Monotone operators and dentability

S.P. Fitzpatrick

P.S. Kenderov has shown that every monotone operator on an Asplund Banach space is continuous on a dense \(G_\delta \) subset of the interior of its domain. We prove a general result which yields as special cases both Kenderov's Theorem and a theorem of Collier on the Fréchet differentiability of weak* lower semicontinuous convex functions.

Let \(E \) be a real Banach space with dual \(E^* \). A multivalued mapping \(T : E \to E^* \) is called a monotone operator on \(E \) if \(\langle x^*-y^*, x-y \rangle \geq 0 \) whenever \(x^* \in Tx \) and \(y^* \in Ty \). It is called maximal monotone if, in addition, its graph

\[
G(T) = \{ (x, x^*) : x \in E, x^* \in Tx \}
\]

is not properly contained in the graph of any other monotone operator on \(E \).

We say that a monotone operator \(T \) on \(E \) is locally bounded at \(x \in E \) if there is a neighborhood \(U \) of \(x \) such that \(T(U) = U(Ty : y \in U) \) is a bounded subset of \(E^* \). We define the domain of \(T \) to be \(D(T) = \{ x \in E : Tx \neq \emptyset \} \), and we say that \(T \) is continuous at a point \(x \in D(T) \) if, whenever \(x_n \to x \), \(x^*_n \in Tx_n \), and \(x^* \in Tx \), we have \(\|x^*_n - x^*\| \to 0 \). This is the same as being single-valued and norm-to-norm upper semicontinuous at \(x \), where \(T \) is said to be upper semi-continuous at \(x \in E \) if given any neighborhood \(V \) of \(0 \) in \(E^* \), there is a neighborhood

Received 1 November 1977. The author would like to thank R.R. Phelps for his encouragement, R.T. Rockafellar for suggesting the definition of \(T_\mathcal{F} \), and P.S. Kendorov for his correspondence, all of which were very helpful. This work was supported by a CSIRO Postgraduate Studentship.
of x such that $T(U) \subset Tx + V$. (We will always be using the norm topology in E and the norm or the weak* topology in E^*.)

Let F be a norm closed subspace of E^*. Then an F-slice of a nonempty subset C of E is a set of the form

$$S(f, \alpha, C) = \{x \in C : \langle f, x \rangle > M(f, C) - \alpha\} ,$$

where $M(f, C) = \sup\{\langle f, x \rangle : x \in C\}$, $\alpha > 0$, and $f \in F$. We say C is F-dentable if for every $\varepsilon > 0$ there is an F-slice of C of diameter less than ε. There are only two choices for F of interest to us; when F is all of E^* (in which case an F-slice is simply called a "slice"), or where E is itself a dual space and F is its predual; that is, when $E = F^*$, so $F \subset F^{**} = E^*$ (and F-slices are called "weak* slices"). In these two cases, we use the terms "dentability" and "weak* dentability". A space E has the Radon-Nikodym property if every bounded subset of E is dentable.

Let $f : E \to (-\infty, \infty]$ be a lower semicontinuous convex function. The subdifferential ∂f of f is defined by setting, for $x \in E$,

$$\partial f(x) = \{x^* \in E^* : \langle x^*, y-x \rangle \leq f(y) - f(x) \text{ for all } y \in E\} .$$

It is easy to see that ∂f is a monotone operator. Minty [9] showed that the subdifferential of a continuous convex function is maximal monotone, and Rockafellar [14] showed the same for arbitrary proper lower semicontinuous functions (see also Taylor [15]). Note that if f is continuous on an open convex set $C \subset E$, then by the separation theorem $C \subset \text{int } D(\partial f)$.

We call E an Asplund space if every lower semicontinuous convex function on E is Fréchet differentiable on a dense G_δ subset of the set of points where it is continuous. Asplund [1] showed that if E is an Asplund space, then every bounded subset of E^* is weak* dentable, and Namioka and Phelps [10] proved the converse. The subdifferential ∂f of a convex function f is continuous at a point x of its domain if and only if f is Fréchet differentiable at x (see Asplund and Rockafellar [2]), so the following result of Kenderov [7] generalizes that of Namioka and Phelps.

Theorem 1 (Kenderov). If E is an Asplund space, then every mono-
Monotone operator \(T \) on \(E \) is continuous on a dense \(G_\delta \) subset of \(\text{int} \, D(T) \).

Special cases of this result were obtained earlier by Robert [12], Fitzpatrick [5], and Kenderov and Robert [8]. We will prove the following result, which yields Theorem 1 when \(F = E^* \) and \(C = \text{int} \, D(T) \).

THEOREM 2. Let \(F \) be a closed subspace of \(E^* \) such that every bounded subset of \(F \) is \(E \)-dentable. Let \(T \) be a monotone operator on \(E \) and \(C \) an open subset of \(D(T) \). If \(Tx \cap F \neq \emptyset \) for \(x \) in a dense subset of \(C \), then \(T \) is continuous on a dense \(G_\delta \) subset of \(C \).

Note that if \(f : E^* \to (-\infty, \infty] \) is a weak* lower semicontinuous convex function then \(\partial f(x) \cap E \) is nonempty for a dense set of \(x \) in \(C \) where \(C \) equals the domain of (norm) continuity of \(f \). (This follows from Phelps [11], or Brøndsted and Rockafellar [3].) Applying Theorem 2 to \(T = \partial f \) with \(E \) considered as a subspace of the dual of \(E^* \), we get the following result.

COROLLARY 3 (Collier [4]). Let \(E \) have the Radon-Nikodym property and let \(f \) be a weak* lower semicontinuous convex function on \(E^* \). Then \(f \) is Fréchet differentiable on a dense \(G_\delta \) subset of its domain of continuity.

To prove Theorem 2 we need some preliminary results about maximal monotone operators.

PROPOSITION 4 (Rockafellar [13]). Let \(T \) be a maximal monotone operator on \(E \) with \(\text{int} \,(\text{co} \, D(T)) \neq \emptyset \). Then \(\text{int} \, D(T) \) is convex, \(D(T) = \text{int} \, D(T) \), and \(T \) is locally bounded at each point of \(\text{int} \, D(T) \).

The next result follows readily from local boundedness.

PROPOSITION 5 (Kenderov [6]). If \(T \) is a maximal monotone operator then \(T \) is norm-to-weak* upper semicontinuous at each point of \(\text{int} \, D(T) \).

Now with \(F \subset E^* \), \(T \), and \(C \) as in Theorem 2, we can assume without loss of generality that \(T \) is maximal monotone. We write \(\overline{\text{co}} \, A \) for the weak* closed convex hull of a subset \(A \) of \(E^* \). Define \(T_F \) by

\[
T_F(x) = \bigcap_{\epsilon > 0} \overline{\text{co}} \left(\{T[b(x, \epsilon)] \cap F \} \subset E^* \mid x \in C \right),
\]

where \(b(x, \epsilon) \) denotes the closed ball \(\{y \in E : \|y-x\| \leq \epsilon \} \). It is clear
from Proposition 4 and our assumptions on T that $T_p(x)$ is a nonempty weak* compact convex subset of E^* for all $x \in C$.

Lemma 6. The set valued map T_p is monotone and $T_p x = Tx$ for each x in the open subset C of $D(T)$.

Proof. Let $x \in C$ and suppose $x^* \in T_p x \setminus Tx$. By maximality of T there is $y \in E$ and $y^* \in Ty$ such that $(x^* - y^*, x - y) = \delta < 0$. By definition of $T_p x$, for each $n \geq 1$ we can find $x_n \in B(x, n^{-1})$ and $x_n^* \in Tx_n \cap F$ such that $(x_n^* - y^*, x_n - y) < \delta/2$. By local boundedness of T at x, for large n we have $(x_n^* - y^*, x_n - y) < \delta/3 < 0$, which contradicts the monotonicity of T. So $T_p x \subseteq Tx$; hence T_p is monotone.

Now suppose $x \in C$ and $x^* \in Tx \setminus T_p x$. By the separation theorem, there is $z \in E$, $\|z\| = 1$, such that $(x^*, z) > M\{z, T_p x\}$. So there is $\epsilon > 0$ such that $B(x, \epsilon) \subseteq C$ and $(x^*, z) > M\{z, \overline{co}(T[B(x, \epsilon)] \cap F)\}$.

Now if $w^* \in T_p \{x + (\epsilon/2)z\}$, then monotonicity of T yields

$$0 \leq (x^* - z^*, (x + (\epsilon/2)z) - x) = (w^* - z^*, (\epsilon/2)z).$$

Since $B(x + (\epsilon/2)z, \epsilon/2) \subseteq B(x, \epsilon)$, any such w^* is in $\overline{co}(T[B(x, \epsilon)] \cap F)$, which contradicts

$$(w^*, z) \geq (x^*, z) > M\{z, \overline{co}(T[B(x, \epsilon)] \cap F)\}.$$

Hence $T_p x = Tx$ for all $x \in C$.

Now we use a modification of the main idea of Kenderov's proof [7] to complete the proof of Theorem 2.

Let $V_n = \bigcup \text{int}\{x \in C : Tx \subseteq B(y^*, n^{-1})\}$ and let $G = \cap \bigcap V_n$. Clearly G is the set of points of C where T is continuous, and V_n is open for each n; so we only need to show that each V_n is dense in G.

Suppose $x \in C$ and $\epsilon > 0$. By Proposition 4, there is an open convex neighborhood U of x, $U \subseteq B(x, \epsilon) \subseteq C$, such that $T(U)$ is
bounded. Let \(A = T(U) \cap F \), which is by assumption nonempty and bounded. It follows that there is a slice \(S = S(z, \alpha, A) \) of \(A \) with diameter less than \((2\varepsilon)^{-1}\) and \(z \in E \). Let \(v^* \in S \), \(v^* \in T v \) with \(v \in U \). For sufficiently small \(\beta > 0 \), the point \(w = v + \beta z \) is in \(U \). If \(w^* \in Tw \), we have
\[
0 \leq \langle w^*-v^*, w-v \rangle = \beta \langle w^*-v^*, z \rangle,
\]
so that \(\langle w^*, z \rangle \geq \langle v^*, z \rangle > M(z, A) - \alpha \). By Proposition 5, there is an open neighborhood \(W \) of \(w \), \(W \subset U \), such that
\[
T(W) \subset Tw + \{ y^* \in E^* : |\langle y^*, z \rangle| < \langle v^*, z \rangle - M(z, A) + \alpha \} ;
\]
so \(T(W) \cap F \subset S(z, \alpha, A) \). Since \(S \) is contained in some closed ball \(B(y^*, n^{-1}) \) with \(y^* \in F \), the set \(T_p(W) \) is contained in \(B(y^*, n^{-1}) \) (since the ball is weak* closed). By Lemma 6, \(T(W) \subset B(y^*, n^{-1}) \), so \(w \in V_n \). Hence \(V_n \) is dense, which completes the proof.

References

Department of Mathematics,
University of Washington,
Seattle,
Washington,
USA.