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Monotone operators and dentability

S.P. Fitzpatrick

P.S. Kenderov has shown that every monotone operator on an

Asplund Banach space is continuous on a dense G? subset of the

interior of its domain. We prove a general result which yields

as special cases both Kenderov's Theorem and a theorem of Collier

on the Frechet differentiability of weak* lower semicontinuous

convex functions.

Let E be a real Banach space with dual E* . A multivalued mapping

T : E -*• E* is called a monotone operator on E if (x*-y*, x-y) 2 0

whenever x* € Tx and y* € Ty . It is called maximal monotone if, in

addition, its graph

G(T) = {{x, x*) : x € E, x* € Tx}

is not properly contained in the graph of any other monotone operator on

E .

We say that a monotone operator T on E is locally bounded a t

x € E i f there is a neighborhood U of x such that

T(U) = \J{Ty : y € U] i s a bounded subset of E* . We define the domain of

T to be D(T) = {x € E : Tx 1- 0} , and we say that T i s continuous a t a

point x € D(T) if, whenever x -*• x, x* € Tx , and x* € Tx , we have

||a:*-a:*|| -»• 0 . This i s the same as being single-valued and norm-to-norm

upper semicontinuous at x , where T is said to be upper semi-continuous at

x £ E i f given any neighborhood V of 0 in E* , there is a neighborhood
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78 S . P . F i t z p a t r i c k

U of x such that T(U) <= Tx + V . (We wil l always be using the norm

topology in E and the norm or the weak* topology in E* .)

Let F be a norm closed subspace of E* . Then an F-alice of a

nonempty subset C of E i s a set of the form

S(f, a, C) = {x € C : < f, x> > M(f, C)-a} ,

where M(f, C) = sup{</, x> : x € C1} , a > 0 , and / € F . We say C i s

F-dentable i f for every e > 0 there is an F-sl ice of C of diameter

less than e . There are only two choices for F of in teres t to us; when

F i s a l l of E* ( in which case an .F-sliee i s simply called a " s l i ce" ) ,

or where E i s i t s e l f a dual space and F is i t s predual; that i s , when

E = F* , so F c F** = E* (and f -s l ices are called "weak* slices") . In

these two cases, we use the terms "dentability" and "weak* dentabil i ty". A

space E has the Radon-Nikodym property if every bounded subset of E is

dentable.

Let f : E •*• (-°°, »] be a lower semicontinuous convex function. The

subdifferential df of / i s defined by se t t ing , for x € E ,

3/(x) = {x* € E* : <x*, j/-x> S f(y)-f(x) for a l l j / in £•} .

It is easy to see that 8/ is a monotone operator. Minty [9] showed that

the subdifferential of a continuous convex function is maximal monotone,

and Rockafellar C'^D showed the same for arbitrary proper lower semi-

continuous functions (see also Taylor [75]). Note that if / is

continuous on an open convex set C c E , then by the separation theorem

C c int D{df) .

We call E an Asplund space if every lower semicontinuous convex

function on E is Frechet differentiable on a dense Gg subset of the set

of points where it is continuous. Asplund ['] showed that if E is an

Asplund space, then every bounded subset of E* is weak* dentable, and

Namioka and Phelps [70] proved the converse. The subdifferential 8/ of a

convex function / is continuous at a point x of its domain if and only

if / is Frechet differentiable at x (see Asplund and Rockafellar [2]),

so the following result of Kenderov [7] generalizes that of Namioka and

Phelps.

THEOREM 1 (Kenderov). If E is an Asplund space, then every mono-
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tone operator T on E is continuous on a dense G. subset of in t D(T) .

Special cases of th is resul t were obtained ear l ie r by Robert [12],

Fitzpatrick [5] , and Kenderov and Robert [8 ] . We wil l prove the following

resu l t , which yields Theorem 1 when F = E* and C = int D{T) .

THEOREM 2. Let F be a closed subspace of E* such that every

bounded subset of F is E-dentable. Let T be a monotone operator on E

and C an open subset of D(T) . If Tx n F * 0 for x in a dense

subset of C , then T is continuous on a dense C- subset of C .

Note that i f f : E* •*• (-00, °°] i s a weak* lower semicontinuous convex

function then 3/(x) n E i s nonempty for a dense set of x in C where

C equals the domain of (norm) continuity of / . (This follows from

Phelps [ J / ] , o r Brtfndsted and Rockafel lar [3] . ) Applying Theorem 2 to

T = 3 / with E considered as a subspace of the dual of E* , we get the

following resu l t .

COROLLARY 3 (Col Iier [ 4 ] ) . Let E have the Radon-Nikodym property

and let f be a weak* lower semicontinuous convex function on E* . Then

f is Frechet differentiable on a dense G« subset of its domain of

continuity.

To prove Theorem 2 we need some preliminary resul ts about maximal

monotone operators.

PROPOSITION 4 (Rockafel lar [?3]) . Let T be a maximal monotone

operator on E with int(co D(T)) t 0 . Then in t D(T) is convex,

D(T) = int D(T) , and T is locally bounded at eaoh point of in t D{T) .

The next resul t follows readily from local boundedness.

PROPOSITION 5 (Kenderov [6] ) . If T is a maximal monotone operator

then T is norm-to-weak* upper semicontinuous at each point of in t D(T) .

Now with F c E*, T , and C as in Theorem 2, we can assume without

loss of generality that T i s maximal monotone. We write co A for the

weak* closed convex hull of a subset A of E* . Define Tp by

TAx) = n l£{T[B(x, e)] n F) C E* (X € C) ,
e>0

where B(x, e) denotes the closed ba l l {y € E : \\y-x\\ S e} . I t i s clear
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from Proposition k and our assumptions on T that T-(x) is a nonempty

weak* compact convex subset of E* for all x € C .

LEMMA 6. The set valued map Tp is monotone and T^c = Tx for each

x in the open subset C of D(T) .

Proof. Let x € C and suppose x* (. T^x\Tx . By maximality of T

there is y € E and y* € Ty such that <x*-y* , x-j/) = 6 < 0 . By

definition of T^c , for each n > 1 we can find x Z B[x, n~ ) and

x* € Tx n F such that <x*^y*, x-y) < 6/2 . By local boundedness of T

at x , for large n we have <x*-y*, x -y) < 6/3 < 0 , which contradicts

the monotonicity of T . So T^c c Tx ; hence 7_ is monotone.

Now suppose x € C and x* € Tx\TpC . By the separation theorem,

there is z € E , \\z\\ = 1 , such that (x*, z) > M{z, T^x) . So there is

e > 0 such that S(x, e) c C and

<x*, s> >W(s, c^(r[B(x, e)] nf)) .

Now if w* € Tp[x+(e/2)z) , then monotonicity of T yields

0S<x*-s*, (x+(e/2)s)-x> =<w*-3*, (e/2)s> . Since

S(x+(e/2)s, e/2) c S(x, E ) , any such w* is in cô T̂[S(x, e)] n F) ,

which contradicts

<w*, z) > <x*, 3) > M[z, l£{T[B(x, E)] n f)) .

Hence T^c = Tx for all x € C .

Now we use a modification of the main idea of Kenderov's proof [7] to

complete the proof of Theorem 2.

Let V = U intfx € C : Tx c B(y*, n'1)} and let G = 0 V .
n y*SE* n n

Clearly G is the set of points of C where T is continuous, and V

is open for each n ; so we only need to show that each V is dense in

G .

Suppose x € C and E > 0 . By Proposition k, there is an open

convex neighborhood U of x , U <= B(x, e) c C , such that T(U) is
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bounded. Let A = T(U) n F , which is by assumption nonempty and bounded.

It follows that there is a slice S = S(z, a, A) of A with diameter less

than ( 2 M ) ~ and z £ E . Let V* £ S , v* £ TV with V £ U . For

sufficiently small (3 > 0 , the point W = V + 3z is in U . If

U* € I5J , we have

0 £ <u*-u*, w-v) = 3<u*-y*, a> ,

so that (w*, z) 5 <v*, z) > M{z, A) - a . By Proposition 5, there is an

open neighborhood W of u , W <=• U , such that

r(A0 c 2k + {y* i E* : \i y*, z>\ < <v*, z>-M(z, A)w} ;

so T{W) n Fc S(z, a, A) . Since 5 is contained in some closed ball

B{y*> n~X) w ith y* £ F , the set Tp{W) is contained in B{y*, n'1)

(since the ball is weak* closed). By Lemma 6, T(W) c B[y*, n~ ) , so

W € V . Hence V is dense, which completes the proof.
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