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Monotone operators and dentability

S.P. Fitzpatrick

P.S. Kenderov has shown that every monotone operator on an

Asplund Banach space is continuous on a dense 66 subset of the

interior of its domain. We prove a general result which yields
as special cases both Kenderov's Theorem and a theorem of Collier
on the Fréchet differentiability of weak* lower semicontinuous

convex functions.

let EF be a real Banach space with dual E* . A multivalued mapping
T : E~+ E* 1is called a monotone operator on E if (azt—y* z-y) 20
whenever x* € Tx and y* € Ty . It is called maximal monotone if, in

addition, its graph
G(T) = {(x, *) : z € E, x* € Tx}

is not properly contained in the graph of any other monotone operator on
E .

We say that a monotone operator T on E is locally bounded at
x € E if there is a neighborhood U of x such that
T(U) =U{Ty : y € U} is a bounded subset of E* . We define the domain of
T tobe D(T) ={x € E : Tx # P} , and we say that T is continuous at a

point x € D(T) if, whenever x, >z, x; € Ibn, and x* € Tx , we have
Hx;—x*” + 0 . This is the same as being single-valued and norm-to-norm

upper semicontinuous at & , where T is said to be upper semi-continuous at

x € E if given any neighborhood V of 0 in E#* , there is a neighborhood
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U of z such that T(U)cC Tx +V . (We will always be using the norm
topology in E and the norm or the weak* topology in E* .)

Let F be a norm closed subspace of E* . Then an F-glice of a

nonempty subset ¢ of E is a set of the form
S(fra,C)={xec :(Ff, 2> MFf, C)=} ,

where M(f, C) =sup{{(f, x> : £ €C} , a>0,and f€F . Wesay C is
F-dentable if for every € > 0 there is an F-slice of ( of diameter
less than € . There are only two choices for F of interest to us; when
F is all of E* (in which case an F-slice is simply called a "slice"),
or where E 1is itself a dual space and F 1is its predual; that is, when
E = F* ,s0o F C F** = E* (and F-slices are called "weak*® slices"). In
these two cases, we use the terms "dentability" and "weak*® dentability". A
space K has the Radon-Nikodym property if every bounded subset of E is
dentable.

Let f : E+ (—=», ®»] be a lower semicontinuous convex function. The
subdifferential df of f 1is defined by setting, for x € F ,

aflz) = {x* € E* : (z*, y=x) = fly)-flx) for all y in E}

It is easy to see that 9f is a monotone operator. Minty [9] showed that
the subdifferential of a continuous convex function is maximal monotone,
and Rockafellar [14] showed the same for arbitrary proper lower semi-
continuous functions (see also Taylor [15]). Note that if f is
continuous on an open convex set ( € F, then by the separation theorem

C < int D(3f)

We call E an Asplund space if every lower semicontinuous convex

function on E is Fréchet differentiable on a dense G(S subset of the set

of points where it is continuous. Asplund [1] showed that if E 1is an
Asplund space, then every bounded subset of E* is weak* dentable, and
Namioka and Phelps [10] proved the converse. The subdifferential 3f of a
convex function f is continuous at a point & of its domain if and only
if f 1is Fréchet differentiable at x (see Asplund and Rockafellar [2]),
so the following result of Kenderov [7] generalizes that of Namioka and
Phelps.

THEOREM 1 (Kenderov). If E <is an Asplund space, then every mono-
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tone operator T on E 1is continuous on a dense Gy subset of int D(T).

Special cases of this result were obtained earlier by Robert [12],
Fitzpatrick [5], and Kenderov and Robert [8]. We will prove the following
result, which yields Theorem 1 when F =E* and C = int D(T)

THEQREM 2. Let F be a closed subspace of E* such that every
bounded subset of F is E-dentable. Let T be a monotone operator on E
and C an open subset of D(T) . If Tx aF# @ for x in a dense
subset of C , then T <is continuous on a dense 66 subget of C .

Note that if f : E* + (—», ©] is a weak* lower semicontinuous convex
function then 3f(x) Nn E is nonempty for a dense set of x in C where
C equals the domain of (norm) continuity of f . (This follows from
Phelps [11], or Brgndsted and Rockafellar [3].) Applying Theorem 2 to
T =3f with E considered as a subspace of the dual of E* , we get the
following result.

COROLLARY 3 (Collier [4]). Let E have the Radon-Nikodym property
and let f be a weak* lower semicontinuous convex function on E* . Then
f 18 Fréchet differentiable on a dense Gs subget of its domain of

eontinuity.
To prove Theorem 2 we need some preliminary results about maximal
monotone operators.

PROPOSITION 4 (Rockafellar {13]). Let T be a maximal monotone
operator on E with int{co D(T)) # § . Then int D(T) s convex,
D(T) = int D(T) ,and T <8 locally bounded at each point of int D(T) .

The next result follows readily from local boundedness.

PROPOSITION 5 (Kenderov (6]). If T is a maximal monotone operator
then T is norm-to-weak* upper semicontiruous at each point of int D(T) .

Now with Fc E*, T , and C as in Theorem 2, we can assume without
loss of generality that T is maximal monotone. We write co A for the

weak* closed convex hull of a subset A4 of E* . Define TF by

Tp(z) = N co(T[B(z, €)] nF) cE* (z€C),
€>0

where B{(xz, €) denotes the closed ball {y € E : |ly-z|l '= €} . It is clear
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from Proposition 4 and our assumptions on 7T that .TF(.’B) is a nonempty
weak* compact convex subset of E* for all x € C .

LEMMA 6. The set valued map Tp is monotone and Tpx =Tz for each
z in the open subset C of D(T) .

Proof. Let x € C and suppose x* € TF,z‘\Tx . By maximality of T
there is y € E and y* € Ty such that (z2*y*, r—y) =86 < 0 . By
definition of Tz , for each 72 1 we can find z_ € Bz, ™) eand
:c:l € .’I&n n F  such that (:x:;'l—y*, x-y) < 8§/2 . By local boundedness of T

at x , for large n we have (a:;fl-y*, xn-y) < §/3 < 0 , which contradicts

the monotonicity of T . So TE;L‘CTa: 5 hence TF is monotone.

Now suppose x € £ and z* € Zb'\TF,r . By the separation theorenm,
there is 2z € E , |zl =1, such that (=z*, z) > M(z, TFr) . So there is
€ > 0 such that B(x, €) € C and

(z*, z) > Mz, co(T[B(x, €)] n F))
Now if w* € TF(x+(e/2)z) , then monotonicity of 7T yields

0 = (x*-z*, (z+(e/2)z)~x) = (w*-z*, (e/2)z) . Since
B(x+(e/2)z, €/2) < B(x, €) , any such w* is in co{7[B(z, €)]1 nF) ,

which contradicts
(w*, 2) = (x*, 2) > M(z, co(T(B(z, €)1 nF)) .
Hence TF,‘E =Tx for all x €C .

Now we use a modification of the main idea of Kenderov's proof [7] to

complete the proof of Theorem 2.

Let V. = U int{x € C : Tx c B(y*, n-l)} and let G =NV .
" oyter n

Clearly G 1is the set of points of ¢ vhere T is continuous, and Vn
is open for each 7 ; so we only need to show that each Vn is dense in
G .

Suppose x € ¢ and € > 0 . By Proposition U, there is an open
convex neighborhood U of x , U< B{x, €) € C, such that T(U) is
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bounded. Let A = T(U) n F , which is by assumption nonempty and bounded.
It follows that there is a slice S = S(z, 0, A) of A with diameter less
than (2n)™) and 2z € E . Let vt €5, v* € Ty with v € U . For
sufficiently small B > 0 , the point w =v +B82 is in U . If

w* € Tw , we have
0 = (wt-v*, w-v) = Bw*-v*, z) ,

so that (w*, ) =2(v*, 2> > M(z, 4) - a . By Proposition 5, there is an
open neighborhood W of w , W< U , such that

T(W) € Tw + {y* € B* : [(y*, 2)| < (v*, 22-M(z, A)+a}
so T{W) nFcS(z,a, A) . Since S is contained in some closed ball
B{y*, n_l) with y* € F , the set T(W) is contained in B(y*, n_l]
(since the ball is weak* closed). By Lemma 6, T(W) < B{y*, n_l] , SO

w € Vn . Hence Vn is dense, which completes the proof.
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