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Abstract

In this work we put forward an algorithm for the mechanical verification of an extension

of Martin-Löf’s theory of types with dependent record types and subtyping. We first give

a concise description of that theory and motivate its use for the formalization of algebraic

constructions. Then we concentrate on the informal explanation and specification of a proof

checker that we have implemented. The logical heart of this proof checker is a type checking

algorithm for the forms of judgement of a particular formulation of the extended theory

which incorporates a notion of parameter. The algorithm has been proven sound with respect

to the latter calculus. We include a discussion on that proof in the present work.

Capsule Review

This paper describes a specification and implementation of a proof-checker for an extension

of Martin-Löf’s theory of types. This extension is motivated by the need for structuring

formal developments: to provide an effective mechanism for packaging and handling related

definitions, it introduces a notion of records, dependent record-types and subtyping as

inclusion of record fields. In this way one can, for instance, form the type of binary relation

on a given set as well as the type of partial equivalence relation on a given set, the latter

being a subtype of the former.

Knowing whether a term has a type or not is undecidable in the proposed extension.

However, the paper describes a subset of terms (generalized selections) for which typing can

be decided. In practice, any well-typed term can be rewritten to fit in that set.

The chosen formulation uses parameters to handle free names, thus giving an elegant

solution to renaming problems. Therefore, the implementation of the proposed algorithm

is quite straightforward, as the reader will figure – a Haskell implementation is actually

available.

1 Introduction

The subject of this paper is the specification and implementation of a proof checker

for an extension of Martin-Löf’s theory of logical types (Martin-Löf, 1987) with

dependent record types and subtyping.

The original formulation of Martin-Löf’s theory of types, from now on referred

to as the logical framework, has been presented elsewhere (Nordström et al., 1989;
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Coquand et al., 1994; Tasistro, 1997). The system of types that this calculus embodies

are the type Set (the type of inductively defined sets), dependent function types and

for each set A, the type of the elements of A.

The extension of the logical framework with dependent record types and subtyping

has been presented by several authors (Tasistro, 1997; Betarte and Tasistro, 1998).

Dependent record types are just sequences of fields in which labels are declared as

being of certain types. These types, in turn, may not only depend upon objects,

but also on labels. How this dependency is obtained is formally introduced in the

rules for record types formation that we present in section 2. Record objects, as

in programming languages, are sequences of assignments of objects of appropriate

types to labels. Each of these objects can be accessed by selecting the corresponding

label of the record object. The mechanism of subtyping or type inclusion introduced

is, in the first place, the one naturally induced by record types. However, once record

inclusion is formally stipulated, it is also required that rules of subtyping have to be

given for the rest of the type formers.

We have investigated an alternative formulation of the extended theory (Betarte,

1998). In that formulation we make use of parameters, in the sense of Coquand

(1991) and Pollak (1994), to stand for generic objects of the various types. The

introduction of the notion of parameter allows us to give a solution to the problems

posed by the manipulation of “free names” in the presence of dependent types. We

also present (Betarte, 1998) the procedures for the mechanical verification of the

forms of judgement of that variant of the extension. In this paper, we are mainly

concerned with the design and specification of those procedures.

The plan for the rest of the paper is as follows. In the next section we start by

giving a concise description of type theory and its use for carrying out constructive

mathematics. Then we confine attention to the treatment of free names in systems

of dependent types. We also briefly describe in this section dependent record types

and the mechanism of subtyping they induce, as well as the proof checker we have

implemented.

In section 3 we informally discuss the design of the type checking algorithm for

the extended theory. We bring to attention the problems the checking of unlabelled

abstractions presents, and how they are carried over to the procedures for checking

the typing judgements of the extension.

In section 4 we concentrate on the final specification and implementation of the

proof checker. In section 5 we comment on the decidability and correctness issues

of the algorithms developed. Finally, we give some final conclusions and discuss

related work.

2 The system and its implementation

The system of types of the logical framework is constituted, in the first place, by

the type Set, the type of inductively defined sets. Then, any individual set A gives

rise to the type of its elements. Type families are expressions of the language that,

when applied to an individual of the appropriate type, yields a type. Moreover, it is

possible to introduce arbitrary families of types in the formal language. Families can
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be constructed by an operation of abstraction, using the notation [x]α, which binds

the occurrences of the variable x in the type α. Finally, there exists a mechanism

for the formation of (dependent) function types: if α is a type, and β is a family of

types indexed by objects of type α then α→β is also a type. The application of an

object f of this latter type yields an object fa of type βa, if a is an object of type α.

The understanding of propositions as inductively defined by their introduction

rules, as explained and justified by Martin-Löf (1987), allows us to grasp propositions

as sets, and thereby their proofs as elements of those sets. There is, in principle, no

formal distinction in the language of the theory between the type of sets and the

type of propositions. Further, in the presence of families of types, this interpretation

of propositions can be transferred to propositions about generic individuals. For

instance, given a set A, A→[x](A→[y]Set) is the type of binary relations on A. Then,

if R is such a relation, for each element x of A we have a set Rxx. Since each set

determines a type, we can form here a family of types over A, namely [x]Rxx. Then

A→[x]Rxx is the type of proofs that R is reflexive. This function type is usually

written as (x : A)Rxx, which can be read: “for any x in A, Rxx”.

As another example, consider the type (x, y : A)Rxy→Ryx. A function of this type

will produce a proof of Ryx given any two elements x, y of A and a proof of Rxy.

In virtue of the given explanations, this is the same as proving that if Rxy holds

then so does Ryx, for arbitrary x, y in A, i.e. the symmetry of R.

2.1 Parameters

The traditional formulation of the rule for the formation of a function type, for

instance as presented by Nordström et al. (1989), says that if we know that α is a

type and that β is a type family under the assumption that a variable x is of type α

then we can form the function type (x : α)β, where all occurrences of x in β become

bound. Abstraction is then introduced as an operation of object formation. This is

the corresponding rule

Γ, x:α ` b : β

Γ ` [x]b : (x : α)β

The stipulation for the formation of a context Γ, x:α (in Martin-Löf (1987, 1992)

and Nordström et al. (1989)), for instance, requires that Γ is a context, α is a type

under the context Γ and further, that the variable x has not already been declared

in Γ. This last restriction is proper of systems of proof rules where an assumption,

x:α say, may be introduced such that the type α depends on previous assumptions.

Therefore, for the premiss of the latter rule of abstraction to be correct, it must be

the case that x is not already declared in the context Γ.

Pollack (1994) discusses some consequences of having the restriction above for

context formation in the implementation of type checkers for languages with binding

operators, and more specifically, with systems of dependent types. The system of

proof rules on which the discussion is centered is what has elsewhere been called

Pure Type Systems (PTS), as originally presented by Barendregt (1992). What is

shown by Pollack is the impossibility of deriving, using the rules of PTS, the
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judgement [x][x]x : (x : A)(y : Px)Px under the assumption that A is a type (an

object of ∗) and P has kind A→∗. If one wants to understand the checking of

the correctness of instances of the judgement Γ ` [x]b : (x : α)β as the upward

reading of the rule of abstraction, one should proceed as follows: for checking that

[x][x]x : (x : A)(y : Px)Px check that x:A ` [x]x : (y : Px)Px. For this, in turn, we

should check that x : Px after extending the context x:A with the declaration x:Px,

but we are restrained from doing this by the criterion for context formation above.

Relatively recent work on the construction of proof-checkers for type theories with

dependent types has addressed (in a direct manner or not) the problems presented

above.

Coquand (1991) investigates the question of checking the formal correctness of

judgements of type and object equality in a formulation of Martin-Löf’s set theory

with generalized cartesian product and one universe.

The notion of context in this theory is that of a list of assumptions of the form

p:α, where p is a parameter and α a type (possibly depending on other parameters).

In the formulation of the language of the theory, parameters are understood to

play the role of the free variables occurring in the expressions. Consequently, they

are used in the system to stand for generic objects of the various types. However,

they are defined to be syntactic constructions distinct from the bound variables of

the language. The distinction between parameters and bound variables allows us to

define a simplified operation of substitution on expressions where no mechanism of

renaming has to be considered, in order to avoid capture. Further, there is no need

for an a priori identification of α-convertible terms for the algorithm to be defined.

This latter is, we think, quite a relevant point if one wants to describe an actual

implementation.

Pollack (1994) adopts the use of parameters to implement a type checking algo-

rithm for a family of PTS (Barendregt, 1992). One of the motivations for introducing

the notion of parameter, and consequently making use of them in the reformulation

of the rules of inference of the formal system, is to provide a solution for problems

similar to those discussed above. The benefit afforded by the use of parameters

can be illustrated as follows: let us consider again the question of checking the

judgement [x][x]x : (x : α)(y : Px)Px. We rephrase the argument given above for

the validity of this particular judgement in terms of type checking.

For checking that an expression [x]e has a type (x : α)β under a context Γ see to

it that e[x := p] has type β[x := p] with Γ extended with the declaration p:α with p

a fresh parameter for Γ. The operation e2[x := e1] is defined as textual substitution,

but it has no effect when performed on an abstraction whose bound variable equals

the variable x. Thus, according to the explanation above, we proceed by checking

that ([x]x)[x := p] has type ((y : Px)Px)[x := p] under the context extended with

p:α. Notice that this reduces to checking that [x]x has type (y : Pp)Pp. Now we

should check that x[x := q] (which is q) has type Pp[y := q] (which is Pp) after

extending the context with q:Pp, which is easily seen to be correct. It could be

argued that this procedure could still be carried out using variables: just choose a

fresh variable for the context and then proceed as described above. But this would

not be enough, because this variable might at the same time occur as a bound
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variable in the expression on which the substitution is performed. Therefore, a

mechanism of renaming has also to be considered in the definition of the operation

of substitution in order to avoid variable capture. This is not needed in the language

we are considering because parameters are not subjected to bindings.

We formulate a variant of the extension (Betarte, 1998) presented by Tasistro

(1997) and Betarte and Tasistro, 1998). A first difference is that we consider the rules

of inference in their generalized form. Further, we make use of parameters to stand

for generic objects of the various types. Thus, as the stipulation of an assumption will

correspond to declare a parameter as of a certain type, the explanation of a relative

judgement depends upon what are considered to be the permissible assignments of

values to the parameters involved in such judgement. These assignments, in turn,

are defined in terms of a particular notion of substitution which, in contrast to that

usually defined for the language of type theory, behaves as the textual replacement

of a parameter by an expression.

The algorithms we shall present in this work implement the mechanical verification

of the form of judgements of the calculus in Betarte (1998).

2.2 Record types

Dependent record types are just sequences of fields in which labels are declared as

of certain types:

〈L1 : α1, . . . , Ln : αn〉.
In dependent record types, the type αi+1 may depend upon the preceding labels

L1, . . . , Li. More precisely, αi+1 has to be a family of types over the record type

〈L1 : α1, . . . , Li : αi〉. This is formally expressed by the following two rules of record

type formation:

〈〉 : record-type

ρ : record-type β : ρ→type

〈ρ, L:β〉 : record-type
L fresh in ρ

We make use of the judgement β : ρ→type, which should be read “β is a family of

types over the type ρ”, to formally reflect that families of types are associated to

labels in the formation of record types.

In the case of record types generated by the second clause, L:β is a field and L a

label, which we say to be declared in the field in question. Labels are just identifiers,

i.e. names. In the formal notation that we are introducing, there will actually arise

no situation in which labels can be confused with either constants or variables.

Notice that labels may occur at most once in each record type. That a label L is

not declared in a record type ρ is referred to as L fresh in ρ. Finally, that these are

dependent record types is expressed in the second clause, in the following way. The

“type” declared to the new label is in fact a family β on ρ, i.e. it is allowed to use

the labels already present in ρ. In fact, what β is allowed to use is a generic object

(i.e. a variable) r of type ρ. Then the labels in ρ will appear in β as taking part in

selections from r. Here below we show how the type of binary relations on a given
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set, which we shall call BinRel, is written:

〈S : Set,≈ : S→S→Set〉
Record objects are constructed as sequences of fields that are assignments of

objects of appropriate types to labels:

〈〉 : 〈〉
r : ρ a : βr

〈r, L = a〉 : 〈ρ, L:β〉 L fresh in ρ

For instance, if N is the set of natural numbers and IdN the usual propositional

equality on N, then the following is an object of type BinRel:

〈S = N,≈ = IdN〉.

2.3 Subtyping

Dependent record types also induce inclusion polymorphism: given a record type

ρ1, it is possible to drop and permute fields of ρ1 and still get a record type ρ2. If

that is the case, any object of type ρ1 also satisfies the requirements imposed by

the type ρ2. That is, given r : ρ1, we are justified in asserting also r : ρ2. This is so

because what is required to make the latter judgement is that the selections of the

labels declared in ρ2 from r are defined as objects of the appropriate types. And we

have this, since every label declared in ρ2 is also declared in ρ1 and with the same

type.

In the formal language this idea is accomplished by introducing two new forms of

judgement, namely, α1 v α2 for types α1 and α2 and β1 v β2 : α→type for families

β1 and β2 indexed by the type α. The reading of these forms of judgement is as

follows: α1 is a subtype of α2 and β1 is a subfamily of β2. We shall also refer to the

first one as type inclusion.

In the case of record types, the condition for ρ1 v ρ2 is in words as follows: for

each field L : β2 in ρ2 there must be a field L : β1 in ρ1 with β1 v β2 : ρ1→type. It is

easy to see that if L : β1 is a field of a record type ρ1 then, by the subtyping induced

on families of types, β2 can be considered to be a family over ρ1, and thereby the

previous (informal) explanation makes sense.

The formal stipulation of this latter rule requires that rules of subtyping are given

for all the type formers of the language: Set is a subtype only of itself, and if A and

B are sets they are in the inclusion relation only if they are convertible. The rule of

subtyping for function types extends that usually presented in the literature in that

it also takes care of the dependencies.

That two objects r and s of type 〈L1 : α1, . . . , Ln : αn〉 are the same means that the

selection of the labels Li’s from r and s result in equal objects of the corresponding

types. Therefore, equality of record objects is based on a kind of extensionality

principle. That is, the two rules below can be understood as defining that two

objects of a given record type are equal if the selections of every label of the record

type in question from the objects are equal. Notice that the type in which two record

objects are compared is relevant: suppose that r and s are of type ρ1 and that
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i ::= x | c | [x]i | i1i2 | 〈〉 | 〈i1, L = i2〉 | i.L
let x : i1 = i2 in i | use i1 : i2 in i

i1→i2 | 〈i1, L:i2〉
Fig. 1. Syntax of input expressions.

ρ1 v ρ2. Then it may well be the case that r=s : ρ2 but not r=s : ρ1:

r:〈〉 s:〈〉
r=s : 〈〉

r=s : ρ r.L=s.L : βr

r=s : 〈ρ, L:β〉.
To understand the second of these rules, notice that the premisses that both r and

s are of type 〈ρ, L:β〉 have been omitted. We note that these are rules of equality –

they must not be understood as reduction rules.

2.4 The implemented system

The proof checker we shall describe has been implemented. The programming

language used is Haskell 1.4, and the code has been compiled using Chalmers

Haskell-B, the compiler implemented by Lennart Augustsson at Chalmers University

of Technology (Augustsson, 1997).

The general design and implementation of the system follows the approach in

which there is a basic kernel constituted by the type checking algorithm, and on

top of that an interactive system is built up that helps the user in the process

of proof construction. In our case, the help amounts to very simple commands,

mostly oriented to obtain information from the proof environment and to the task

of checking declarations. We have also adopted the methodology of developing a

completely pure functional code. In particular, the state of the system is implemented

as a simple monad, in the sense of Wadler (1992), which has associated a basic set

of combinators that allow to access and update the state components. The type

checking monad is just a combination of a state and error monad, and it interacts

with a parsing monad. The latter is implemented following the ideas of several other

authors (Burge, 1975; Hutton, 1992; Röjemo, 1995).

A very simple XEmacs interface has also been incorporated into the system. Even

though it is still in a very primitive stage, we have found its use to be of considerable

help to the task of proof construction using the system1.

A script for the proof checker looks very much like one for a functional pro-

gramming language. The syntax of input expressions is given by the grammar in

figure 1.

The symbol x ranges over a denumerable set V, the set of variables. The symbol

c ranges over a countable set C of constants, which is defined to be disjoint with

V. There are three distinguished constants – Set, type and record-type– from now

on called sorts. Only the first one may occur in a valid input expression. Finally,

1 At http://www.fing.edu.uy/∼gustun/SUBREC/get.html a gzipped tar directory con-
taining the source code of the proof checker, as well as the instructions for installing both
the system and the interface, is available

https://doi.org/10.1017/S0956796899003627 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796899003627


144 G. Betarte

the symbol L ranges over a denumerable set L of labels. This set is defined to be

disjoint with the sets V and C.

The expressions [x]i are abstractions, and therefore the occurrences of x are bound

in [x]i. With 〈i1, L = i2〉 and 〈i1, L:i2〉 we denote (binary) record object and record

type formation. We shall later comment on let and use expressions.

From now on we use Greek letters α, α1, . . . for expressions intended to denote

types, and β, β1, . . . for families of types. We sometimes will use the more familiar

notation (x : α)α1 instead of α→[x]α1.

The type checker reads (non-recursive) declarations of the following form:

T : type = α

F(x : α) : type = α1

c(x1 : α1, . . . , xn : αn): α = i

with T , F and c as constant names, x, x1, . . . , xn as variables and i, α and α1, . . . , αn
belonging to the language of expressions above.

The former is called a type declaration. It allows us to give an explicit definition

for the type α.

The second form of declaration is called a type family declaration. It expresses the

definition of the constant F as the type family [x]α1 over the type α. The index type

has to be made explicit in order for the declaration to be type checked.

The third form of declaration allows the explicit definition, with the name c, of an

expression [x1][x2] . . . [xn]i of type α1→[x1](α2→ . . . (αn→[xn]α) . . .), with n ≥ 0. This

form of declaration corresponds to the so-called explicit definition of a constant in

ALF Magnusson (1995). We are considering neither definitions of inductive (families

of) sets, nor the implicit definition of constants – the latter are usually introduced

using a pattern-matching mechanism.

Any declaration is checked under a current environment. Once the declaration D

is checked to be correct, the environment is extended with it. Thus, the definiendum

of D may occur in any declaration introduced after it.

3 Informal explanations

Type checking in the context of type theory is the task of verifying the formal

correctness of a judgement of one of the forms α : type and a : α, in general

depending upon declarations of variables and constants.

We now describe a type checking algorithm for the extended theory. For the sake

of conciseness, we confine our attention to the checking of judgements of the form

a : α, where we assume that α : type.

3.1 Informal description of type checking

Type checking for systems of typed lambda calculus involves type inference. This

is because of applications whose typing rule (which we show here as it is in type
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theory)

f : α→β a : α

fa : βa

is not conservative: information disappears when going from the premises to the

conclusion. Conversely, to check the conclusion we need to infer the type α→β of f.

In the presence of dependent types, it is undecidable whether an unlabeled

abstraction (i.e. an expression of the form [x]e) has a type at all (Dowek, 1993).

Therefore, we choose not to try to type check beta redexes. So, in general, for type

checking that an expression b has a certain type, we have to see to it that b is written

in beta normal form. This restriction is inessential in the sense that every object that

can still be formed in the theory can be expressed in such a way as to be accepted

by the type checking algorithm. For instance, any abstraction [x]b that stands for

an object of type α→β can be given a name in type theory, by a definition of the

form:

f : α→β
f = [x]b

Using this definition, we can then express an object ([x]b)a : βa as fa, which is no

longer a redex.

More precisely, we have that if c : α is valid, then there is c′ : α such that

c=c′ : α and c′ : α is accepted by the type checking algorithm. In particular, instead

of expressions containing beta redexes, one has to write their corresponding beta

normal forms. Indeed, the resulting syntax is not only sufficiently expressive in the

sense indicated above, but also natural, since in practice one does not write down

β-redexes.

For the extended theory two new forms of expression have to be considered,

namely record extensions 〈r, L = a〉 and selections r.L. To begin with, notice that the

typing rule for selection

r : ρ

r.L : βr
(L:β in ρ)

is also not conservative. To check the conclusion we need to infer the type ρ for r.

Now, analogous to the case for the (unlabeled) abstractions, we cannot decide in

general whether an extension 〈r, L = a〉 does or does not have a type. This would

in turn require us to decide whether or not the (arbitrary) expression a has a type.

There are other difficulties with record object extensions, which we now make

clear.

3.1.1 Type checking of record extensions

Record object extensions are of one of the forms 〈L1 = a1, . . . , Ln = an〉 and

〈f, L1 = a1, . . . , Ln = an〉, where f is not itself a record extension.

A record object extension which has a certain type ρ can be derived in the calculi

presented by Tasistro (1997), Betarte and Tasistro (1998) and Betarte (1998), starting
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from 〈〉 : 〈〉, by alternate use of the proof rules

r : ρ1 a : βr

〈r, L = a〉 : 〈ρ1, L:β〉 L fresh in ρ1
r : ρ1 ρ1 v ρ2

r : ρ2

Let us first consider the problem of checking whether 〈L1 = a1, . . . , Ln = an〉 : ρ.

We refer to the expression to be checked as r. A possible solution is the following:

for checking that r has type ρ, see to it that every label declared in ρ is bound in r

to an expression of an appropriate type. For this, we can proceed recursively on the

components of r that correspond to the labels in ρ.

Notice, on the one hand, that there could be labels Li bound to objects in r that

do not occur in ρ, due to the use of the subsumption rule. On the other hand, it

may also be the case that some label L occurs bound in r more than once; the

rule of record extension allows overriding. Moreover, the objects assigned to the

different occurrences of L do not need to be of the same type. From now on we

shall call those labels of the object r unreachable that either do not occur in ρ or

are overridden.

It is clear that the procedure described above would in general leave components

of r unchecked, namely those corresponding to the unreachable labels of r. Since

there is no general algorithm for inferring whether an expression has a type or

not, we cannot by this method ensure the well-formedness of the record object

as a whole. However, unchecked components cannot be used without eventually

being checked. So, checking only the restrictions imposed by the given type is safe

from this point of view. On the other hand, the method will still in general violate

the principle that correctly typed expressions contain only correctly typed parts

and, as a consequence, it would accept expressions that cannot be typed in the

theory.

The obvious alternative is just to reject those record objects which contain fields

whose labels are not declared in the intended type. This may seem in principle

too restrictive, since well formed expressions can be rejected by this method. Of

particular importance is the case in which we have 〈L1 = a1, . . . , Ln = an〉 : ρ1 but

intend to use the record object as of a type ρ2 with ρ1 v ρ2 in the strict sense, i.e. as

of a proper supertype of its original type.

These cases can be recovered, however, using auxiliary definitions. Suppose, for

instance, that we want to use 〈L1 = a1, . . . , Ln = an〉 as an object of type ρ2 and

there are labels L unreachable, in the first sense above, in ρ2. We can give a name

r to 〈L1 = a1, . . . , Ln = an〉 and declare it as of a type ρ1 which, according to the

restriction, must contain declarations for all its labels. If this type ρ1 turns to be a

subtype of ρ2, then we can safely use r as an object of type ρ2. Extensions of the

form 〈f, L1 = a1, . . . , Ln = an〉, in addition, allow us to express a restricted form of

overriding. Notice that it can be the case that f is a constant that abbreviates a

record object extension where some of the labels Li are bound to objects. But then

as f has been defined, we can recover its type and then, as we will show later, we

will not need to inspect the components of f.

There is, then, in principle, a choice between a permissive and a restrictive method

for dealing with the type checking of record extensions. The latter seems to allow for
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enough expressiveness at the cost of having to introduce additional definitions. This,

however, seems not to constitute a problem in practice, especially in the presence of

let expressions.

For a more detailed discussion of the adequacy of the restrictive method for

natural practice, we refer to Tasistro (1997).

3.2 The algorithms

We have pointed out two major problems concerning record extensions. First, it is

not possible to decide in general if such an object has a type or not. Therefore,

selection redexes of the form 〈r, L = a〉.K cannot be accepted as input expressions

to the procedure of type checking. However, one can also make use of nominal

definitions in order to get rid of redexes such as the one above. In contrast to the

case of abstractions, however, we must also introduce a restriction on the form of

record extensions that can be accepted by a type checking algorithm.

So expressions that are not abstractions or record extensions must be of the

form (h a1 . . . am).L1 . . . .Ln, with m and n ≥ 0. We call these expressions generalized

selections. Here the ais are expressions in β- and selection-normal form. The Ljs are

labels and the head h must now be of one of the form x.L1 . . . .Ln or c.L1 . . . .Ln.

The syntax of the permissible expressions can more succinctly be formulated as

follows:

e ::= [x]e | 〈L1 = e1, . . . , Ln = en〉 | 〈f, L1 = e1, . . . , Ln = en〉 |
e1→e2 | 〈e1, L:e2〉 | f

f ::= x | c | (f e) | f.L
The expressions f are the generalized selections. According to the observation

made at the beginning, it is for these expressions that type checking links itself with

type inference. More precisely, the following algorithm can decide whether or not a

generalized selection has a type:

Type inference for generalized selections

To infer the type of a variable x or constant c, just look it up among the declarations.

To infer the type of an expression fe, proceed as follows. First, infer a type for the

expression f. Supposing the inference is successful, see to it that the type obtained

is defined as one of the form α→β. Then check whether e : α. If this is in turn

successful, return the type βe.

For inferring a type for a selection f.L, infer first a type for the expression f. If

this is successful, see to it that the type obtained is a record type ρ. Then look up

for a field L:β in ρ. If this is found, return the type βf.

Notice that there is at most one declaration for each variable or constant. Then

it follows by an inductive argument that a generalized selection f has at most one

inferred type. As a consequence, if f has type α then it has inferred type α1 and

α1 v α. This solves the problem of inferring the type of generalized selections.

We now give a type checking algorithm based on the restrictive method discussed

above.
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Typing terms

To check whether [x]e : α, see to it first that α is defined as a type of the form

α1→β1. If this is the case, then check whether e[x := p] : β1p, adding p:α1 to the

declarations of parameters, for a fresh parameter p.

To check 〈L1 = e1, . . . , Ln = en〉 : α, see to it first that α is a type of the form

〈L1 : β1, . . . , Ln : βn〉. If this is the case, then for i = 1, . . . , n check whether

ei : βi〈L1 = e1, . . . , Li−1 = ei−1〉.
For checking 〈f, L1 = e1, . . . , Ln = en〉 : α, see to it first that α is defined as a type

of the form 〈ρ, L1 : β1, . . . , Ln : βn〉. If this is the case, then check whether f : ρ. In

the case of a positive answer, proceed by checking ei : βi〈f, L1 = e1, . . . , Li−1 = ei−1〉,
for i = 1, . . . , n.

We now refer to 〈f, L1 = e1, . . . , Ln = en〉 as r and call the components Li = ei the

plain fields of the extension. Note, first, that for checking f : ρ we do not need to

inspect the components of f. The only condition that we need from f is that a type

can be inferred for it. In addition, as 〈ρ, L1 : β1, . . . , Ln : βn〉 has been checked to be

a valid record type, none of the labels Li may occur in the record type ρ. Therefore,

the selection r.Li will result in the object bound to Li in the plain fields of r, which,

as it should be, has the type ei : β〈f, L1 = e1, . . . , Li−1 = ei−1〉.
Finally, to check whether f : α, infer the type of f. If a type α1 is obtained, then

check that α1 v α.
Due to the use of the type subsumption rule, this last step now links type checking

with checking judgements of type inclusion. In the next two algorithms, the form of

a defined type must be understood to be the form of its ultimate definiens.

Type inclusion

The checking of type inclusion proceeds recursively on the form of the types.

First, any record type ρ is a subtype of the empty record. For checking that a

record type ρ1 is included in the record type 〈ρ2, L:β2〉, proceed as follows: check

that ρ1 is included in ρ2. Then look for a declaration L:β1 in ρ1. If this turns out

to be successful, then for a fresh parameter p taken as of type ρ1, check that β1p is

included in β2p.

To check whether a functional type α1→β1 is included in α2→β2, check that α2 is

included in α1, and β1p is included in β2p for a fresh parameter p taken as of type

α2.

For checking the inclusion of two ground types, check whether they are both the

type Set, or whether they are equal objects of type Set.

By virtue of the last step, type checking leads eventually to checking the definitional

identity of objects, i.e. of judgements a=b : α.

Object conversion

Checking a=b : α proceeds recursively on the type α.

In case α is a ground type, take both a and b to head normal form. Notice that

these normal forms cannot be abstractions, since they are of ground types, so they

must necessarily be generalized selections as defined above. Observe that if an object

is in head normal form and its head is a constant, this latter must necessarily be
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a primitive one. The algorithm proceeds by comparing the heads. In case they are

the same constant or parameter, c say, it continues by recursively comparing the

arguments. For checking the identity of each pair of respective arguments, their

(common) type is needed. This is obtained from c, whose type can be recovered

from the list of declarations.

For checking g=h : α→β, check whether gp=hp : βp adding p:α to the declarations

of parameters, for a fresh parameter p.

For checking that r and s are equal objects of type 〈L1 : β1, . . . , Ln : βn〉, check

whether r.Li=s.Li : βir for i = 1, . . . , n.

The approach used for checking object equality follows that taken by Magnusson

(1995). The process for checking the identity of objects having a functional type

comprises both α- and η-convertibility. Now, the equality of two objects in the

original theory can be checked without using their (common) type, i.e. under the

only assumption that they have some type. Concrete algorithms illustrating this

are given elsewhere (Coquand, 1991; Coquand, 1996). However, in the presence of

record types and subtyping, it is not in general possible to check the equality of

record objects without considering type information.

3.3 Let and Use expressions

The possibility of abbreviating a proof object by a name, which in turn may occur

in what is defined as its valid scope, not only alleviates notation, but may also

render the process of proof checking more efficient. The way let expressions are

checked in our system is heavily influenced by a proposal by Coquand (1996), i.e. to

check that an expression let x : α1 = e1 in e has a certain type α in an environment

E proceed as follows: check first that x : α1 = e1 is a valid declaration in E. If this

succeeds, check that e is an object of type α in the environment E locally extended

with x : α1 = e1. The checking of the expression e, in addition to considering that

x has type α1, may also make use of the fact that x is definitionally equal to the

expression e1. This latter is not needed for performing the type checking of a let

expression in ML or Haskell.

On the other hand, we have recently been experimenting with use expressions. The

effect of “using” an expression r of type ρ in an expression e is almost analogous to

that achieved by the Pascal command with, i.e. all the fields that constitute the object

r are made directly available in the scope of use. Therefore, in the first place, it does

not suffice for ρ to be a type – it has to be a record type. Then, if L is an identifier

syntactically equal to a label associated with a type family β in the fields of ρ it

is, both for type checking and computation, considered to be definitionally equal to

the object r.L of type βr. This is correct if it has previously been checked that r : ρ.

We can, then, informally explain how the expression use r : ρ in e is checked to have

type α in an environment E: check first that ρ is a record type in the environment E.

If this is the case, check whether r is an object of type ρ in that same environment.

Now, as ρ is a record type, it has necessarily to be of the form 〈L1 : β1, . . . , Ln : βn〉,
with n ≥ 0. Then, locally extend the environment E with declarations Li : βir = r.Li,

for i = 1..n, and proceed by checking that e has type α in this latter environment.
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4 Formalization of the algorithms

We now intend to give a precise formulation of the informal explanations in

section 3.1 for checking the correctness of the judgement a : α. Recall that in those

explanations we were assuming that α was already known to be a type. We shall

also then formulate the algorithm for checking judgements of the form α : type, and

thereby also for judgements of the form β : α→type. For the sake of conciseness,

we consider here neither the checking of let nor use expressions.

In contrast to the input expressions accepted by the proof checker, the arguments

to the programs we shall define may contain parameters. As anticipated, for checking

that an abstraction [x]α1 is a type family over α, for instance, a fresh parameter, p

say, is introduced in the context part of the environment, and then we proceed by

checking that α1[x := p] is a type.

4.1 Valid declarations

In the following we make it explicit that declarations are checked in a given

environment. We use for this a form of judgement E ` D, where E is a checking

environment and D is one of the forms of declaration introduced above.

Definition 4.1 (Checking environment)

A checking environment (E) is defined as a pair formed by a typed environment (Σ)

and a context (Γ). A typed environment Σ is a dictionary of pairs of expressions

indexed by names of constants. A context Γ is a dictionary of expressions indexed

by parameters.

The environment part of a checking environment shall be denoted by EΣ and the

context part by EΓ.

We now introduce some operations for a checking environment E.

Definition 4.2

• The function Dom returns all definienda from EΣ.

• E, p:α is defined to be the updating of EΓ with index p and expression α.

• E+ d : τ = e is the updating of EΣ with index d and the pair (e, τ).

Verification of the formal correctness of a declaration E ` D is defined by cases

in D as follows:
T 6∈ Dom E checkType E α

E ` T : type = α valid

F 6∈ Dom E checkType E α checkTypeFam E ([x]α1) α

E ` F(x : α) : type = α1 valid

c 6∈ Dom E checkType E T checkExp E ([x1][x2] . . . [xn]e) T

E ` c(x1 : α1, . . . , xn : αn): α = e valid

where T in the last rule abbreviates the type α1→[x1](α2→ . . . (αn→[xn]α) . . .).

The procedures checkType, checkTypeFam and checkExp above perform the

checking, in the environment E, that α is a type, [x]α1 is a type family over α and
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the expression [x1][x2] . . . [xn]e is an object of type T , respectively. They are defined

in section 4.3.

Definition 4.3 (Valid updating)

After a declaration D is checked, the updating of the checking environment E, if D

is valid, is respectively defined to be

• E+ T : type = α or, if α is of the form 〈ρ, L:β〉, E+ T : record-type = α

• E+ F : α→[x]type = [x]α1 or, if α1 is of the form 〈ρ, L:β〉, E + F : α →
[x]record-type = [x]α1

• E+ c : α1→[x1](α2→ . . . (αn→[xn]α) . . .) = [x1][x2] . . . [xn]e

Now we introduce a function for computing the weak-head normal form of a

well-formed expression. It shall, when needed, also unfold constants which have

been introduced in the environment E. We make extensive use of this function in

the algorithms we present below.

4.2 Weak-head normalization

We start by introducing the notions of weak-head normal form and top level redex

for expressions.

Definition 4.4

• An expression is in weak-head normal form if it is either of the form [x]e,

α→α′, 〈〉, 〈ρ, L:β〉, 〈e, L = e′〉 or (h.L1 . . . Ll a1 . . . am).K1 . . . Kn with l, m and

n ≥ 0 and h a parameter or a sort.

• A top-level redex is an expression of the form (fa1 . . . an) where f is either an

abstraction [x]e and n ≥ 1, a constant c (of arity n) and n ≥ 0 or a selection

〈e, L1 = e′〉.L2.

The definition of the function ⇓ is given in figure 2. Due to the presence of

constants in expressions, it also takes as argument the typed environment Σ of a

checking environment E. We use e ⇓ Σ to denote its application to expression e and

environment Σ.

The intuition is that if the value of e ⇓ Σ is the expression e′, then e′ is the

result of performing contractions of top-level redexes (if any) starting from e until a

weak-head normal form is reached. Observe that, due to the fact that we are going

to apply the function ⇓ to well-typed (in a wide sense) expressions, we refine the

characterization of weak head normal to the effect that h can only be a parameter

or a sort.

Notice also that no reduction is performed under binders.

Remark

The operation of substitution we are considering in the definition of ⇓ does not

perform renaming. However, the normalization of an expression will take place only

when it is a well-typed one. Therefore, it is always the case that there are no free

occurrences of variables in the expression e that is substituted for the variable x.
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p ⇓ Σ =def p

s ⇓ Σ =def s

c ⇓ Σ =def redδ c Σ

[x]e ⇓ Σ =def [x]e

〈〉 ⇓ Σ =def 〈〉
〈e, L = e′〉 ⇓ Σ =def 〈e, L = e′〉
α→β ⇓ Σ =def α→β
〈ρ, L:β〉 ⇓ Σ =def 〈ρ, L:β〉
fe ⇓ Σ =def redβ f e Σ

r.L1 ⇓ Σ =def redσ r L1 Σ

where

redδ c Σ =def e ⇓ Σ if c : α = e in Σ

redβ f e Σ =def let f′ = f ⇓ Σ

in if f′ = [x]f′′
then f′′[x := e] ⇓ Σ

else f′e
redσ r L1 Σ =def let r′ = r ⇓ Σ

in if r′ = 〈r′′, L2 = e〉
then if L1 = L2

then e ⇓ Σ

else redσ r
′′ L1 Σ

else r′.L1

Fig. 2. Weak-head normalization.

Parameters, on the other hand, might occur in e, but they are not captured by the

abstraction operator.

4.3 The programs

We shall now present programs for checking that an expression α is a type

(checkType E α) and that an expression a is an object of type α (checkExp E a α).

As explained in section 3.1, the construction of these algorithms is intertwined

with that of the algorithms for inferring the type of a generalized selection

(inferExp E f � α), checking inclusion of types (typeIncl E α α1) and conver-

sion of objects (objConv E a b α).

Each program below is presented by a set of rules of the form
P1 . . .Pn

Q
, where the

premisses and the conclusion are either of the form P or P � v. The form P should

be read as “the program P succeeds” and the form P � v as “P succeeds with

value v”. The general explanation of a rule is as follows: to compute the program Q,

compute the premisses P1. . .Pn from left to right. For the computation of conclusion

Q to succeed the computation of all the premisses must succeed. This approach

for presenting the semantics of a program follows the one taken by B. Nordström

(in preparation).

Some of the rules will also have a side condition, which can either be

• p fresh in E
• p : α in E
• c : e = α in E
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• L fresh in ρ

• L : β in ρ

• s ∈ S.

They should respectively be read as: “there is no entry for the parameter p in the

context EΓ”, “the lookup of p in EΓ yields α”, “the lookup of c in EΣ yields (e, α)”,

“the label L does not occur in the fields of the (weak-head normal form of) ρ”,

“there exists a field declaration L:β in the (weak-head normal form of the) record

type ρ” and “s is a sort”.

The success of the conclusion naturally also depends upon the success of the side

condition.

In most of the programs we shall use the non-terminals e and f defined in

section 3.2. In particular, the intended use we make of f in the rules below is that

it will match any expression that is a generalized selection, that is to say, it is either

a variable, a constant, a permissible application or a permissible selection.

In addition, the absence in a program of a rule for a particular form of expression

indicates that the program will fail if provided with such argument.

To begin, we now introduce the mutually defined programs checkType,

checkRecType and checkTypeFam. We recall that they check whether the ex-

pression α is a type, ρ is a record type and the expression β is a family of types over

α, respectively.

Checking types (checkType E α)

This program is recursively defined by cases on the form of the expression α.

checkType E Set

checkType E α checkTypeFam E β α

checkType E α→β
inferExp E f � s

checkType E f
s ∈ S

Observe that in the last rule we perform the checking of an object of type Set

using (sort) inference. The same procedure also allows us to check the correctness

of type expressions formed out of constants introduced by type and type family

declarations.

As for record types, we now introduce the following rules:

checkType E 〈〉

checkRecType E 〈ρ, L:β〉
checkType E 〈ρ, L:β〉

As has already been explained (Tasistro, 1997; Betarte and Tasistro, 1998), it is in

the nature of a record type for its formation to be explained both as a type and as a

record formation. For 〈ρ, L:β〉 to be a record type it has to be checked that ρ is also a

record type, not just a type. Now, in the presence of type and type family declarations,
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ρ may also either be a defined constant R or the result of applying a record family

to an object of the index type of this family. The preceding considerations then give

rise to the following formulation of the procedure checkRecType:

Checking record types (checkRecType E ρ)

This program is recursively defined on the form of ρ and it is assumed that E is

valid.

checkRecType E 〈〉
checkRecType E ρ checkTypeFam E β ρ

checkRecType E 〈ρ, L:β〉 L fresh in ρ

inferExp E f � record-type

checkRecType E f

Checking type families (checkTypeFam E β α)

This program is defined by cases on the expression β. There exist only two possible

forms of expression for a type family: it is either an abstraction or a constant

introduced by a type family declaration. It is assumed that E is a valid environment,

and that α has already been checked to be a type in this environment.

checkType E, p:α α1[x := p]

checkTypeFam E [x]α1 α
p fresh in E

We are assuming an infinite set P of parameters; as expressions and contexts are

finite we can always choose a fresh one.

typeIncl E α α1

checkTypeFam E F α
F : α1→[x]s = e in E, s ∈ S

Notice that this rule subsumes the case of record families, and that it is checked

whether α is a subtype of α1.

Typing terms (checkExp E a α)

This program is recursively defined by cases on the expression e. It is assumed that

E is valid and checkType E α succeeded.

α ⇓ Σ � α1→β checkExp E, p:α1 e[x := p] βp

checkExp E [x]e α
p fresh in E

ρ ⇓ Σ � 〈〉
checkExp E 〈〉 ρ

We make an overloaded use of 〈〉 to denote both the empty record object and record

type.

ρ ⇓ Σ � 〈ρ1, L:β〉 checkExp E r ρ1 checkExp E e βr

checkExp E 〈r, L = e〉 ρ
According to the explanations in section 3.1 for checking that a generalized selection

has type α, we first infer its type, α1 say, and then check whether it is a subtype
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of α. The side condition prevents unnecessary conversion checking. This control will

become more clear after we present the definition of the function inferExp.

inferExp E f � α1 typeIncl E α1 α

checkExp E f α
α1 6= t, α1 6= α2→[x]t, t ∈ {type, record-type}

We now explain why this definition of checkExp corresponds to the restrictive

method formulated in section 3.1. Observe, first, that the rule above for checking

record object extensions rejects unreachable labels. It requires that the labels of

the plain fields of an object are declared in the intended type. As this latter, in

turn, has previously been checked to be a record type, there is no risk of multiple

declarations of the same label in it. On the other hand, notice that checking

whether an extension of the form 〈f, L1 = e1, . . . , Ln = en〉 has a certain type ρ is

implemented by n applications of that same rule, and then the rule for checking

generalized selections (the last one) is applied. The whole procedure for checking

record extensions can, naturally, be implemented in a much more efficient way

through an n-ary version of the last but one rule. For the sake of clarity, however,

we prefer this presentation which, in addition, allows us to simplify the proofs when

reasoning about the correctness of the algorithm.

Type inference for generalized selections (inferExp E f � α)

We recall the reading of this form of program: (the computation of the function)

inferExp when applied to inputs E and f (if succeeds) yields the expression α. This

function is defined by cases on the expression f.

inferExp E p � α
p : α in E

For inferring the type of a parameter a lookup operation on the dictionary, EΓ is

performed.

inferExp E c � α
c : α = e in E

For constants the lookup is performed on EΣ. Notice that the sort type and

record-type – as well as expressions of the form α→[x]type and α→[x]record-type –

are possible results.

inferExp E f � α α ⇓ Σ � α1→β checkExp E e α1

inferExp E fe � βe

We end up the definition of this function by considering the case for selections:

inferExp E r � ρ

inferExp E r.L � βr
L : β in ρ

Checking type inclusion (typeIncl E α1 α2)

This program is simultaneously defined with the program whTypeIncl.

A remark is in order before we provide the rules defining the program typeIncl.

Observe first that the computation of typeIncl E α1 α2 is triggered, for instance, by

the rule that checks whether a generalized selection f has a type α2. At that point

it is already known that α2 is a type, since this is a precondition for the program

checkExp. However, since the expression α1 is obtained as output of the function
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inferExp, it could also be the sort t, with t ∈ {type, record-type}, or an expression

of the form α→[x]t. However, the possibility has been ruled out for these forms of

expressions to be arguments of the program typeIncl.

Let us now turn back to the definition of the program. First, it is checked whether

the expressions are syntactically equal:

typeIncl E α α

Observe that this subsumes the case in that α is Set. If the type expressions are not

syntactically equal, both α1 and α2 are reduced to their corresponding weak-head

normal forms, which are in turn the input to the program whTypeIncl. This latter is

recursively defined by case analysis on the form of its arguments.

α1 ⇓ Σ � α1
′ α2 ⇓ Σ � α2

′ whTypeIncl E α1
′ α2

′

typeIncl E α1 α2

For checking that two function types are in the inclusion relation, it must be

checked in turn that the types and type families out of which they are formed

are respectively related. As usual the type former → is contravariant on the index

type. Notice, in addition, that care is taken of type dependency when checking the

(covariant) relation of result types.

typeIncl E α2 α1 typeIncl E, p:α2 β1p β2p

whTypeIncl E α1→β1 α2→β2

p fresh in E

Remark

Once it is checked that α2 is a subtype of α1, it is correct to apply the family β2 to

the parameter p which is declared as a generic object of type α1.

The following two rules directly implement the explanation for two record forms

to be in the inclusion relation:

whTypeIncl E ρ 〈〉

typeIncl E ρ1 ρ2 typeIncl E, p:ρ1 β1p β2p

whTypeIncl E ρ1 〈ρ2, L:β2〉
L : β1 in ρ1

Finally, for two ground types different from the type Set it is checked whether

they are convertible objects of this latter type

objConv E α1 α2 Set

whTypeIncl E α1 α2

It is clear from the former rule that two ground types are accepted to be in the

inclusion relation only if they are definitionally equal. We have not explored a more

sophisticated treatment for this case. Yet it seems quite reasonable to expect that a

mechanism of subtyping for ground types could, in a modular way, be incorporated

to typeIncl by just modifying the premiss of the last rule above.
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Object conversion (objConv E a b α)

According to the informal formulation of this algorithm, the checking that two

objects of a certain type are convertible is recursively defined by cases on the form

of the type. First, then, the weak-head normal form α1 of the type α is computed.

Therefore, α1 must either be a function type of the form α→β, a record type or a

ground type. This expression is, in turn, together with the objects a and b, the input

for the program whObjConv, which is simultaneously defined with objConv.

α ⇓ Σ � α1 whObjConv E a b α1

objConv E a b α

For checking that two objects of type α→β are convertible, check whether when

applied to a fresh parameter p of type α they are convertible objects of type βp.

Notice that this checking comprises both α- and η- conversion.

objConv E, p:α gp hp βp

whObjConv E g h α→β p fresh in E

The rules below for checking that two objects of a record type are convertible are,

also, a direct implementation of the informal procedure described in section 3.1 for

checking the equality of two objects of a given record type: for checking that two

objects of a record type are convertible, check whether the selections of every label

of the record type in question from the objects are convertible.

whObjConv E r s 〈〉
objConv E r s ρ objConv E r.L s.L βr

whObjConv E r s 〈ρ, L:β〉
Objects of a ground type are checked to be convertible as follows:

a ⇓ Σ � a1 b ⇓ Σ � b2 headConv E a1 b2 � α1 typeIncl E α1 α

whObjConv E a b α

This rule merits some more discussion. It should be read as: two objects of

ground type α are convertible if their corresponding weak-head normal forms are

head-convertible objects of a type α1, which in turn has to be a subtype of α.

Now, observe that a1 and b1 are objects of a ground type, therefore they must

necessarily be of the form of a generalized selection. Furthermore, as both are in

weak-head normal form, either they are parameters or otherwise applications or

selections whose heads are parameters. Thus, for checking the convertibility of a1

and b1, three cases must be considered:

1. either they are both the same parameter;

2. they are objects of the form ga2 and hb2, respectively, g and h are convertible

objects of a function type α2→β and a2 and b2 are convertible objects of type

α2; or

3. they are of the form r.L1 and s.L2, respectively, and what must be checked

then is whether L1 = L2 and that r and s are head-convertible objects of some

type ρ
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We can perform the two last procedures using the object conversion program

only if we infer the type of one of g and h and the type of one of r and s,

respectively (what we can do because they are generalized selections). We prefer

instead to follow Magnusson’s presentation for checking typed conversion of objects

and define a function headConv which implements the procedure described above.

Before we proceed with the formulation of headConv, we discuss a possible

further rule for the program objConv. Notice that the definition given so far does

not consider, in principle, the form of the expressions a and b but of their common

type α. This could entail that, in the case that a and b are syntactically equal, a

considerable number of computations might be unnecessarily performed. Think, for

instance, of the case when both a and b are the same constant c of type α→β. As

an heuristic to improve the efficiency of the whole procedure of object conversion

checking we could consider introducing the following rule:

objConv E a a α

It would act as the formal counterpart of the reflexivity rule of the equality of objects

of a certain type. This rule then should be the first considered in the definition of

the program objConv. The heuristic, however, relies on the fact that the cost of

comparison is smaller than the cost of recursively applying the algorithm. Although

no precise benchmark has been performed, our experience is that the performance

of the system is improved if the syntactical equality is checked in the first place.

The definition of the next program ends the formulation of the type checking

algorithm for the extended theory.

Head conversion (headConv E a b � α)

headConv E p p � α
p : α in E

headConv E g h � α α ⇓ Σ � α1→β objConv E a b α1

headConv E ga hb � βa

headConv E r s � ρ

headConv E r.L s.L � βr
L : β in ρ

Remark

The whole procedure of conversion checking is efficient in the sense that in the

case that objects are not convertible there is no need, in general, for their complete

normalization. On the other hand, it will accept as convertible those objects whose

(full) normal forms are identical, up to α- and η-convertibility.

5 Correctness of the algorithm

We have proven the algorithm presented in the previous section to be sound with

respect to the calculus presented in Betarte (1998, Chapter 4). In this section we

shall concentrate on this soundness result.

The programs and functions that the whole algorithm embodies are defined to

work on a checking environment. However, the forms of judgement of the calculus
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unfolding of contexts:

[]∗Σ =def [] (Γ, p:α)∗Σ =def Γ∗Σ, p:α∗Σ

unfolding of expressions:

x∗Σ =def x

p∗Σ =def p

s∗Σ =def s

c∗Σ =def e∗Σ1
with Σ = Σ1; c : α = e; Σ2

([x]e)∗Σ =def [x]e∗Σ〈〉∗Σ =def 〈〉
〈e1, L = e2〉∗Σ =def 〈e1

∗
Σ, L = e2

∗
Σ〉

(α→β)∗Σ =def α∗Σ→β∗Σ〈ρ, L:β〉∗Σ =def 〈ρ∗Σ, L:β∗Σ〉
(fe)∗Σ =def f∗Σe∗Σ
(r.L)∗Σ =def r∗Σ.L

Fig. 3. Unfolding.

are not defined as to explicitly consider that judgements can be made under a set

of constant declarations, or more formally, in the presence of nominal definition

of constants. This is the approach taken by Severi (1996) where a formulation of

PTS with definitions is presented. Magnusson (1995), on the other hand, for the

correctness proofs of the algorithms presented just assumes that such a set of dec-

larations has a formal counterpart in Martin-Löf’s calculus of explicit substitution

(Martin-Löf, 1992; Tasistro, 1997), which is the calculus whose forms of judgement

are mechanically verified by those algorithms.

We preferred to follow the tradition of presenting the calculus without explicitly

introducing the notion of a set of nominal definitions. However, we do not want

to leave unattended the role played by the typed environment. In particular, when

reasoning on the correctness of the procedures we have defined to check the formal

correctness of judgements of the calculus in question we prove, for instance, that if

checkType (Σ,Γ) α succeeds then it holds that Γ∗Σ ` α∗Σ : type. The function [−]∗Σ
performs the unfolding of the constants declared in Σ which occur in its argument

(in the case of a context Γ, recursively unfolds the (type) expressions associated to

the parameters declared in it).

5.1 Unfolding and basic properties

The definition of the unfolding function, which we show in figure 3, is much in the

spirit of the projection mapping introduced in chapter 11 of Severi’s thesis (Severi,

1996).

It is possible to prove that the unfolding of an expression terminates. For this

it is crucial the fact that no recursive declarations of constants are allowed in the

typed environment Σ. A measure yielding a natural number can be defined, C(Σ, e)

say, which decreases when the function is used. This measure computes the number
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of constants replaced in the expression e when the unfolding of this expression is

performed with environment Σ.

We now introduce the following:

Definition 5.1

• a typed environment is valid if it is either {} or the result of performing a

valid updating on a valid environment Σ.

• a context is valid w.r.t. a typed environment Σ if it is either [] or the result of

updating a valid context Γ w.r.t. Σ with index p and expression α, p is a fresh

parameter for Γ and Γ∗Σ ` α∗Σ : type.

• A checking environment E is valid if EΣ is valid and EΓ is valid w.r.t. EΣ.

By being fresh, we mean that there is no entry corresponding to the index

p in Γ.

Remark

When the system starts, its checking environment E is initialized to be the pair

({},[]). By construction then E is valid. When the checking of a declaration begins

EΓ is always []. It can be proved that in the algorithms presented in the previous

section all the extensions we have made of the context preserve its validity, as above

defined.

We now digress to discuss the issue of the termination of the algorithm of type

checking presented in the previous section.

In Betarte (1998, Chapter 4) a calculus that incorporates the notion of parameter

is put forward as a variant of that presented by Betarte and Tasistro (1998) and

Tasistro (1997). A weak head reduction relation ⇒ is defined for the expressions of

the calculus. There is in principle no need for introducing one such relation – the

corresponding meaning explanations of the forms of judgement that the calculus

embodies do not depend upon any such notion. However, to define an algorithm for

checking the formal correctness of judgements of the theory, we chose to introduce

the relation mentioned. Its use renders the checking process more efficient. We

prove (Betarte, 1998) the subject reduction property for the forms of judgement

Γ ` α : type and Γ ` a : α. These properties are crucial when proving the correctness

of the algorithm.

In the previous section, and in contrast to the usual presentation of this kind of

algorithm, we have used a recursively defined function to compute the weak head

normal form of well-typed expressions. In accordance with this, then, when defining

the semantics of our programs, we explicitly introduced the termination requirement

for the whole checking procedure to succeed.

There is, in principle, no need for proving that the function ⇓ is normalizing

on types and objects of certain types, for being able to give a proof of soundness

of the algorithm. This is not the case if we want to establish its decidability. We

have already pointed out in section 3.1, and it is also clear from the definition

of the programs, that the whole process of type checking is ultimately reduced

to the checking of object conversion, which in turn, for being successful, needs to

completely normalize its arguments.
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p
Σ⇒ p

Set
Σ⇒ Set

α→β Σ⇒ α→β

〈〉 Σ⇒ 〈〉

〈ρ, L:β〉 Σ⇒ 〈ρ, L:β〉

[x]e
Σ⇒ [x]e

〈r, L = e〉 Σ⇒ 〈r, L = e〉

e
Σ1⇒ v

c
Σ⇒ v

Σ = Σ1; c : τ = e; Σ2

f
Σ⇒ [x]e e[x := a]

Σ⇒ v

fa
Σ⇒ v

f
Σ⇒ f1

fa
Σ⇒ f1a

f1 6= [x]e

r
Σ⇒ 〈r1, L1 = e〉 e

Σ⇒ v

r.L1

Σ⇒ v

r
Σ⇒ 〈r1, L1 = e〉 r1.L

Σ⇒ v

r.L
Σ⇒ v

r
Σ⇒ r1

r.L
Σ⇒ r1.L

r1 6= 〈r2 , L2 = e〉

Fig. 4. Weak head reduction relation in a typed environment.

On the other hand, we could have defined an inductive reduction relation
Σ⇒,

which we show in figure 4, which extends the relation ⇒ to consider the unfolding

of constants present in the typed environment. Therefore, any premiss of the form

e1 ⇓ Σ � e2 would be replaced by one of the form e1
Σ⇒ e2. However, we would

then place ourselves in the situation that what we are defining, when introducing

checkExp E e, for instance, is closer to an inductively defined predicate on ex-

https://doi.org/10.1017/S0956796899003627 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796899003627


162 G. Betarte

pressions than a program. This latter approach is particularly useful if one wants

to carry out proofs of properties as those we shall formulate in the next section,

because then we can apply the natural induction principles that can be obtained

from the definition of the relations in question.

We shall need, in particular, to characterize the interplay of the function ⇓ with

the relation ⇒. More precisely, we need the following:

Claim 1

Given a well-formed expression e1, and a valid typed environment Σ,

If e1 ⇓ Σ � e2 then e1
Σ⇒ e2.

On the other hand, it is quite easy to prove by induction on the derivation of

e1
Σ⇒ e2, that if e1

Σ⇒ e2 then e1
∗
Σ ⇒ e2

∗
Σ. Therefore, we understand in the proofs of

the properties that follows, that an assumption of the form e1 ⇓ Σ � e2 amounts to

one of the form e1
∗
Σ ⇒ e2

∗
Σ.

5.2 Soundness

The proofs of the propositions here introduced can be found in Betarte (1998,

Chapter 5). We define T to be the set S− {Set}.
Proposition 5.1

Let E be the valid checking environment (Σ,Γ). Then it holds that Γ∗Σ context.

Proof

By induction on the definition of valid typed environment.

Proposition 5.2

Let E be the valid checking environment (Σ,Γ),

th1 � if checkType E α then Γ∗Σ ` α∗Σ : type

th2 � if checkRecType E ρ then Γ∗Σ ` ρ∗Σ : record-type

th3 � if checkType E α and checkTypeFam E β α

then Γ∗Σ ` β∗Σ : α∗Σ→type.

th4 � if Γ∗Σ ` α∗Σ : type and checkExp E a α

then Γ∗Σ ` a∗Σ : α∗Σ.

th5 � if inferExp E f � α then either

i) Γ∗Σ ` α∗Σ : type and Γ∗Σ ` f∗Σ : α∗Σ,

ii) α ∈ T and Γ∗Σ ` f∗Σ : α or

iii) α = α1→[x]t, t ∈ T and Γ∗Σ ` f∗Σ : α1
∗
Σ→[x]t

Proof

The proof proceeds by simultaneous induction on the definitions of the programs

involved in the proposition.
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Proposition 5.3

Let E be the valid environment (Σ,Γ) and let us assume

• Γ∗Σ ` α1
∗
Σ : type and Γ∗Σ ` α2

∗
Σ : type for the cases th1 and th2.

• Γ∗Σ ` α∗Σ : type, Γ∗Σ ` a∗Σ : α∗Σ and Γ∗Σ ` b∗Σ : α∗Σ for the cases th3 and th4.

th1 � If typeIncl E α1 α2 then

Γ∗Σ ` α1
∗
Σ v α2

∗
Σ

th2 � If whTypeIncl E α1 α2 then

Γ∗Σ ` α1
∗
Σ v α2

∗
Σ

th3 � If objConv E a b α then

Γ∗Σ ` a∗Σ = b∗Σ : α∗Σ
th4 � If whObjConv E a b α then

Γ∗Σ ` a∗Σ = b∗Σ : α∗Σ
th5 � If headConv E a b � τ

then Γ∗Σ ` τ∗Σ : type and

Γ∗Σ ` a∗Σ = b∗Σ : τ∗Σ
Proof

This proof proceeds by simultaneous induction on the definition of the programs

and functions above.

The completeness of the algorithm can be argued following the ideas exposed in

Magnusson (1995). As to the problems put forward by the subtyping relation, in

particular by having its rule of transitivity in the calculus, we think we should be

able to address them as in Aspinall and Compagnoni (1996). Actually, in our case

the proof should be simpler due to the absence of (bounded) type variables in our

calculus. The idea would be to show that the rule of transitivity is “admissible” as

a program. In our case, that amounts to prove that if whTypeIncl E α1 α2 and

whTypeIncl E α2 α3 succeed so does whTypeIncl E α1 α3, where α1, α2 and α3 are

in weak-head normal form. In addition, we should define a well- founded ordering

on pairs of types, relying on the normalization property of the calculus, so as to be

able to show that the program typeIncl E α1 α2 terminates for all types α1 and α2.

6 Conclusions and related work

Our main concern in this work was the design and implementation of an algorithm

for the formal verification of the forms of judgement of the extended theory. We

then had to face the problems inherent in the formal language when considering the

process of type checking. There is no general algorithm for inferring the type of the

(unlabeled) abstractions of the original framework. This restriction is transferred

to the objects of the extension. Further, there arises an analogous situation with

the type checking of record objects. The decision was taken then of restricting the

forms of expression that constitute a valid input to the algorithm. We have shown,

however, that the shortcomings resulting from that restriction seem to be harmless

for the natural practice.
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The type checking algorithm we have presented in section 4.3 is much influenced

by the one presented by Magnusson (1995) for complete terms. This latter algorithm,

in turn, makes use of ideas presented by Coquand (1991). As already discussed in

section 2, however, in addition to the fact that we also define the type checker to deal

with record types and subtyping, our algorithm implements the formal verification of

the judgement of a calculus that, to some extent, deviates from Martin-Löf’s calculus

of explicit substitutions. The calculus that we consider, instead, is a modified version

of the one presented in Tasistro (1997) and Betarte and Tasistro (1998), which

incorporates the notion of parameters to represent the notion of “free names”. In

that respect, we have situated ourselves closer to the spirit of the calculus presented

by Coquand in the work we reference above. The work by McKinna and Pollack

(1993) and Pollack (1994) concerning the type checking of PTS has also been quite

influential in the development of our work.

In another direction, Coquand (1996) has recently proposed an algorithm for

type checking dependent types that, to some extent, conceptually departs from the

spirit of the ones above mentioned. The notion of the closure of an expression with

an appropriate environment plays a principal role in the procedure that describes

the checking of the typing judgements of a system of proof rules there introduced.

Regarding this latter observation, the algorithm shares some of the principles used

by Magnusson in the definition of her algorithm. However, a notion of generic

value is introduced by Coquand that allows to cope with the checking of abstrac-

tion operators without the restrictions that have to be imposed for Magnusson’s

algorithm to work. The methodology used by Coquand, that relies on a model

theoretic understanding of the type system, is shown in that same work to smoothly

accommodate to provide explanation for extensions of the original system, like let

expressions and a theory mechanism.

The problems posed by the type checking of languages with dependent types which

incorporate mechanisms of subtyping have been studied by Cardelli (1987) and

Aspinall and Compagnoni (1996). The latter work presents an extension to λP , an

abstract version of the Edinburgh Logical Framework LF . A type checking algorithm

for the extended system is there proposed and some meta-theoretic properties are

shown to hold both for the calculus and the algorithm in question. The notion

of subtyping introduced, however, applies only to (dependent) function types and

constant type constructors. A more recent work is the one presented by Jones

et al. (1997). There is carried out the study of a type checking algorithm for a

modified version of Martin-Löf’s logical framework, proposed by Luo (1996), which

introduces a notion of coercive subtyping.

Recently, Augustsson (1998) put forward a new functional language, Cayenne,

which incorporates dependent types. Record types are there proposed as the basic

mechanism to achieve modularization. However, no inclusion relation is induced by

Cayenne’s records.

We have reported various experiments (Betarte, 1998) on the formalization of

algebraic constructions using the proof checker. Those experiments provided us with

interesting feedbacks concerning the new mechanisms introduced. In particular, the

incorporation of use expressions pursues, in the first place, to alleviate notation. We
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think, however, that the latter expression construct combined with subtyping might

provide a uniform mechanism for hiding implementations of abstract data types.

This we consider merits to be further investigated.

The system has also been used to verify an abstract version of sorting by insertion

(Tasistro, 1997), which uses record types to express specifications of abstract data

types. As a continuation of this latter work, the formal derivation of different

implementations of insertion sort using the system has been reported elsewhere

(Gaspes, 1998).
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of Technology.

Betarte, G. and Tasistro, A. (1998) Extension of Martin-Löf’s Type Theory with Record Types
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Martin-Löf, P. (1992) Substitution calculus. Talks given in Göteborg.
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