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Abstract The nonlinear eigenvalue problem

−(|y′(x)|p−1 sgn y′(x))′ = (p − 1)(λ − q(x))|y(x)|p−1 sgn y(x)

for 0 � x < ∞, fixed p ∈ (1, ∞), and with y′(0)/y(0) specified, is studied under conditions on q related
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Keywords: Prüfer angle; p-Laplacian; nonlinear variational principles

2000 Mathematics subject classification: Primary 34B40; 34L15; 47J10
Secondary 47J30; 58E05; 58E30

1. Introduction

We shall study the nonlinear eigenvalue problem

−(|y′(x)|p−1 sgn y′(x))′ = (p − 1)(λ − q(x))|y(x)|p−1 sgn y(x), (1.1)

0 � x < ∞, for fixed p ∈ (1,∞), with λ a real parameter and with initial condition
(

y′

y

)
(0) = cotp(α), α ∈ [0, πp). (1.2)

The differential equation (1.1) is to be understood in the Carathéodory sense. Here
cotp = sin′

p / sinp, where sinp is the generalized sine function with first positive zero at πp.
We remark that the notation sinp has been used in different ways, and we refer the reader
to [2,8,11] for properties of the functions used here. In particular,

|sinp θ|p + |sin′
p θ|p = 1. (1.3)
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Our notation cotp is non-standard, but we note that this function maps [0, πp) in a
one-to-one fashion onto the extended reals. In particular, (1.2) is taken as the Dirichlet
condition y(0) = 0 if α = 0.

The potential function q is to be real valued and locally integrable, i.e. q ∈ L1(0, b) for
any finite b > 0, and we write

q = q+ − q−, q+ = max(q, 0).

We impose two further conditions on q, namely,

there exists a constant C > 0 such that
∫ x+1

x

q− < C for all x � 0 (B0)

and

for every ε > 0, lim
x→∞

∫ x+ε

x

q+ = ∞. (M1)

Condition (M1) (with q in place of q+) was used by Molčanov for his seminal work [12]
on spectral discreteness in the case p = 2, when (1.1) is a Sturm–Liouville equa-
tion. Molčanov also assumed q to be bounded below. This was subsequently relaxed
by Brinck [5] to (B0) but with q in place of q−. Our combined conditions lie between
those of Molčanov and Brinck. As an example, one could take

q(x) =

{
−x if n � x < n + n−1, n = 1, 2, . . . ,

x otherwise.

Minor amendments would produce examples violating any prescribed functional lower or
upper bounds.

Two methods of attack that have proved useful for equations of the form (1.1) on
compact intervals use a generalized Prüfer angle and a generalized minimax principle,
respectively. A generalized Prüfer method (involving the sinp function used here) was
described by Elbert [8], and there have been several subsequent investigations along
these lines (see [2] for a review). On a half-line, modified Prüfer methods have been used
in [4,6] and our results generalize theirs as follows. In [4], where p = 2, q is assumed to
be bounded below, while in the relevant part of [6] q has to satisfy certain smoothness
and growth conditions. Although our overall strategy in §§ 2 and 3 is along the lines of
these references, their methods would need considerable modification to deal with the
assumptions here. Moreover, neither [4] nor [6] address our later topics, which include
variational principles.

Historically, (Lyusternik–Schnirelman) variational methods, based on the Lagrange
multiplier approach, precede those of Prüfer type, and we refer the reader to [9,10,13]
for expositions and references. Despite the significant history of work in this area, there
remain well-known open problems, and it is not obvious a priori whether a minimax
principle will hold in our situation. The delicacy of the situation is already apparent on
a compact interval, where all eigenvalues can indeed be characterized variationally as
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above for separated boundary conditions (cf. [2]), but this can fail for periodic boundary
conditions [3].

As we shall see, the Prüfer angle method on a half-line leads to eigenfunctions that
decay exponentially, and belong to Lr for any r � 1. In order to discuss our varia-
tional principles, however, we shall need to control eigenfunction derivatives as well, and
accordingly we shall give the following definition.

Definition 1.1. An eigenvalue for the problem (1.1), (1.2) is a value of λ ∈ R for
which there exists a y ∈ W 1

p satisfying the differential equation (1.1) and the initial
condition (1.2).

Here and below Lp and W 1
p will refer to the half-line (0,∞).

Different definitions of ‘eigenvalue’ have appeared in the literature. For example, Brown
and Reichel [6] merely require the solution y in Definition 1.1 to belong to Lp, while
Drábek and Kufner [7] replace the system (1.1), (1.2) by its weak (variational) version,
requiring solutions y to be in W 1

p and, in addition, to satisfy

lim
x→∞

y(x) = 0. (1.4)

They also define a strong solution with extra smoothness conditions guaranteeing (1.1),
(1.2) as well as (1.4). In § 4 we shall show that, in our setting, the sets of eigenvalues
coincide for all four of these definitions. Additional remarks are given after Theorem 4.1.

In § 2 we introduce the generalized Prüfer angle generated by (1.1), (1.2) and the first-
order equation it satisfies. Section 3 contains a discussion of sets forming a partition of
the real line and which are connected with limiting properties of the Prüfer angle. This
sets the stage for § 4, where the eigenvalues are identified and oscillation and Sturmian
results for the associated eigenfunctions are presented. Section 5 contains results relating
problems on finite intervals to the half-line case, and variational approaches are also
discussed. Our variational principle is established by a limiting argument, and we show
by example that the Lagrange multiplier method cannot in general be used for potentials
satisfying our conditions.

2. Generalized Prüfer angles

For a solution y of (1.1), (1.2) we shall introduce the generalized Prüfer (Elbert) angle θ

via
y(λ, x) = ρ(λ, x) sinp θ(λ, x), y′(λ, x) = ρ(λ, x) sin′

p θ(λ, x).

This leads to (
y′

y

)
(λ, x) = cotp θ(λ, x),

and then we can use (1.1) and (1.3) to derive

θ′(λ, x) = |sin′
p θ(λ, x)|p + (λ − q(x))|sinp θ(λ, x)|p

= 1 − (q(x) − λ + 1)|sinp θ(λ, x)|p, (2.1)

θ(λ, 0) = α. (2.2)
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Given α, λ, it can be seen from [2, § 2] that the solution y of (1.1), (1.2) can be recovered
via the ρ, θ system, up to scalar multiples, from the unique solution of (2.1), (2.2).

We shall now consider the first-order equation

u′(x) = 1 − g(x)|sinp u(x)|p, (2.3)

where g = q − λ + 1 and q satisfies (B0) and (M1), which we take in the form

given A > 0, ε > 0, ∃XA,ε : x > XA,ε =⇒
∫ x+ε

x

q+ > A. (2.4)

As for q, we write g = g+ −g− and we note that g also satisfies (B0), (M1). The constant
C = C(λ) from (B0) is now λ-dependent, but we shall continue to write C.

The results of this section have analogues in [4], but the proofs are modified to allow
the weaker assumption (B0).

Lemma 2.1. Given 0 < γ < δ < πp and η > 0 there exists Xγ,δ,η such that for any
solution of (2.3) the conditions

x > Xγ,δ,η, u(x) ∈ (γ, δ) and u(y) � δ for all y ∈ [x, x + η] (2.5)

imply that there exists ε ∈ (0, η) satisfying

u(x + ε) = γ. (2.6)

Proof. Let B = min{|sinp u|p : u ∈ [γ, δ]}. Then 0 < B � 1. By virtue of (2.4) we
select Xγ,δ,η so that

x > Xγ,δ,η =⇒
∫ x+η

x

g+ >
δ − γ + η + ([η] + 1)C

B
. (2.7)

Suppose then that x > Xγ,δ,η satisfies (2.5) but that no ε ∈ (0, η) can be found to
satisfy (2.6). Then u(y) ∈ (γ, δ] for all y ∈ [x, x + η] and we have

u(x + η) = u(x) +
∫ x+η

x

(1 − (g+ − g−)|sinp u|p)

� δ + η − B

∫ x+η

x

g+ + ([η] + 1)C

< γ

by (2.7). This is a contradiction. �

Lemma 2.2. Given 0 < γ < δ < πp such that

δ − γ − Cm > 0, (2.8)

where m = max{|sinp u|p : γ � u � δ}, there exists a Yγ,δ such that, for any solution
of (2.3),

x > Yγ,δ, u(x) � γ =⇒ u(x + t) < δ for all t > 0.

https://doi.org/10.1017/S001309150600157X Published online by Cambridge University Press

https://doi.org/10.1017/S001309150600157X
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Proof. Set

η =
δ − γ − Cm

1 + Cm

and take Yγ,δ = Xγ,δ,η from Lemma 2.1. Suppose that x > Yγ,δ has u(x) � γ and that
z > x has u(z) = δ. We can assume that z is the minimum of all points r > x, where
u(r) = z. Select y ∈ [x, z] so that u(y) = γ and u(w) ∈ (γ, δ] for all w ∈ (y, z]. Now

δ − γ = u(z) − u(y)

=
∫ z

y

(1 − g|sinp u|p)

� z − y + m

∫ z

y

g−

< z − y + m{[z − y] + 1}C

� (z − y)(1 + Cm) + Cm,

so z − y > η. Thus, we can apply Lemma 2.1 over the interval (z −η, z) to obtain a point
w ∈ (z − η, z), where u(w) = γ, giving a contradiction. �

The next result parallels Corollary 2.3 of [4] but extra care must be taken with the
proof in the light of condition (2.8).

Lemma 2.3. Let u be a solution of (2.3). If lim infx→∞ u(x) < πp, then

lim sup
x→∞

u(x) � 0.

Proof. By assumption there exists a small enough ε > 0 with πp − ε ∈ (πp/2, πp) and
xn → ∞ with u(xn) � πp −2ε for each n such that (2.8) is satisfied with γ = πp −2ε, δ =
πp − ε. Suppose lim supx→∞ u(x) > 0, so there is small η > 0 and yn → ∞ satisfying

u(yn) > 2η (2.9)

for each n, such that (2.8) holds with γ = η, δ = 2η. By Lemma 2.2 (with γ = πp − 2ε

and δ = πp − ε) there exists N1 such that u(x) < πp − ε for all x > xn with n > N1.
Furthermore, by Lemma 2.2 with γ = η, δ = πp − ε and η = 1, say, there exist N2

and zn > yn such that u(zn) = η for all n > N2. Now applying Lemma 2.2 again (with
γ = η, δ = 2η), we can find N3 such that u(x) < 2η for all x > zn and n > N3,
contradicting (2.9). �

Lemma 2.4. With q as above, suppose that uµ satisfies u′
µ = 1 − (q − µ + 1)|sinp uµ|p

on [0,∞) with uµ(a) continuous in µ � λ for some fixed a � 0 and λ ∈ R. If uλ(x) → 0
as x → ∞, then there exists ν > λ such that

λ < µ < ν =⇒ lim sup
x→∞

uµ(x) < πp.
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Proof. We first note that q − µ + 1 satisfies (B0), with the constant C being chosen
independently of µ, provided that µ − λ is sufficiently small and, in a similar fashion,
q − µ + 1 satisfies (M1) with the quantities Xγ,δ,η, Yγ,δ also being µ-independent for
sufficiently small µ − λ. The proof now follows that of [4, Lemma 2.4]. �

The following property of θ is central for much of the next section.

Lemma 2.5. For a given λ ∈ R, there exists an integer n = n(λ) � 0 such that

nπp < θ(λ, x) < (n + 1)πp for all x sufficiently large.

Proof. Suppose that θ(λ, x) → ∞ as x → ∞. Let 0 < γ < δ < πp be such that
δ − γ − Cm > 0, where m = max{|sinp u|p : γ � u � δ}. Note that this can be achieved
by taking γ = δ/2 close enough to 0. Set

xn = min{x : θ(λ, x) = nπp + γ}, n � 1.

Since

nπp + γ − α = θ(λ, xn) − θ(λ, 0)

=
∫ xn

0
(1 − (q(t) − λ + 1)|sinp θ(λ, t)|p) dt

� xn(2 + |λ|) + C([xn] + 1),

we see that xn → ∞. Now use Lemma 2.2 to find Yγ,δ and fix N so that xN > Yγ,δ.
Note that u(x) = θ(λ, x) − Nπp satisfies the differential equation (2.3) and also that
u(xN ) = γ. Lemma 2.2 then shows that u(x) < δ for all x > xN , giving a contradiction.
Since, from [2, Lemma 2.3],

θ increases through integer multiples of πp, (2.10)

the result is established. �

3. The sets Λn

From now on we shall adopt the following notation for t ∈ R:

[t]p−1 = |t|p−1 sgn t = |t|p−2t,

so (1.1) will be written in the form

−([y′]p−1)′ = (p − 1)(λ − q)[y]p−1. (3.1)

For each integer n � 0 we define

Λn = {λ ∈ R : nπp < θ(λ, x) < (n + 1)πp for all x sufficiently large},

Λ+
n = {λ ∈ Λn : θ(λ, x) → (n + 1)πp as x → ∞},

Λ−
n = {λ ∈ Λn : θ(λ, x) → nπp as x → ∞}.
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By Lemma 2.5, the sets Λn form a partition of R and, in particular, if λ ∈ Λn \ Λ+
n , then

by Lemma 2.3 and (2.10) we have λ ∈ Λ−
n , so

Λn = Λ−
n ∪ Λ+

n .

Lemma 3.1. Suppose λ ∈ Λ+
n and that y satisfies (1.1), (1.2). Then y′ is bounded on

[0,∞).

Proof. Since θ(λ, x) → (n+1)πp from below, we can assume without loss of generality
that, for x sufficiently large,

y(x) > 0 and y′(x) < 0

and that
y′

y
(x) < −1,

so y(x) < Ae−x < B for constants A, B and x � X1 say. Assume that for a sequence
xj → ∞ we have y′(xj) → −∞. Then, for x � X1 and 0 � t � 1,

([y′]p−1)′ = (p − 1)(q − λ)[y]p−1 � −(p − 1)(q − λ)−yp−1,∫ x

x−t

([y′]p−1)′ � −(p − 1)
∫ x

x−t

(q − λ)−yp−1 � −(p − 1)Bp−1(C + |λ|),

[y′]p−1(x) − [y′]p−1(x − t) � −(p − 1)Bp−1(C + |λ|),

whence
|y′|p−1(x) − |y′|p−1(x − t) � (p − 1)Bp−1(C + |λ|).

Now, choosing j large enough to ensure that

|y′(xj)|p−1 > (p − 1)(Bp−1(C + |λ|)) + (2B)p−1,

we see that

|y′|(xj − t) � 2B,

y′(xj − t) � −2B,∫ 1

0
y′(xj − t) dt � −2B,

y(xj) − y(xj − 1) � −2B,

whence
y(xj) < −2B + y(xj − 1) � −B < 0.

This contradiction establishes the result. �

Lemma 3.2. Suppose that y is a measurable function satisfying

|y(x)| < Ae−x/p (3.2)

for sufficiently large x. Then q−yp ∈ L1(0,∞).

https://doi.org/10.1017/S001309150600157X Published online by Cambridge University Press

https://doi.org/10.1017/S001309150600157X


572 P. Binding and P. J. Browne

Proof. We take Xp large enough to ensure that (3.2) holds for x > Xp. Then, for
k > Xp, by (B0) we have ∫ k+1

k

q−|y|p < Ce−k,

so ∫ ∞

[Xp]+1
q−yp =

∑
k�[Xp]+1

∫ k+1

k

q−yp � C

∞∑
0

e−k < ∞.

�

Theorem 3.3. Each set Λ+
n contains at most one point.

Proof. Suppose that λ and µ both belong to Λ+
k and that λ < µ, so

θ(λ, x) < θ(µ, x) < (k + 1)πp

for all x. Suppose that y and z are solutions of (1.1), (1.2) corresponding to λ and µ,
respectively. We define x0 by

θ(λ, x0) = kπp when k � 1,

x0 = 0 when k = 0,

and we take v to be the solution of the initial-value problem consisting of the differential
equation (1.1) on [x0,∞) with µ in place of λ and subject to the initial condition v(x0) = 0
when k � 1 or k = α = 0, and (v′/v)(x0) = cotp(α) when k = 0 �= α. For k = 0, note
that v = z and, furthermore, y and v are of one sign, which we take to be positive on
(x0,∞).

If we define an angle φ on [x0,∞) via v′/v = cotp φ, then

θ(λ, x) − kπp < φ < θ(µ, x) − kπp

so that φ → πp from below as x → ∞. As in the proof of Lemma 3.1, we now have

v → 0 exponentially and v′ remains bounded as x → ∞. (3.3)

For small ε > 0 we use

w =
yp

(v + ε)p−1 ,

so

w′ =
pyp−1y′

(v + ε)p−1 − (p − 1)ypv′

(v + ε)p
.

Thus, by Lemma 3.1 and (3.3), w, w′ → 0 exponentially as x → ∞ and, in particular,
w, w′ ∈ L1(0,∞). Now [1, Theorem 1.1] shows that

R = R(y, v, ε) := |y′|p − w′|v′|p−2v′ � 0 pointwise,
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and hence, for any b > x0,

0 �
∫ b

x0

R =
∫ b

x0

[y′]p−1y′ −
∫ b

x0

[v′]p−1w′

= (p − 1)
∫ b

x0

(λ − q)yp − (p − 1)
∫ b

x0

(µ − q)yp

(
v

v + ε

)p−1

+ B|bx0

< (p − 1)
∫ b

x0

yp

(
λ − µ

(
v

v + ε

)p−1)
+ (p − 1)

∫ b

x0

q−yp

(
1 −

(
v

v + ε

)p−1)
+ B|bx0

,

where
B = [y′]p−1y − [v′]p−1w.

Let b → ∞ and note, again by Lemma 3.1 and (3.3), that B(b) → 0. This gives

0 � (p − 1)
∫ ∞

x0

yp

(
λ − µ

(
v

v + ε

)p−1)
+ (p − 1)

∫ ∞

x0

q−yp

(
1 −

(
v

v + ε

)p−1)

− [cotp(α)]p−1y(x0)p

(
1 −

(
v(x0)

v(x0) + ε

)p−1)
,

where the last term is taken to be 0 unless k = 0 �= α. Now let ε → 0 and, noting
Lemma 3.2, use Lebesgue’s dominated convergence theorem to obtain

0 �
∫ ∞

x0

yp(λ − µ) < 0.

This contradiction establishes the result. �

Let us define
λn = supΛ−

n

for n = 0, 1, 2, . . . . It follows from [2] that

θ(λ, x) → ∞ as λ → ∞ for any x > 0

and thus each Λ−
n is bounded above, so λn < ∞. The next result gives, in particular,

the complementary inequality λn > −∞ as well as a complete characterization of the
sets Λn.

Theorem 3.4. The λn, n � 0, are finite and increase strictly with n to ∞. Setting
λ−1 = −∞, we have, for all n � 0,

Λ−
n = (λn−1, λn), Λ+

n = {λn}, Λn = (λn−1, λn].

Proof. Since u−1| sinp u|p → 0 as u → 0 and (u − πp)−1| sinp u|p → 0 as u → πp,
we can choose λ, δ to satisfy (2.8). Now [3, Lemma 2.4] shows that θ(λ, Yλ,δ) → 0 as
λ → −∞, where Yλ,δ is as in Lemma 2.2, so we can choose λ∗ so that θ(λ∗, Yλ,δ) < γ.
From Lemma 2.2, θ(λ∗, x) < δ for all x > Yλ,δ, so, by Lemma 2.3, λ∗ ∈ Λ−

0 . In particular,
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Λ−
0 �= ∅, so λ0 is finite. The remainder of the proof follows the lines of [4], so we shall be

brief. Note that θ(λ, x) increases monotonically in λ for any x and thus, by (2.10), the
sets Λ−

n , Λ+
n and Λn are intervals. Now Lemmas 2.3 and 2.4 can be used to prove that

Λ−
n is open for each n (cf. [4, Lemma 3.3]) and in particular Λ−

0 = (−∞, λ0). With the
aid of Theorem 3.3 we then conclude that Λ+

0 = {λ0} and Λ−
0 = (−∞, λ0]. Finally, the

proof may be completed by induction on n (cf. [4, Theorem 4.2]). �

4. Eigenvalues and eigenfunctions

The first result of this section identifies the points λn as the eigenvalues of our problem via
Definition 1.1 and also shows that, for precisely these points, the associated eigenfunctions
have the properties needed for all four definitions of ‘eigenvalue’ discussed in § 1. Thus,
the sets of eigenvalues are identical under all these definitions for potentials satisfying
our conditions.

Theorem 4.1. Under each definition discussed in § 1, λ is an eigenvalue if and only if
λ = λn for some n. Any eigenfunction associated with λn decays exponentially as x → ∞
and belongs to W 1

p .

Proof. If λ ∈ Λ+
n (respectively, Λ−

n ), then θ(λ, x) tends to a multiple of πp from below
(respectively, above). Thus, for any solution y of (1.1), (1.2) and for sufficiently large x,

y′

y
(x) < −1

(
respectively,

y′

y
(x) > 1

)
,

and so
y(x) < Ae−x (respectively, y(x) > Aex)

for some constant A. Thus, if λ ∈ Λ−
n , then y /∈ Lp and λ cannot be an eigenvalue for

any of the definitions considered.
When λ ∈ Λ+

n we see from above that y ∈ Lp. It will suffice to show that y′ ∈ Lp, since
standard arguments (cf. [7]) show that a weak solution must satisfy (1.1), (1.2). From
(1.1) multiplied throughout by y we have

−([y′]p−1)′y + (p − 1)q|y|p = (p − 1)λ|y|p,

and, by integration over [0, b],∫ b

0
|y′|p + (p − 1)

∫ b

0
q+|y|p = (p − 1)λ

∫ b

0
|y|p + (p − 1)

∫ b

0
q−|y|p + [y′]p−1y|b0.

The terms on the right-hand side have finite limits as b → ∞ by Lemmas 3.1 and 3.2
and hence the same is true for the terms on the left-hand side, which are non-negative.
This gives y′ ∈ Lp and completes the proof. �

We should point out that, while the definitions of solution here and in [7] formally
coincide, the two situations are not directly comparable. For example, we have a coef-
ficient of 1 multiplying the leading term in (1.1) but this violates [7, condition (1.2)].
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Also, q = 0 in [7], and this violates our condition (M1), although it allows the Lagrange
multiplier technique to be used for a variational principle. As Example 5.4 shows, this
fails in general under our conditions.

Recall that, since the eigenvalues are characterized by the Prüfer system, it follows
from § 2 that any eigenfunction corresponding to a given eigenvalue is unique up to
scalar multiples. From this and Theorems 3.4 and 4.1 we immediately have the following
result.

Corollary 4.2. Any eigenfunction corresponding to λn has precisely n zeros in (0,∞).

We turn now to further Sturmian properties of the eigenfunctions. Suppose that we
have two potential functions q, q̃ and two initial angles α, α̃ giving rise to eigenvalues,
eigenfunctions and Prüfer angles λn, un, θ and λ̃n, ũn, θ̃, respectively.

Theorem 4.3.

(i) If q � q̃ and α � α̃, then λ̃n � λn for n � 0, with λ̃n > λn if either q < q̃ or α > α̃.

(ii) If q < q̃ and α = α̃, then, for each n, between any two zeros of ũn there is at least
one zero of un.

(iii) For each n � 0, between any two zeros of un there is at least one zero of um, for
any m > n.

Proof. (i) With reference to (2.1), (2.2) we see that the conditions lead to θ(λ, x) �
θ̃(λ, x) for all λ and x with strict inequality if either q < q̃ or α > α̃. From this, the
results of § 3 and Theorem 4.1, the claim follows readily.

(ii) Again from (2.1), (2.2) we have θ′(λ, x) > θ̃′(λ, x) for all λ and x. Suppose that
θ̃(λ, x0) = kπp, θ̃(λ, x1) = jπp with j � k + 1. Then

πp < (j − k)πp = θ̃(λ, x1) − θ̃(λ, x0) < θ(λ, x1) − θ(λ, x0),

which establishes the result.

(iii) The argument follows similar lines to that in (ii). �

5. Finite-interval problems and variational results

For any choice of b > 0 we introduce the quantities λnb as the eigenvalues of the regular
problem on [0, b] consisting of (1.1), (1.2) subject to the terminal Dirichlet condition
y(b) = 0. These eigenvalues can be characterized by Prüfer methods as discussed in [2],
the essential relation being

θ(λnb, b) = (n + 1)πp. (5.1)

Our first result concerns interlacing of the λnb with the λn discussed in the previous
sections.
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Lemma 5.1.

(i) For all b > 0 and n � 0 we have

λn < λnb.

(ii) For all n � 0 there exists bn > 0 so that

λn+1 > λnb for b > bn.

Proof. (i) Note by (2.1) that θ(λ, b) is strictly increasing in λ for any fixed b and that
θ(λn, x) → (n + 1)πp from below as x → ∞ so that θ(λn, b) < (n + 1)πp. The result now
follows from (5.1).

(ii) Since θ(λn+1, x) → (n+2)πp as x → ∞, we have θ(λn+1, b) > (n+1)πp for b large
enough. Now (5.1) and the monotonicity of θ in λ establish the claim. �

We turn next to the dependence of λnb on b and we give a specific sense in which
half-line problems for (1.1), (1.2) can be approximated by problems on finite intervals.

Theorem 5.2. For all n � 0, λnb ↓ λn as b → ∞.

Proof. The monotonicity of θ in λ and (5.1) show that λnb is decreasing in b. Since
λnb > λn by Lemma 5.1, there exists λn∞ for which

λnb ↓ λn∞ � λn. (5.2)

Suppose that λn∞ > µ > λn if possible. Then there exists a b′ for which

θ(µ, b′) = (n + 1)πp = lim
x→∞

θ(λn, x).

Thus, λn∞ > µ = λnb′ , contradicting (5.2). �

We now discuss various approaches to obtaining the eigenvalues variationally. First we
require a number of definitions. We write

J(y) = cot∗
p(α)|y(0)|p +

∫ ∞

0
(|y′|p + (p − 1)q|y|p), y ∈ U,

where

cot∗
p(α) =

{
cotp(α) if α �= 0,

0 if α = 0,

and

U =
{

u ∈ W 1
p (0,∞) : (p − 1)

∫
|u|p = 1, u(0) = 0 if α = 0

}
.

For b > 0 we shall also use

Ub = {u ∈ U : suppu ⊂ [0, b]}.
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The following definitions will be used for the Lyusternik–Schnirelman characterization
of the eigenvalues:

Fnb = {A ⊂ Ub : A = −A, A is compact, γ(A) � n + 1},

Fn∞ =
⋃
b>0

Fnb,

where the Krasnoselskij genus γ is given by

γ(A) = inf{m : there is an odd continuous map from A to R
m \ {0}}.

For A ∈ Fn∞, it will be convenient to write

s(A) = sup
u∈A

J(u).

We now have the following variational characterization of the eigenvalues λn.

Theorem 5.3. For each n � 0,

λn = inf
A∈Fn∞

s(A).

Proof. We write
µn = inf

A∈Fn∞
s(A)

and note from [2] that
λnb = inf

A∈Fnb

s(A). (5.3)

Thus, µn � λnb and so, by Theorem 5.2, µn � λn.
Suppose that µn < λn and take A′ ∈ Fn∞ (whence A′ ∈ Fnb′ for some b′) to satisfy

µn � s(A′) < λn.

Then
λnb′ = inf

A∈Fnb′
s(A) � s(A′) < λn,

contradicting Lemma 5.1. This completes the proof. �

Let us define

Fn = {A ⊂ U : A = −A, A is compact, γ(A) � n + 1}.

While clearly Fn∞ ⊂ Fn, the converse inclusion is false, so it is not clear whether one
can replace Fn∞ by Fn in Theorem 5.3 or even by

FnC = {A ∈ Fn : each function in A has compact support}.

We note that a standard approach to deriving formulae of the type used in Theorem 5.3
is via the Lagrange multiplier method (cf. [2,13], where the problems are set on finite
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intervals). A similar approach has been used for half-line problems with more general
coefficients (except that q = 0) in [7]. Such approaches require J to be C1 on U (using
the W 1

p topology). The following example shows that J need not even be continuous let
alone C1 for q under our assumptions. In fact, we take q(x) = ex, which also satisfies the
requirements of [4,5].

Example 5.4. Take q(x) = ex and α = 0. For j = 3, 4, . . . , set

uj(x) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

cjx for 0 � x � 1,

cj(2 − x) for 1 � x � 2,

ej(x − j + 1) for j − 1 � x � j,

ej(j + 1 − x) for j � x � j + 1,

0 otherwise,

and

u∞(x) =

⎧⎪⎨
⎪⎩

cx for 0 � x � 1,

c(2 − x) for 1 � x � 2,

0 otherwise,

where cj , ej and c will be chosen subsequently. We require

(p − 1)
∫

|uj |p = (p − 1)
∫

|u∞|p = 1,

and, by straightforward calculation, this forces

cp
j + ep

j =
p + 1

2(p − 1)
= cp.

Using W 1
p norms, we also have

|uj − u∞|p =
2(p + 2)
(p + 1)

(|cj − c|p + |ej |p).

Now we take ej = 1/j, so cj → c, uj → u in W 1
p . Furthermore,

J(uj) � (p − 1)ej−1|ej |p
(p + 1)

,

so J(uj) → ∞ but J(u∞) is obviously finite. Hence, J is not a continuous functional
on U .
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9. S. Fučik, J. Nečas, J. Souček and V. Souček, Spectral analysis of nonlinear operators,
Lecture Notes in Mathematics, Volume 346 (Springer, 1973).

10. N. Ghoussoub, Duality and perturbation methods in critical point theory (Cambridge
University Press, 1993).

11. Y. Huang and G. Metzen, The existence of solutions to a class of semilinear differential
equations, Diff. Integ. Eqns 8 (1995), 429–452.

12. A. Molčanov, Conditions for the discreteness of the spectrum of self-adjoint second-
order differential equations, Trudy Moskov Mat. Obsc. 2 (1953), 169–200 (in Russian).

13. A. Szulkin, Ljusternik–Schnirelmann theory on C1 manifolds, Annales Inst. H. Poincaré
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