊗ K∗
S is nef and the K–V vanishing theorem. The latter follows by the

process used to prove the vanishing of H1(M
⊗p
L ⊗ B⊗m+p−1) above.

Remark 4.6

(1) A slightly weaker statement holds for an irregular surface of general type S

with the hypothesis on B and S as in Theorem 4.3. Combining the techniques of

this paper together with Theorem 1.3, [GP2] yields KS ⊗ B⊗n satisfies Np for all
n ≥ (p + 3).

(2) A corollary analogous to Corollary 3.7 on Np property of pluricanonical linear
systems can be deduced from the above theorem. This recovers some results in [GP2]

on pluricanonical linear systems.

We close this section with the following corollary giving effective bounds towards
property Np for adjoint linear series associated to ample line bundles.

Corollary 4.7 Let S be a regular surface of general type, and A be an ample line bundle

on S. Let m = [ (A·(KS+4A)+1)2

2A2 ] and L = KS ⊗ A⊗n. If n ≥ mp + m, then L satisfies

property Np.

Proof Follow the same line of reasoning as Corollary 3.14 and apply Theorem 4.5.

5 Boundary Examples and Remarks

Given a surface of general type, there is a “large” class of base point free and ample
line bundles B for which B ⊗ K∗

S nef since the condition B ·C ≥ KS ·C for all curves

C lying on S is an open condition in the ample cone. So there is an “open set” of
examples satisfying the conditions in theorems of the preceding section.

In this section we construct some examples to show that the results in previous
sections are optimal for various reasons.
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Example 5.1 Let ϕ : S → P2 be the double cover of P2 branched along a smooth
curve in |OP2 (2r)| with r ≥ 4.

(a) Let r = 4. So we have, ϕ∗(OS) = OP2 ⊕OP2 (−4). Also, KS = ϕ∗
(

OP2 (1)
)

. So,
S is a regular surface of general type with pg(S) = 3. Note that KS is base-point free
and ample divisor. Let L = K⊗3

S . Then H1(ML ⊗ L) doesn’t vanish, hence H0(L) ⊗
H0(L) → H0(L⊗2) is not surjective. So K⊗3

S does not embed X as a projectively

normal variety. This example shows that the condition B 6≡ KS in Theorem 3.3 is
necessary. Also shows that the condition pg ≥ 4 mentioned in the addendum to
Theorem 3.3, namely Remark 3.3.8 is necessary. This example also shows that the
bound on n in Corollary 3.8(b) is sharp.

Next we show that the condition (2) in Theorem 3.4 or the inequality B2 ≥ B · KS

in Theorem 3.3 is necessary. The examples also illustrate that the condition h0(B) ≥ 4
in Theorem 3.3 cannot be relaxed.

(b) Let r ≥ 5. We have ϕ∗(OS) = OP2 ⊕ OP2 (−r). Also, KS = ϕ∗
(

OP2 (r − 3)
)

.

Denote B = ϕ∗
(

OP2 (1)
)

. So, S is a regular surface of general type with pg(S) as large
as we wish it to be. Note that B is a base-point free and ample divisor which is not
homologous to KS and H1(B) = 0. Also, B2 < B · KS.

Denote L = KS ⊗ B⊗2. So L = ϕ∗
(

OP2 (r − 1)
)

. We claim that L does not satisfy
property N0.

The multiplication map,

α : H0(L) ⊗ H0(L) → H0(L⊗2)

is not surjective. Indeed we have,

H0(L) = H0
(

OP2 (r − 1)
)

⊕ H0
(

OP2 (−1)
)

and

H0(L⊗2) = H0
(

OP2 (2r − 2)
)

⊕ H0
(

OP2 (r − 2)
)

.

So it follows that the image of α is H0
(

OP2 (2r − 2)
)

. Hence it is not surjective for
all r ≥ 2. So L doesn’t satisfy Property N0.

We show below an example where the failure of B to satisfy the inequalities in
Theorem 3.9 and the failure of B ⊗ K∗

S to be nef in Corollary 3.10, leads to the fail-
ure of property N1 for the associated adjunction bundle even though all the other
hypotheses are satisfied.

Example 5.2 Let S be a cyclic triple cover of P2 ramified along a smooth curve of
degree 9. Let B be the pullback of OP2 (1) to S. The surface X is a regular surface of

general type with pg = 11. Also, H1(B) = 0. But L = KS ⊗ B⊗2 satisfies N0 but
not the property N1. Note again that B2 < 9 = B · KS, which violates the necessary
hypothesis of Theorem 3.9.

Proof Note that B ⊗ K∗
S is not nef. In fact B2 < 9 = B · KS. One can check as

in the above cases that L satisfies property N0 by pushing it down to P2. Assume
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L = KS ⊗ B⊗2 satisfies N1. By Theorem 1.1, the assumption implies

(5.2.1) H1
(

2
∧

ML ⊗ L⊗n
)

= 0

for all n ≥ 1. Let C ∈ |B| be a smooth curve. Using repeatedly the sequence (∗) it is
easy to see that H2(M⊗2

L ⊗L⊗n⊗B∗) vanishes; in fact it follows since H1(ML⊗L⊗n+1⊗
B∗) = 0 (use the fact that L satisfies N0 and Observation 2.3) and Hi(L⊗n ⊗ B∗) = 0
for i = 1, 2 and n ≥ 1. This in turn implies that H2(

∧2
ML ⊗ L⊗n ⊗ B∗) vanishes.

These vanishings together with (5.2.1) imply that H1(
∧2

ML⊗L⊗n⊗OC ) = 0. On the

other hand there is an epimorphism between the vector bundles ML⊗OC and ML⊗OC

on C as shown by the semistable filtration in the proof of Theorem 4.5. Therefore we
have

(5.2.2) H1
(

2
∧

ML⊗OC
⊗ L⊗n

)

= 0

for all n ≥ 1. Note that L ⊗ OC = KC ⊗ B and deg(B ⊗ OC ) = 3. It is a well known
result of Castelnuovo that a line bundle of degree greater than or equal to 2g + 1

on a smooth curve satisfies property N0. The curve C has genus 7 and L ⊗ OC has
degree 15, hence L ⊗ OC satisfies N0. Thus it would follow from (5.2.2) that L ⊗ OC

satisfies also property N1 by Theorem 1.1. But a line bundle that is the tensor product
of the canonical bundle of C and an effective line bundle of degree 3, cannot satisfy

property N1 ([GL].) Such is the case with L⊗OC . Therefore the original assumption
(5.2.1) is false and L does not satisfy property N1.
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