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Abstract

In this paper we consider reflected diffusions with positive and negative jumps,
constrained to lie in the nonnegative orthant of Rn. We allow for the drift and diffusion
coefficients, as well as for the directions of reflection, to be random fields over time and
space. We provide a boundary behavior characterization, generalizing known results in
the nonrandom coefficients and constant directions of the reflection case. In particular,
the regulator processes are related to semimartingale local times at the boundaries, and
they are shown not to charge the times the process expends at the intersection of boundary
faces. Using the boundary results, we extend the conditions for product-form distributions
in the stationary regime to the case when the drift and diffusion coefficients, as well as
the directions of reflection, are random fields over space.
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1. Introduction

Let n ≥ 2 be an integer, let R and R+ respectively be the set of real and nonnegative real
numbers, let Rn := ×n

i=1R and Rn+ := ×n
i=1R+, and let Rn×n be the collection of all n×n real

matrices. Throughout the paper, equalities and inequalities involving vectors or vector-valued
processes are to be understood componentwise, ‘0’represents the appropriate null element clear
from the context, ‘∞’ denotes (∞, . . . ,∞) in a vectorial context, and, even though vectors or
vector-valued processes are written as row vectors, they are treated as column vectors in all
the equations in which they appear. In [11] the following reflected diffusion with positive and
negative jumps, constrained to lie in Rn+, was considered:

Xt = X0 +
∫ t

0
b(s, Xs−) dt +

∫ t

0
γ (s, Xs−) dWs +

∑
0<s≤t

�Xs + RZt , (1)
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where X is a càdlàg semimartingale (i.e. that which is continuous from the right with left limits)
with signed jumps �Xt := Xt − Xt− satisfying

∑
0<s≤t |�Xs | < ∞ almost surely (a.s.) for

each t > 0 (Xt− := lims↑t Xs with X0− := 0 by convention), b is the vector of drift coefficients,
γ is the matrix of dispersion coefficients, W is an n-dimensional standard Brownian motion,
R ∈ Rn×n is the reflection matrix whose columns give the directions of reflection of X upon
hitting the boundary faces of Rn+, and, finally, Z is the vector of regulator processes keeping
X in the nonnegative orthant. In [11] we established a boundary behavior characterization for
the tuple (X, Z), showing that the regulators, i.e. the Zis, do not charge the set of times spent
by X at the intersection of two or more boundary faces. In addition, we characterized each Zi

in terms of the semimartingale local-time process at level 0 of Xi , Li(·, 0), as

Zi· = Li(·, 0)

2Ri,i

, (2)

where Ri,i > 0 is the ith diagonal element of matrix R. All these boundary properties were
established in [11] under appropriate mild boundary conditions on the diffusion coefficientsa :=
γ γ � (where γ � denotes the transpose of matrix γ ), as well as under a completely-S structure
with an additional invertibility requirement on the reflection matrix (completely-S matrices
are described in the next section of the paper). A representation as in (2) provides a useful
interpretation of Z, and gives an alternative characterization over the well-known (implicit)
representation Zi· = (1/Ri,i) sups∈[0,·] max{−V i

s , 0} with V i := Xi − Ri,iZ
i (implicit in the

sense that V i contains the components Zj , j �= i). For the class of reflection matrices of
the form R = I − Q, where I is the identity matrix and Q ≥ 0 elementwise with spectral
radius less than 1, process Z also results from applying the multidimensional reflection map to
the unconstrained or ‘free’ process U := X − RZ and can be characterized as follows: Z is
the minimal element in the space of continuous processes, null at zero and (componentwise)
nondecreasing, such that U +RZ ≥ 0, i.e. if Y has continuous and nondecreasing paths, and it
is such that Y0 = 0 and U +RY ≥ 0, then Z ≤ Y . For the extension to completely-S reflection
matrices, see [19] and the references therein. Further discussion on regulator processes and
reflection maps can also be found, for example, in [3], [4], [13], [17], [18], and the references
therein.

In this paper we will consider (1) in the general case when b and γ are in addition allowed
to be random, and when the reflection matrix R is an Rn×n-valued random field over time and
space as well. We will show that, under the natural extended assumptions, all the previous
results in [11] generalize to this case. In particular, we will show that the characterization of Z

in (2) comes from the following general representation:

Zi· = 1

2

∫ ·

0

Li(ds, 0)

Ri,i(s, Xs)
.

The detailed model formulation will be provided in the next section of the paper.
An appropriate boundary behavior characterization has been shown to play an important

role in studying and characterizing the stationary distribution of a reflected process, when
it exists, as well as in establishing when in fact a stationary version exists. For example,
in [9] the regulator process of a one-dimensional reflected diffusion with jumps was related to
the corresponding semimartingale local time at level zero, and this connection was then used
to study the stationary distributions of such processes. Harrison and Williams [5] used the
boundary property established in [14], in that the regulator processes do not charge the set of
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times spent by a semimartingale reflecting Brownian motion (SRBM) at the intersection of two
or more boundary faces of Rn+, to obtain necessary and sufficient conditions for the existence of
the stationary regime for such processes, characterizing the case when the stationary distribution
is in product form, i.e. it is expressed as the product of its one-dimensional marginals. In [16] the
boundary property established in [14] was used in the numerical computation of the stationary
distribution of an SRBM in a hypercube. In the context of reflected Lévy processes (including
jumps), product-form stationary distributions have been studied, for example, in [1] and [7],
where once again an appropriate boundary behavior characterization was used.

Recently, in [10] the boundary behavior characterization provided in [11] was used to obtain
forward equations for the stationary density of X in (1), with an appropriate jump measure
driving the jumps in X and with b and γ not depending on time, of course, and assuming
that the stationary setting and a density (with respect to the Lebesgue measure) exist. These
equations were then used to establish necessary and sufficient conditions for this density to be
in product form, generalizing the previously known product-form conditions for SRBMs in [5]
and the corresponding negative results for reflected Lévy processes (including jumps) in [7].
Although, for simplicity, the case of positive jumps were considered in [10], it was indicated
there how all the results extend to the case of positive and negative jumps.

In this paper we will also generalize the necessary and sufficient conditions for a product-
form distribution (in the stationary regime) established in [10] to the case when b and γ are in
addition allowed to be random, and when the reflection matrix R is an Rn×n-valued random
field over space as well. Some specific cases and their related equations will be discussed
explicitly.

The motivation to establish a boundary behavior characterization useful in describing the
stationary distribution of reflected diffusions with jumps is manyfold. This class of processes
has lately found a wide variety of applications in several fields, such as mathematical finance,
risk, and queueing theory. For example, in queueing theory and stochastic networks they appear
in the context of weak limits under heavy traffic conditions, where complex network models
can be approximated in a weak (or in distribution) sense by a reflected diffusion with jumps in
the limiting case when the utilizations take values near unity. See, for example, [2], [5], [6],
[8], [17]–[20], and the references therein.

The organization of the paper is as follows. In Section 2 we introduce the model to be
considered, giving some notation and terminology that will be used throughout. In Section 3 we
provide a boundary behavior characterization for the general framework introduced in Section 2.
Finally, in Section 4 we extend to this general framework the necessary and sufficient conditions
for a product-form distribution in the stationary regime, considering explicitly some specific
cases and their related equations.

2. Model formulation and further notation

Let n ≥ 2 be an integer, and let (�, F , (Ft )t≥0, P) be a stochastic basis satisfying the
usual hypotheses, i.e. F0 contains all the P-null sets of F and the filtration (Ft )t≥0 is right
continuous. (At this point readers may wish to review the notation and terminology introduced
at the beginning of Section 1.) We consider the following reflected diffusion with positive
and negative jumps, state space Rn+, and random, time- and state-dependent drift and diffusion
coefficients, as well as random, time- and state-dependent directions of reflection upon hitting
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∂0 := ⋃n
i=1 ∂i := ⋃n

i=1{x ∈ Rn+ : xi = 0}:

Xt = X0 +
∫ t

0
b(ω, s, Xs−) ds +

∫ t

0
γ (ω, s, Xs−) dWs +

∑
0<s≤t

�Xs +
∫ t

0
R(ω, s, Xs−) dZs,

(3)
where ω ∈ � and the following notation is used.

• X = (Xt )t≥0 = (X1
t , . . . , X

n
t )t≥0 is an (Ft )t≥0-adapted, Rn+-valued càdlàg semimartin-

gale. (Recall that Xt− := lims↑t Xs with X0− := 0 and �Xt := Xt − Xt−.) We assume
hereafter that

∑
0<s≤t |�Xs | < ∞ a.s. for each t > 0.

• W = (Wt )t≥0 = (W 1
t , . . . , Wn

t )t≥0 is an (Ft )t≥0-standard Brownian motion on Rn.

• Z = (Zt )t≥0 = (Z1
t , . . . , Z

n
t )t≥0 is a continuous, (Ft )t≥0-adapted, Rn+-valued process

with each Zi nondecreasing, null at zero, and such that
∫

R+ Xi
s dZi

s = 0.

• b = (bi)i∈{1,...,n} : � × Rn+1+ → Rn and γ = (γi,j )i,j∈{1,...,n} : � × Rn+1+ → Rn×n are
random fields with F ⊗B(Rn+1+ )−B(R) measurable coefficients, both (Ft )t≥0-adapted
for each fixed x ∈ Rn+. (Recall that we set a = (ai,j )i,j∈{1,...,n} := γ γ �.)

• R = (Ri,j )i,j∈{1,...,n} : �×Rn+1+ → Rn×n is a random field with F ⊗B(Rn+1+ )−B(R)

measurable coefficients, (Ft )t≥0-adapted for each fixed x ∈ Rn+. Note that the definition
of R is only relevant for (ω, t, x) ∈ �×R+ × ∂0; since X is càdlàg and Z is continuous,
we have

∫ ·
0 Ri,j (s, Xs−) dZ

j
s = ∫ ·

0 Ri,j (s, Xs) dZ
j
s , i, j ∈ {1, . . . , n} (see Remark 1,

below), and, moreover, each Zj can only increase at times s when X
j
s = 0 (i.e. when

Xs ∈ ∂j ), by definition of Z. In addition, we assume that P{ω ∈ � : R(ω, t, x) ∈ Rn

for all (t, x) ∈ R+ × ∂0} = 1, where Rn denotes the collection of all n×n completely-S
matrices (described below) with the additional property that each of their principal
submatrices is nonsingular, i.e. D ∈ Rn if D is an n × n completely-S matrix and,
for each K � {1, . . . , n}, the principal submatrix obtained from D by deleting its kth
row and column for all k ∈ K (none if K = ∅), denoted as D(K), is invertible.

Recall that a matrix D in Rn×n is said to be completely-S if it has the property that, for each
D̃ principal submatrix of D, there exists a vector y ≥ 0, of the corresponding proper dimension,
such that D̃y > 0. (Note in particular that D must have strictly positive diagonal elements.)
In [14] the authors showed the necessity of this condition on the (constant, nonrandom) reflection
matrix of SRBMs in the nonnegative orthant for such processes to exist, which accounts for the
fact that, upon hitting the boundary of Rn+, the process cannot leave the orthant.

As in [11], the additional invertibility requirement on R will allow us to relate the regulator
processes Zis to semimartingale local times, as well as to establish the boundary property in
that the Zis do not charge the set of times spent by X at the intersection of two or more boundary
faces. Examples of matrices in Rn are P-matrices, i.e. matrices for which each principal minor
is strictly positive, as, for example, positive definite matrices, real triangular matrices with
strictly positive diagonal elements, and matrices of the form s0I − Q with s0 > 0, where I is
the identity matrix and Q ≥ 0 elementwise with spectral radius strictly less than s0.

In this paper we assume the existence of a tuple (X, Z), as described, satisfying (3), i.e. with
semimartingale X − X0 having canonical decomposition X − X0 = A + M + J , A0 = M0 =
J0 := 0, where the continuous finite-variation process A and the continuous local martingale
term M are given by A· := ∫ ·

0 b(s, Xs−) ds + RZ· and M· := ∫ ·
0 γ (s, Xs−) dWs , and where

J· := ∑
0<s≤· �Xs with

∑
0<s≤t |�Xs | < ∞ a.s. for each t > 0. It is not the aim of the paper
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to deal with existence issues. Results on existence and uniqueness of solutions to reflecting
stochastic differential equations with random coefficients and jumps driven by Poisson random
measures (with jump amplitudes expressed as functions of Xt−) can be found in [15].

We now introduce some notation that will be used throughout. For integers k, l ≥ 1, we
denote by Cl (Rk+) the space of all functions f : Rk+ → R with continuous partial derivatives up
to and including order l, and we denote by Cl

b(R
k+) the subspace of functions in Cl (Rk+) that,

along with all their partial derivatives up to and including order l are bounded. As usual, when
no superscript l is written we refer to the functions themselves, excluding their derivatives. In
addition, for f : Rk+ → R and i ∈ {1, . . . , k}, we write f (0i ) to indicate that the ith argument
in f is set to 0, f (0i+) to denote limxi↓0 f (x), and Lk[f ](·) to denote the (k-dimensional)
Laplace transform of f (omitting i and k when f is defined over R+). Also, we write P X

t for the
law of Xt in Rn+, t ∈ R+, and (Li(t, r))t,r≥0 for the jointly continuous in t and right continuous
in r version of the local time (r indicating the level) associated with semimartingale Xi . Note
this version exists and, moreover, for every (t, r) ∈ R2+, we have

Li(t, r) = lim
ε↓0

1

ε

∫ t

0
1 {r ≤ Xi

s ≤ r + ε}ai,i(s, Xs−) ds a.s.

(X being a càdlàg semimartingale satisfying
∑

0<s≤t |�Xs | < ∞ a.s. for each t > 0 (see
[12, Theorem 56 and Corollary 3])). It is obviously enough for us to consider here only
r ∈ R+, since X is constrained to lie in Rn+. In addition, for K, K̃ ⊆ {1, . . . , n}, K \ K̃

denotes the usual set-theoretic difference and |K| denotes the number of elements in K . Also,
m and ⊗nm denote the Lebesgue measures in R+ and in Rn+, respectively. Finally, we set
∂◦
i := ∂i \ ⋃n

k=1, k �=i ∂k , and denote by dx�=i the differential dx1 · · · dxn when dxi is omitted
and denote by 1{·} the indicator function of the corresponding event in parentheses.

As we have done so far, whenever we write a.s., it is with respect to P. Similarly, in what
follows, whenever we write a.e. (almost every or almost everywhere), it is with respect to the
Lebesgue measure in the corresponding real space (clear from the context).

Finally, we make the following remark.

Remark 1. Since X is càdlàg, it can have at most a countable number of jumps in any compact
interval of times contained in R+. Therefore, Xs− can always be replaced by Xs in integrals of
the form

∫ ·
0 f (Xs−)µ(ds), and vice versa, when the measure µ is diffuse, i.e. when µ has no

atoms. Note that this is the case for the Lebesgue measure and for the random measures dZi
s

and Li(ds, r) that Zi
s and Li(s, r) induce in R+, respectively. This fact will be used from now

on without further comment.

3. Boundary behavior characterization

In this section we obtain a boundary behavior characterization for (X, Z) in (3). The results
in this section generalize the corresponding ones in [11], where b and γ are nonrandom, and
where R is a constant matrix in Rn. The proofs given here focus on the points of difference
between the corresponding proofs given in [11].

Lemma 1. Let t ∈ R+, and let K ⊆ {1, . . . , n}. Assume that there exists i ∈ K such that
P{ω ∈ � : ai,i(ω, s, x) > 0 for all x ∈ ⋂

k∈K ∂k} = 1 for a.e. s ∈ [0, t]. Then, we have

m

{
s ∈ [0, t] : Xs ∈

⋂
k∈K

∂k

}
= 0 a.s.
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Also, for a.e. s ∈ [0, t],
P X

s

{⋂
k∈K

∂k

}
= 0,

i.e. for a.e. s ∈ [0, t], P X
s does not charge the set

⋂
k∈K ∂k .

Proof. Follows by the same arguments as in the proof of Lemma 2.1 of [11].

Remark 2. When K = {i} ⊆ {1, . . . , n}, under the assumptions in Lemma 1, we have
P X

s {∂i} = 0 for a.e. s ∈ [0, t].
For the next lemma, we require some preliminary elements. Let i ∈ {1, . . . , n}, let r ∈ R+,

and let � = (�(ω, x)) : � × Rn+ → R be an F0 ⊗ B(Rn+) − B(R) measurable random field.
Furthermore, let us write σt for the σ -algebra generated by Xt , and write X

ri
t for Xt when its

ith component Xi
t is replaced by r , i.e. X

ri
t := (X1

t , . . . , X
i−1
t , r, Xi+1

t , . . . , Xn
t ). Then, since

|�|ai,i ≥ 0, we conclude that there exists hi|�|,r : Rn+1+ → R+ ∪ {∞}, Borel measurable, such
that hi|�|,r (t, Xt (ω)) = E[|�(X

ri
t )|ai,i(t, Xt ) | σt ](ω) a.s. for each t ∈ R+, and note that∫ t

0
E[|�(Xri

s )|ai,i(s, Xs)] ds =
∫ t

0

∫
R

n+
hi|�|,r (s, x)P X

s (dx) ds

for each t ∈ R+ (both being finite or ∞). Moreover, note that if, for some t ∈ R+, we have
E[|�(X

ri
s )|ai,i(s, Xs)] < ∞ for a.e. s ∈ [0, t] then there exists Nt ⊂ [0, t], m{Nt } = 0,

such that the conditional expectation E[�(X
ri
s )ai,i (s, Xs) | σs](ω) is well defined and finite

a.s. for each s ∈ [0, t] \ Nt . Setting it as any real value for each s ∈ Nt and all ω ∈ �, we con-
clude that there exists hi

�,r : [0, t] × Rn+ → R, Borel measurable, such that hi
�,r (s, Xs(ω)) =

E[�(X
ri
s )ai,i (s, Xs) | σs](ω) a.s. for each s ∈ [0, t], and note that, with this construction,∫ t

0
E[�(Xri

s )ai,i (s, Xs)] ds =
∫ t

0

∫
R

n+
hi

�,r (s, x)P X
s (dx) ds

if
∫ t

0 E[|�(X
ri
s )|ai,i(s, Xs)] ds < ∞. Finally, for each ε ≥ 0, we write Rn+(i, r, ε) for the set

{x ∈ Rn+ : r ≤ xi ≤ r + ε}.
Now we can state the lemma. Even though we will require it in this section for nonrandom

� (i.e. independent of ω ∈ �), its corollary, Corollary 1, below, will be required for random
� in Subsection 4.2.

Lemma 2. Let t, r ∈ R+, let i ∈ {1, . . . , n}, and let � = (�(ω, x)) : � × Rn+ → R be a
bounded random field, measurable as above. Assume that there exists η > 0 for which∫ t

0

∫
R

n+(i,r,η)

hi|�|,r (s, x)P X
s (dx) ds < ∞.

Then, with �η(·, x) = �(·, x) if x ∈ Rn+(i, r, η) and �η(·, x) = 0 elsewhere, we have

E

[∫ t

0
�(Xs)L

i(ds, r)

]
= lim

ε↓0

1

ε

∫ t

0

∫
R

n+(i,r,ε)

hi
�η,r (s, x)P X

s (dx) ds.

Proof. Since, for each ε ∈ R+,∫ t

0
E[|�(Xri

s )| 1{r ≤ Xi
s ≤ r + ε}ai,i(s, Xs)] ds =

∫ t

0

∫
R

n+(i,r,ε)

hi|�|,r (s, x)P X
s (dx) ds
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and the right-hand side of the above equation is finite for ε = η and, hence, for each ε ∈ [0, η]
(hi|�|,r ≥ 0), we conclude that

∫ t

0
E[�(Xri

s ) 1{r ≤ Xi
s ≤ r + ε}ai,i(s, Xs)] ds =

∫ t

0

∫
R

n+(i,r,ε)

hi
�η,r (s, x)P X

s (dx) ds

for each ε ∈ [0, η]. Now, by the same arguments as in the proof of Lemma 2.2 of [11], and by
using Fubini’s theorem, we conclude that, for each ε ∈ (0, η],

1

ε

∫ r+ε

r

E

[∫ t

0
�(Xri

s )Li(ds, u)

]
du = 1

ε

∫ t

0
E[�(Xri

s ) 1 {r ≤ Xi
s ≤ r + ε}ai,i(s, Xs)] ds.

The proof of the lemma now follows as in the proof of Lemma 2.2 of [11].

Corollary 1. Let t, r ∈ R+, let i ∈ {1, . . . , n}, and let � = (�(ω, x)) : � × Rn+ → R be a
bounded random field, measurable as above. Assume that P X

s (dx) admits a (jointly measurable
in s and x) density pX,s(x) (with respect to the Lebesgue measure), and that there exists η > 0
for which ∫ t

0

∫
R

n−1+
sup

r≤xi≤r+η
{hi|�|,r (s, x)pX,s(x)} dx �=i ds < ∞.

Furthermore, assume that, for a.e. s ∈ [0, t], limxi↓r{hi
�η,r (s, x)pX,s(x)} exists and is finite

a.e. over Rn−1+ , where �η is defined in the same way as in Lemma 2. Then, we have

E

[∫ t

0
�(Xs)L

i(ds, r)

]
=

∫ t

0

∫
R

n−1+
lim
xi↓r

{hi
�η,r (s, x)pX,s(x)} dx �=i ds.

Proof. Follows from Lemma 2 by the same arguments as in the proof of Corollary 2.1
of [11].

Lemma 3. Let t ∈ R+, and let i ∈ K ⊆ {1, . . . , n}. Assume that there exists j ∈ K, j �= i,
such that P{ω ∈ � : aj,j (ω, s, x) > 0 for all x ∈ ⋂

k∈K\{i} ∂k} = 1 for a.e. s ∈ [0, t]. Then,
we have ∫ t

0
1

{
Xs ∈

⋂
k∈K

∂k

}
Li(ds, 0) = 0 a.s.

Proof. From Lemma 1 we conclude that P X
s (

⋂
k∈K\{i} ∂k) = 0 for a.e. s ∈ [0, t]. Thus,

with 
(ω, x) = 1 and �(ω, x) = �(x) = 1 {x ∈ ⋂
k∈K ∂k}, (ω, x) ∈ � × Rn+, for each η ∈

(0, ∞), we have

0 =
∫ t

0

∫
R

n+(i,0,η)

1
{
x ∈

⋂
k∈K\{i}

∂k

}
hi


,0(s, x)P X
s (dx) ds

=
∫ t

0

∫
R

n+(i,0,η)

hi
�,0(s, x)P X

s (dx) ds.

The lemma now follows from Lemma 2 since
∫ t

0 1 {Xs ∈ ⋂
k∈K ∂k}Li(ds, 0) ≥ 0.

Using the previous lemmas, we can now state the main results of this section in Theorems 1
and 2, below.
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Theorem 1. Let t ∈ R+, and assume that there exist i, j ∈ K ⊆ {1, . . . , n}, i �= j , such that

P

{
ω ∈ � : ai,i(ω, s, x) > 0 for all x ∈

⋂
k∈K\{j}

∂k

}
= 1

and

P

{
ω ∈ � : aj,j (ω, s, x) > 0 for all x ∈

⋂
k∈K\{i}

∂k

}
= 1

for a.e. s ∈ [0, t]. Then, for each q ∈ K , we have

∫ t

0
1

{
Xs ∈

⋂
k∈K

∂k

}
dZ

q
s = 0 a.s.

Proof. For k ∈ {1, . . . , n}, write, analogously for X
0k
s , X0k

s− for Xs− when its kth component
Xk

s− is replaced by 0. This same notation is used for U ⊆ {1, . . . , n}, i.e. X
0U
s− denotes Xs−

when all its components Xk
s− with k ∈ U are replaced by 0. Moreover, recall that, for D ∈ Rn×n

and U � {1, . . . , n}, D(U) denotes the principal submatrix obtained from D by deleting its kth
row and column for all k ∈ U . Define the (Fs)s≥0-adapted, Rn×n-valued process Q as follows:

Qk,l
s :=

{
1 {Xs− ∈ ∂k}Rk,l(s, X

0k
s−) if k �= l,

Rk,k(s, X
0k
s−) if k = l,

where s ∈ R+ and k, l ∈ {1, . . . , n}. Furthermore, define the random index set �s, s ∈ R+,
as {k ∈ {1, . . . , n} : Xs− /∈ ∂k}, and let �c

s be its complement with respect to {1, . . . , n}. Then,
it is easy to see that, for each s ∈ R+ and ω ∈ �, we have

det[Qs] =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

det[R(s, 0)] if �s = ∅,
n∏

k=1

Rk,k(s, X
0k
s−) if |�s | = n,

det[(R(s, X
0�c

s
s− ))(�s)]

∏
k∈�s

Rk,k(s, X
0k
s−) if 0 < |�s | < n,

where det[·] denotes the determinant of the corresponding matrix in Rn×n, and where 0 in
R(s, 0) is of course 0 ∈ Rn. Therefore, since, by assumption, in the paper we have P{ω ∈
� : R(ω, s, x) ∈ Rn for all (s, x) ∈ R+ × ∂0} = 1, we conclude that det[Qs] > 0 a.s. for all
s ∈ R+. Then, setting rs := Q−1

s , s ∈ R+, applying Meyer–Itô’s formula [12, Theorem 51]
to each Xk with convex function f (xk) = (xk)

+ := max{0, xk}, xk ∈ R, and using (3) along
with the fact that Xk ≥ 0, by the same arguments as in [11, Lemma 2.5], we obtain, for each
k ∈ {1, . . . , n},

Zk· =
n∑

l=1

∫ ·

0
rk,l
s 1 {Xs ∈ ∂l}

(
1

2
Ll(ds, 0) − bl(s, Xs) ds

)
a.s. (4)

The proof of the theorem now follows from Lemmas 1 and 3 by the same arguments as in the
proof of Theorem 3.1 of [11].
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Theorem 2. Assume that, for each i ∈ {1, . . . , n}, we have, for a.e. t ∈ R+, P{ω ∈ � :
ai,i(ω, t, x) > 0 for all x ∈ ∂i} = 1. Then, for each i ∈ {1, . . . , n}, we have

Zi· = 1

2

∫ ·

0

Li(ds, 0)

Ri,i(s, Xs)
a.s.

Proof. Using (4), Lemmas 1 and 3, and noting that r
i,i
s = 1/Ri,i(s, Xs−) on {(ω, s) ∈

� × R+ : Xs−(ω) ∈ ∂◦
i }, by the same arguments as in the proof of Theorem 3.2 of [11] we

conclude that, for each i ∈ {1, . . . , n},

Zi
t = 1

2

∫ t

0

Li(ds, 0)

Ri,i(s, Xs)
a.s.

for each t ∈ R+. Indistinguishability follows from a.s. sample path continuity.

Corollary 2. Assume the same as in Theorem 2 above. Then, for each i ∈ {1, . . . , n}, the
random measures (in t) dZi

t and Li(dt, 0) are a.s. supported by the same set in R+ and,
moreover, this set is contained in {t ∈ R+ : Xt ∈ ∂◦

i }.
Proof. Follows directly from Lemma 3 (or Theorem 1) and Theorem 2.

Corollary 3. For each i ∈ {1, . . . , n}, let V i := Xi − Y i with Y i· := ∫ ·
0 Ri,i(s, Xs−) dZi

s =∫ ·
0 Ri,i(s, Xs) dZi

s . Then, under the same assumptions as in Theorem 2 above, for each i ∈
{1, . . . , n}, we have

Li(·, 0) = 2 sup
s∈[0,·]

max{−V i
s , 0} a.s.

Proof. Let i ∈ {1, . . . , n}. Since, by definition, Xi = V i +Y i , and Y i is clearly continuous,
null at zero, nondecreasing (P{ω ∈ � : Ri,i(ω, t, x) > 0 for all (t, x) ∈ R+ × ∂i} = 1),
and such that

∫
R+ Xi

s dY i
s = 0, we conclude (see, for example, [3], [17], and [18]) that Y i· =

sups∈[0,·] max{−V i
s , 0}. (Note that, since X is constrained to lie in Rn+, we have X0 ≥ 0 and

�Xt ≥ −Xt− for all t > 0, and, therefore, sups∈[0,·] max{−V i
s , 0} is continuous, in agreement

with this last equality and the definition of Y i .) Therefore,∫ ·

0
Ri,i(s, Xs) dZi

s = sup
s∈[0,·]

max{−V i
s , 0} a.s.

The corollary now follows from Theorem 2.

Remark 3. The boundary behavior characterization provided in this section can naturally be
carried over to the case of a hyper-rectangular state space, as it was done in [11] for the simpler
reflected diffusion model considered there. As the reader can easily verify, all the results in this
section also extend to the case of a wedge in Rn+ as the state space.

4. Necessary and sufficient conditions for a product-form distribution in
the stationary regime

In this section we extend the conditions given in [10] for a product-form distribution in the
stationary regime, assuming that this regime and a corresponding density with respect to the
Lebesgue measure exist, to the case when the drift and diffusion coefficients are allowed to
be random fields over space, and when the reflection matrix is an Rn×n-valued random field
over space as well. (As the reader may furthermore notice, some of the assumptions made

https://doi.org/10.1239/aap/1214950215 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1214950215


538 F. J. PIERA ET AL.

in [10] will now be replaced by less restrictive assumptions.) Specifically, the model is the
same as in Section 2, (3), but of course with b, γ , and R being time independent, and with an
appropriate structure for the jumps (described below). To make the extension to this setting
clear, we first consider the case of nonrandom b, γ , and R (i.e. when they do not depend on
ω ∈ �), giving some explicit computational examples in Subsection 4.1. The fully random
case is considered in Subsection 4.2. Similarly as in Section 3, the proofs given here focus on
the points of difference between the corresponding proofs given in [10].

Consider the model in (3), but for the case when b, γ , and R do not depend on time or
ω ∈ �, i.e.

dXt = b(Xt−) dt + γ (Xt−) dWt + �Xt + R(Xt−) dZt . (5)

Aside from the time and ω independence, everything is as in Section 2, but we now make the
following additional assumptions for each i, j ∈ {1, . . . , n}.

• bi(x) and ai,j (x) depend only on x ∈ Rn+ through their ith coordinate and i, j th
coordinates, respectively, i.e. bi(x) = bi(xi) and ai,j (x) = ai,j (xi, xj ). Note that
the diffusion coefficients ai,j satisfy this x-dependence condition when, for example,
γi,j (x) = γi,j (xi). Moreover, we assume that ai,i(0) > 0 and that ai,i(0+) exists and is
finite.

• Ri,j (x) depends only on x ∈ Rn+ through its ith coordinate, i.e. Ri,j (x) = Ri,j (xi). Note
that, since the direction of reflection upon hitting ∂◦

j is given by the j th column of R,
Rj (x) := (R1,j (x1), . . . , Rj,j (0), . . . , Rn,j (xn)), this condition on R is not completely
restrictive in the sense that Rj (x) is still allowed to depend on the position over that face.
Also, note that, since Rj (·) only comes into play over ∂j , it is equivalent to assuming an
x-dependence of the form Ri,j (x) = Ri,j (xi, xj ). Moreover, we assume that, for each
i �= j , there exists a constant Ci,j ∈ R+ such that |Ri,j (xi)| ≤ Ci,j for all xi ∈ R+.

Also, we consider the following structure for the jumps in X. Here N0 := {0, 1, 2, . . .}.
• ∑

0<s≤· �Xs(ω) = ∫ ·
0

∫
Rn z�(ω, ds, dz), where � is an N0-valued random measure over

R+ × Rn with
∫ ·

0

∫
Rn z�(ω, ds, dz) (Ft )t≥0-adapted, �(ω, {s}, Rn) ∈ {0, 1} for each

(ω, s) ∈ �×R+, and
∫ ·

0

∫
×n

i=1(−∞,−Xi
s−(ω))

z�(ω, ds, dz) ≡ 0 for each ω ∈ �. In partic-
ular, we assume that � admits a predictable compensator of the form λ(ω)K(ω, s, dz) ds,
where

1. K(ω, s, dz) is a Markovian, predictable transition kernel of (� × R+, P ) into
(Rn, B(Rn)), where P denotes the corresponding predictable σ -field on �×R+,
taking the form K(Xs−(ω), dz) with K(x, dz) a probability transition kernel
of (Rn+, B(Rn+)) into (Rn, B(Rn)) of the form

∏n
i=1 Ki(xi, dzi), where each

one-dimensional marginal distribution Ki(xi, ·) is such that Ki(xi, {0}) =
Ki(xi, (−∞, −xi)) = 0 for each xi ≥ 0; and,

2. the intensity λ is independent of (Xt−)t≥0 and of the form
∑n

i=1 λi , where λi(ω) ∈
[0, ∞), ω ∈ �, is the jump intensity associated with Xi and the λis are indepen-
dent.

Finally, we set λ̄i := ∫
R+ rφi(dr), where φi(dr) is the distribution of λi .

We assume the existence of a unique-in-law weak solution to (5). Furthermore, we assume
that the corresponding law P X

t is time invariant (or stationary), i.e. it does not depend on t ,
denoted as P X, and that such a law admits a density with respect to the Lebesgue measure,
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denoted as pX(x), x ∈ Rn+. To ease notation, from now on we will omit the X in P X and pX.
In addition, we assume that the density p and its one- and two-dimensional marginals, denoted
respectively as {pi}ni=1 and {pi,j }ni,j=1 (note that, for convenience, we have also introduced
pi,i , identified of course with pi), are such that, for each i, j ∈ {1, . . . , n}, the following five
assumptions are satisfied.

(A1) λ̄i

∫
R+

∫ ∞
−xi

|zi |Ki(xi, dzi)pi(xi) dxi < ∞.

(A2)
∫

R+ |bi(xi)|pi(xi) dxi < ∞.

(A3)
∫

R
2+ |ai,j (xi, xj )|pi,j (xi, xj ) dxi dxj < ∞.

(A4) p(0i+) exists and is finite a.e. over Rn−1+ .

(A5) There exists ηi > 0 such that
∫

R
n−1+

supxi≤ηi
{ai,i(xi)p(x)} dx �=i < ∞.

Note that when p is in product form, i.e. when

p(x) =
n∏

i=1

pi(xi) for a.e. x ∈ Rn+,

assumptions (A4) and (A5) together become equivalent to the existence and finiteness of the
limit pi(0+) for each one-dimensional marginal pi (recall that ai,i(0+) is assumed to exist and
to be finite for each i).

We define the operators A over C2
b (Rn+) and Ai over C2

b (R+), i ∈ {1, . . . , n}, as

[Af ](x) :=
n∑

i=1

bi(xi)
∂f

∂xi

(x) + 1

2

n∑
i,j=1

ai,j (xi, xj )
∂2f

∂xi∂xj

(x),

[Aif ](xi) := bi(xi)f
′(xi) + 1

2ai,i(xi)f
′′(xi).

Now we state some preliminary results towards the main result of this section, Theorem 3.

Lemma 4. The stationary density p satisfies the following equation for each f ∈ C2
b (Rn+):

0 =
∫

R
n+
[Af ](x)p(x) dx + 1

2

n∑
i,j=1
i �=j

aj,j (0+)

Rj,j (0)

∫
R

n−1+

∂f

∂xi

(0j )Ri,j (xi)p(0j+) dx �=j

+ 1

2

n∑
i=1

ai,i(0+)

∫
R

n−1+

∂f

∂xi

(0i )p(0i+) dx �=i

+
n∑

i=1

λ̄i

∫
R

n+

∫ ∞

−xi

(f (x + zi) − f (x))Ki(xi, dzi)p(x) dx, (6)

where x + zi stands for x + êizi with êi denoting the usual ith unitary vector in Rn.
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Proof. Let f ∈ C2
b (Rn+). By applying Itô’s formula [12, Theorem 33] to X with f and

using (5), we obtain

f (Xt ) − f (X0) =
n∑

i=1

∫ t

0

∂f

∂xi

(Xs−)bi(X
i
s−) ds +

n∑
i,j=1

∫ t

0

∂f

∂xi

(Xs−)γi,j (Xs−) dW
j
s

+ 1

2

n∑
i,j=1

∫ t

0

∂2f

∂xi∂xj

(Xs−)ai,j (X
i
s−, X

j
s−) ds +

∑
0<s≤t

�f (Xs)

+
n∑

i,j=1

∫ t

0

∂f

∂xi

(Xs−)Ri,j (X
i
s−) dZ

j
s , (7)

where �f (Xs) := f (Xs) − f (Xs−). Now, since ai,i(0) > 0 for each i, from Theorem 2, the
last sum in (7) equals

1

2

n∑
i,j=1
i �=j

1

Rj,j (0)

∫ t

0

∂f

∂xi

(Xs)Ri,j (X
i
s)L

j (ds, 0) + 1

2

n∑
i=1

∫ t

0

∂f

∂xi

(Xs)L
i(ds, 0),

where in the left-hand sum we have used the fact that, a.s., Lj (s, 0) can increase only at times
s when X

j
s = 0 (see Corollary 2 or [12, Theorem 50]). In addition, from assumptions (A4) and

(A5), and the facts that f ∈ C2
b (Rn+) (in particular, its first-order partial derivatives are bounded

and continuous), that the Ri,j s, i �= j , are bounded, and that the limits, ai,i(0+), i = 1, . . . , n,
exist and are finite, by using Corollary 1 we conclude that

E

[∫ t

0

∂f

∂xi

(Xs)Ri,j (X
i
s)L

j (ds, 0)

]
= taj,j (0+)

∫
R

n−1+

∂f

∂xi

(0j )Ri,j (xi)p(0j+) dx �=j

for i �= j and

E

[∫ t

0

∂f

∂xi

(Xs)L
i(ds, 0)

]
= tai,i (0+)

∫
R

n−1+

∂f

∂xi

(0i )p(0i+) dx�=i .

Furthermore, since the jumps in different components of X are independent, we have

E

[ ∑
0<s≤t

�f (Xs)

]
= t

n∑
i=1

λ̄i

∫
R

n+

∫ ∞

−xi

(f (x + zi) − f (x))Ki(xi, dzi)p(x) dx.

All the remaining terms in (7) are handled the same way under expectation as in the proof of
Lemma 1 of [10]. Dividing by t > 0 completes the proof.

Corollary 4. Assume that p is in product form, i.e. that p(x) = ∏n
i=1 pi(xi) for a.e. x ∈ Rn+.

Then, each one-dimensional marginal pi satisfies the following equation for each f ∈ C2
b (R+):

0 =
∫

R+
[Aif ](xi)pi(xi) dxi + 1

2

n∑
j=1
j �=i

aj,j (0+)pj (0+)

Rj,j (0)

∫
R+

f ′(xi)Ri,j (xi)pi(xi) dxi

+ λ̄i

∫
R+

∫ ∞

−xi

(f (xi + zi) − f (xi))Ki(xi, dzi)pi(xi) dxi

+ 1
2f ′(0)ai,i (0+)pi(0+). (8)
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Proof. The proof follows straightforwardly from Lemma 4.

Remark 4. Note that if p is in product form, by applying Meyer–Itô’s formula [12, The-
orem 51] to each Xi with convex function f (xi) = (xi)

+ := max{0, xi}, xi ∈ R, using (5),
taking expectations, and using Corollary 1, we obtain, for each i ∈ {1, . . . , n},

−1

2

n∑
j=1
j �=i

aj,j (0+)pj (0+)

Rj,j (0)

∫
R+

Ri,j (xi)pi(xi) dxi − 1

2
ai,i(0+)pi(0+) = �i, (9)

where

�i :=
∫

R+
bi(xi)pi(xi) dxi + λ̄i

∫
R+

∫ ∞

−xi

ziKi(xi, dzi)pi(xi) dxi.

Then, in the case when the reflection matrix R is constant, by using the above expression
along with (8) we obtain, for each marginal pi , an equation involving only its own limit at
the boundary pi(0+), instead of the whole set {pj (0+)}nj=1 as in (8) (see [10, Corollaries 2
and 3, and Lemma 2]). Unfortunately, this is not the case when R is nonconstant, as we are
considering here. From a computational point of view, this makes the problem much harder to
work out, as we will see in Subsection 4.1. In the same way, it is now not possible to derive
a condition, in terms of the net drifts (including reflections) in each dimension, ensuring that
pi(0+) > 0 for each marginal pi , in contrast as well to the case of a constant reflection matrix
R; see [10, Remark 3].

Remark 5. Similar to [10, Remarks 2 and 4], we note that, when p is product form, Lemma 4
and Corollary 4 respectively uniquely characterize p and each one-dimensional marginal pi in
an a.e. sense. Note this is also the case if (6) is satisfied for all f (x) = ∏n

i=1 fi(xi) with fi ∈
C2

b (R+) for each i, or, equivalently, if we consider (6) along with the family {e−<α,·>}α∈R
n+ ⊂

C2
b (Rn+).

Lemma 5, below, though not used in Theorem 3, below, provides a useful alternative
expression to (8). A simple example of its use will be considered in Subsection 4.1.

Lemma 5. Assume that, for each i, j ∈ {1, . . . , n}, i �= j, Ri,j , bi , ai,i , and pi ∈ C(R+),
ai,ipi ∈ C1(R+) such that the Laplace transform of (ai,ipi)

′ exists and Ki(xi, ·) is absolutely
continuous with respect to the Lebesgue measure for each xi ∈ R+ with density ki(xi, zi),
i.e. Ki(xi, dzi) = ki(xi, zi) dzi , where, of course, ki(xi, zi) ≡ 0 for zi ∈ (−∞, −xi). Then,
each pi satisfies (8) for all f ∈ C2

b (R+) if and only if it satisfies, for all xi ∈ R+,

0 = 1

2
(ai,ipi)

′(xi) − pi(xi)

(
bi(xi) − 1

2

n∑
j=1
j �=i

aj,j (0)pj (0)

Rj,j (0)
Ri,j (xi)

)

+ λ̄i

(∫ xi

0

∫ ∞

0
ki(ς, u − ς)pi(ς) dς du −

∫ xi

0
pi(ς) dς

)
. (10)

Proof. As in [10, Lemma 3], the necessity follows by considering f (xi) = exp(−αxi) with
α > 0 in (8), and then taking the inverse Laplace transform. Similarly, the sufficiency follows
by considering f ∈ C2

b (R+), multiplying (10) by −f ′(xi), and then integrating over R+ using
the fact that, by assumption (A3) with i = j , ai,i(xi)pi(xi) → 0 as xi ↑ ∞.
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Now we state the main result of this section.

Theorem 3. The stationary density p is in product form if and only if, for each i, j ∈ {1, . . . , n},
i �= j , we have

ai,j (xi, xj ) = ai,i(0+)pi(0+)Rj,i(xj )

2Ri,i(0)pi(xi)

∫ ∞

xi

pi(ς) dς

+ aj,j (0+)pj (0+)Ri,j (xi)

2Rj,j (0)pj (xj )

∫ ∞

xj

pj (ς) dς

for Pi,j -a.e. (xi, xj ) ∈ R2+, where Pi,j denotes the joint (stationary) law of the tuple (Xi
t , X

j
t )

in R2+.

Proof. For the necessity, from Lemma 4 and Corollary 4, we find, by the same arguments as in
the proof of Theorem 1 of [10], that, for each i, j ∈ {1, . . . , n}, i �= j , and all fi, fj ∈ C2

b (R+),

∫
R

2+
f ′

i (xi)f
′
j (xj )ai,j (xi, xj )pi(xi)pj (xj ) dxi dxj = −ϒi,j (fi, fj ) + ϒj,i(fj , fi)

2
,

where

ϒi,j (fi, fj ) := aj,j (0+)pj (0+)

Rj,j (0)

×
∫

R+
f ′

i (xi)Ri,j (xi)pi(xi) dxi

(
fj (0) −

∫
R+

fj (xj )pj (xj ) dxj

)

and the corresponding symmetric expression for ϒj,i(fj , fi). Then, by taking fk(xk) =
exp(−αkxk) with αk > 0, k ∈ {i, j}, we find that

L2[ai,jpipj ](αi, αj ) = ai,i(0+)pi(0+)

2Ri,i(0)
L[Rj,ipj ](αj )

(
1

αi

− L[pi](αi)

αi

)

+ aj,j (0+)pj (0+)

2Rj,j (0)
L[Ri,jpi](αi)

(
1

αj

− L[pj ](αj )

αj

)

for all αi, αj > 0, and, therefore, the necessity follows. The sufficiency follows from Lemma 4
and Remark 5, again by the same arguments as in the proof of Theorem 1 of [10]. This completes
the proof.

4.1. Some specific cases and their related equations

Consider the case when, for each i ∈ {1, . . . , n}, we have λi ≡ 0 (i.e. there are no jumps)
and ai,i(xi) > 0 for all xi ∈ R+. Furthermore, assume that the hypotheses of Lemma 5 are
satisfied. Then, from (10) we obtain, for each i ∈ {1, . . . , n} and all xi ∈ R+,

0 = (ai,ipi)
′(xi) − (2bi(xi) + qi(xi))pi(xi),

where

qi(xi) :=
n∑

j=1
j �=i

aj,j (0)pj (0)

Rj,j (0)
Ri,j (xi).
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Therefore,

pi(xi) = ai,i(0)pi(0)

ai,i (xi)
exp

(∫ xi

0

2bi(ς) + qi(ς)

ai,i(ς)
dς

)
. (11)

From the normalization condition, the boundary values, {pi(0)}ni=1, satisfy the following
equations:

1 = ai,i(0)pi(0)

∫ ∞

0

1

ai,i(xi)
exp

(∫ xi

0

2bi(ς) + qi(ς)

ai,i(ς)
dς

)
dxi, i = 1, . . . , n. (12)

Equation (12) can be solved explicitly for the pi(0)s, from which the marginals themselves
can then in turn be obtained via (11), when, for example, the reflection matrix is triangular.
Indeed, consider, for instance, the case of lower triangular R(·), i.e. with Ri,j (xi) ≡ 0 for
i, j ∈ {1, . . . , n}, i < j . Then, q1(x1) ≡ 0 and, therefore,

p1(0) =
(

a1,1(0)

∫ ∞

0

1

a1,1(x1)
exp

(
2

∫ x1

0

b1(ς)

a1,1(ς)
dς

)
dx1

)−1

.

In a similar way, and proceeding in increasing order for i, we find that, for each 1 < i ≤ n,

pi(0) =
(

ai,i(0)

×
∫ ∞

0

1

ai,i(xi)

(∫ xi

0

2bi(ς) + ∑i−1
j=1(aj,j (0)pj (0)/Rj,j (0))Ri,j (ς)

ai,i(ς)
dς

)
dxi

)−1

.

Of course, we require the model coefficients to be such that pi(0) ∈ (0, ∞), i ∈ {1, . . . , n}. In
this case, if the stationary regime and a corresponding density p, satisfying all the conditions
stated at the beginning of this section, exist and, furthermore, if the product-form condition of
Theorem 3 is satisfied with the marginal densities given by (11) and the boundary values above,
then, for a.e. x ∈ Rn+,

p(x) =
n∏

i=1

pi(xi)

= a1,1(0)p1(0)

a1,1(x1)
exp

(
2

∫ x1

0

b1(ς)

a1,1(ς)
dς

)

×
n∏

i=2

ai,i(0)pi(0)

ai,i (xi)
exp

(∫ xi

0

2bi(ς) + ∑i−1
j=1(aj,j (0)pj (0)/Rj,j (0))Ri,j (ς)

ai,i(ς)
dς

)
.

Explicit resolution of (12) for state dependent but nontriangular reflection matrix R(·) is in
general not possible to carry out. It might result in an explicitly solvable system of equations
however, in specific applications with given sets of model coefficients. In the same way, the
pi(0)s can be computed explicitly in the simple case where the reflection matrix R is constant,
when a set of linear equations for the pi(0)s can be derived instead from (9) (with λ̄i = λi ≡ 0
for each i) if in addition the drift b is constant, or (12) can be used directly to solve for each
pi(0) when R is diagonal (qi(xi) ≡ 0 for each i); see [10, Subsection 5.1].

On the other hand, the presence of jumps makes it impossible to derive an explicit solution
for the nonconstant reflection matrix R(·). Indeed, consider, for example, the simple case
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when, for each i ∈ {1, . . . , n}, we have bi(xi) = bi (a constant), ai,i(xi) = ai,i > 0 (a strictly
positive constant), and Ki(xi, dzi) = ki(xi, zi) dzi = ki(zi) dzi with ki(zi) ≡ 0 for zi < 0.
From Corollary 4 with f (xi) = exp(−αixi), αi > 0, we obtain, for each i ∈ {1, . . . , n} and
all αi > 0,

0 = L[pi](αi)

(
1

2
αiai,i − bi + λ̄iL[ki](αi) − λ̄i

αi

)

− 1

2
ai,ipi(0+) − 1

2

n∑
j=1
j �=i

aj,jpj (0+)

Rj,j (0)
L[Ri,jpi](αi).

Then, even with lower triangular R(·) as before, though it is possible to solve for L[p1](·)
in terms of p1(0+), from which in principle and via the inverse Laplace transform p1 can be
obtained and p1(0+) determined from the normalization condition, it is not possible to solve
for L[p2](·), and similarly for higher indices i, owing to the additional term L[R2,1p2](·).

All computations can be carried out explicitly however in the case of a not necessarily
triangular but constant reflection matrix R, where the boundary values, pi(0+), i = 1 . . . , n,
are determined from an appropriate system of linear equations. For the details involved in this
case, as well as for an example with exponentially distributed jumps, see [10, Subsection 5.2].

4.2. Fully random case

In this subsection we consider the case when b, γ , and R are random fields over the space
variable x ∈ Rn+. As we will see, all the results exposed so far in this section generalize to
this case. The difficulty in this general setting arises from an applied or computational point
of view. To check whether or not some of the assumptions to be made hold true, knowledge
of the conditional statistics for the different model coefficients given X is required. Hence,
prior knowledge of joint statistics, as well as of the statistics of X, is in general needed, which
supposes to some extent prior knowledge of whether or not p factorizes as the product of its
one-dimensional marginals. Therefore, the applicability of the results in this setting is limited
to cases where, maybe because of the underlying dynamics or ‘physics’ involved, the model is
set up by means of conditional statistics for its different coefficients.

Specifically, we now consider the same general model as in Section 2, (3), but of course with
time independent b, γ , and R, i.e.

dXt = b(ω, Xt−) dt + γ (ω, Xt−) dWt + �Xt + R(ω, Xt−) dZt , (13)

where, aside from this time independence, everything is as in Section 2. Note that the
adaptedness requirement on the coefficients of b, γ , and R now reduces to F0 ⊗B(Rn+)−B(R)

measurability. The structure for the jumps in X is the same as the one detailed at the beginning
of this section.

Of course, as we did before in this section, we assume the existence of a unique-in-law weak
solution to (13), time invariance of the corresponding law of Xt , and that a respective density
with respect to the Lebesgue measure, p(x), x ∈ Rn+, exists. Furthermore, we assume that all
conditional expectations considered below (conditions for their well definiteness are also given
below), such as E[bi(Xt ) | σt ](ω) (recall that σt denotes the σ -algebra generated by Xt ), do not
depend explicitly on t but just depend on t through Xt . We continue to assume that the density
p satisfies assumption (A4) and that assumption (A1) is also satisfied by its one-dimensional
marginals. In addition, we assume that, for each i ∈ {1, . . . , n}, P{ω ∈ � : ai,i(ω, x) > 0 for
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all x ∈ ∂i} = 1, and that, for each i, j ∈ {1, . . . , n}, i �= j , there exists a constant Ci,j ∈ R+
such that

P

{
ω ∈ � : |Ri,j (ω, x)|

Rj,j (ω, x)
≤ Ci,j for all x ∈ ∂j

}
= 1.

Also, assumptions (A2) and (A3) are now rephrased as follows. For each i, j ∈ {1, . . . , n},
(A2) E[|bi(Xt )|] < ∞,

(A3) E[|ai,j (Xt )|] < ∞.

From the assumptions above, it follows that, for each i, j ∈ {1, . . . , n}, there exist b̂i : Rn+ →
R and âi,j : Rn+ → R, Borel measurable, such that b̂i (Xt (ω)) = E[bi(Xt ) | σt ](ω) a.s. and
âi,j (Xt (ω)) = E[ai,j (Xt ) | σt ](ω) a.s. (recall that all conditional expectations in this subsection
are assumed to depend on t only through Xt ). Also, from the boundedness assumption on
the ratios Ri,j (x)/Rj,j (x) for x ∈ ∂j and the assumptions above, it follows that, for each
i, j ∈ {1, . . . , n}, i �= j , there exists hi,j : Rn+ → R, Borel measurable, such that

hi,j (Xt (ω)) = E

[
Ri,j (X

0j

t )

Rj,j (X
0j

t )
aj,j (Xt )

∣∣∣∣ σt

]
(ω) a.s.

(recall that X
0j

t denotes Xt when its j th component X
j
t is replaced by 0).

We assume that the functions b̂, â, and h, introduced in the previous paragraph, satisfy the
following conditions for each i, j ∈ {1, . . . , n}.

• b̂i (x) and âi,j (x) depend only on x ∈ Rn+ through their ith coordinate and i, j th coor-
dinates, respectively, i.e. b̂i (x) = b̂i (xi) and âi,j (x) = âi,j (xi, xj ). Moreover, âi,i (0+)

exists and is finite.

• hi,j (x), i �= j , depends only on x ∈ Rn+ through its i, j th coordinates, i.e. hi,j (x) =
hi,j (xi, xj ). Moreover, hi,j (xi, 0+) := limxj ↓0 hi,j (xi, xj ) exists and is finite for each
xi ∈ R+.

Note that in the context discussed earlier regarding the applicability of the results in this
general setting, the assumptions above on the x-dependence in b̂i , âi,j , and hi,j are rather
hard to check a priori, involving stochastic independence between model coefficients and the
corresponding component processes in X with different indices. Also, note that, for the above
x-dependencies to hold, it is not enough to extend the previous assumptions for the nonrandom
case in the naive way, i.e. it is not enough to have bi(ω, xi), ai,j (ω, xi, xj ), and Ri,j (ω, xi).

Finally, assumption (A5) can now be rephrased as follows.

(A5) For each i ∈ {1, . . . , n}, there exists ηi > 0 such that∫
R

n−1+
sup
xi≤ηi

{âi,i (xi)p(x)} dx �=i < ∞.

Note that assumption (A5) together with the boundedness assumption on the ratios Ri,j (x)/

Rj,j (x) for x ∈ ∂j imply that
∫

R
n−1+

supxj ≤ηj
{|hi,j (xi, xj )|p(x)} dx �=j < ∞ for each i, j ∈

{1, . . . , n}, i �= j .
We now state the corresponding generalizations of Lemma 4, Corollary 4, and Theorem 3,

respectively in Lemma 6, Corollary 5, and Theorem 4, below. The proofs are omitted since they
follow ‘mutatis-mutandis’ by the same arguments as before. (Note that, as mentioned before in
Lemma 2 in Section 3, the proof of Lemma 6 requires the use of Corollary 1 with random �s.)
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Lemma 6. The stationary density p satisfies the following equation for each f ∈ C2
b (Rn+):

0 =
∫

R
n+

[Âf ](x)p(x) dx + 1

2

n∑
i,j=1
i �=j

∫
R

n−1+

∂f

∂xi

(0j )hi,j (xi, 0+)p(0j+) dx �=j

+ 1

2

n∑
i=1

âi,i (0+)

∫
R

n−1+

∂f

∂xi

(0i )p(0i+) dx�=i

+
n∑

i=1

λ̄i

∫
R

n+

∫ ∞

−xi

(f (x + zi) − f (x))Ki(xi, dzi)p(x) dx,

where the same notation x + zi as in Lemma 4 is used, and where the operator Â is defined the
same as A but with each bi and ai,j replaced correspondingly by b̂i and âi,j .

Corollary 5. Assume that p is in product form. Then, each one-dimensional marginal pi

satisfies the following equation for each f ∈ C2
b (R+):

0 =
∫

R+
[Âif ](xi)pi(xi) dxi + 1

2

n∑
j=1
j �=i

pj (0+)

∫
R+

f ′(xi)hi,j (xi, 0+)pi(xi) dxi

+ 1

2
f ′(0)âi,i (0+)pi(0+) + λ̄i

∫
R+

∫ ∞

−xi

(f (xi + zi) − f (xi))Ki(xi, dzi)pi(xi) dxi,

where each operator Âi is defined the same as Ai but with bi and ai,i replaced correspondingly
by b̂i and âi,i .

Theorem 4. The stationary density p is in product form if and only if, for each i, j ∈ {1, . . . , n},
i �= j , we have

âi,j (xi, xj ) = hj,i(xj , 0+)pi(0+)

2pi(xi)

∫ ∞

xi

pi(ς) dς + hi,j (xi, 0+)pj (0+)

2pj (xj )

∫ ∞

xj

pj (ς) dς

for Pi,j -a.e. (xi, xj ) ∈ R2+, where Pi,j denotes, as in Theorem 3, the joint (stationary) law of

the tuple (Xi
t , X

j
t ) in R2+.

Remark 6. Note that if γ and R are nonrandom then âi,j (xi, xj ) = ai,j (xi, xj ) and

hi,j (xi, 0+) =
(

Ri,j (xi, 0)

Rj,j (0)

)
aj,j (0+).

Therefore, in this case, even if the drift coefficients {bi}ni=1 are random, the product-form
condition in Theorem 4 takes the same form as in Theorem 3, but of course involving different
one-dimensional marginal densities in the cases of random versus nonrandom b.
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