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Abstract

Maternal malnutrition during lactation programmes for overweight and central leptin resistance in adulthood. The inhibition of lactation by
maternal treatment with bromocriptine (a prolactin inhibitor) programmes for obesity, hyperleptinaemia and leptin resistance. Here, we
evaluated the short- and long-term effects of early weaning (EW) on body-weight regulation, leptin signalling, and hormone and lipid pro-
files in rats offspring. Lactating rats were separated into two groups: EW — dams were wrapped with a bandage to interrupt the lactation in
the last 3d of lactation; control — dams whose pups had free access to milk during all lactation (21 d). Data were significant at P<0-05.
At weaning, EW pups presented lower body weight (—10 %), length (—4 %), visceral fat (=40 %), total fat (— 30 %), serum leptin (=73 %),
glycaemia (—10%), serum insulin (—20%) and insulin resistance index (IRI; —30 %), but higher total body protein content (440 %). At
180d, EW offspring showed hyperphagia, higher length (43%), body weight (48 %), visceral and total fat (436 and 84 %), serum TAG
(4+96%), glycaemia (415 %), leptinaemia (4 185 %) and IRI (429 %); however, they showed lower total protein content (— 23 %), leptin:body
fat ratio (41 %), prolactinaemia (—38%) and adiponectinaemia (—59 %). Despite unchanged leptin receptor (OB-R) and signal transducer
and activator of transcription 3 (STAT3), they displayed lower hypothalamic janus tyrosine kinase 2, phosphorylated STAT3 and a higher
suppressor of cytokine signalling 3 levels, suggesting a central leptin resistance. Adult rats that were early weaned displayed higher adiposity,
insulin resistance and dyslipidaemia, which are related to metabolic syndrome development. Our model reinforces the idea that neonatal
malnutrition caused by shortening of the lactation period is important for metabolic programming of future diseases.
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malnutrition and hormonal changes, could permanently
affect the nutritional and hormonal status of the progeny®~'%.

According to the WHO™V, ‘exclusive breast-feeding is defined
as no other food or drink, not even water for 6 months of life’.

Exclusive and prolonged breast-feeding has also been associ-
ated with protection against long-term chronic diseases such
as obesity and diabetes®. However, no more than 35% of
infants worldwide are exclusively breastfed during the first
4 months of life”®.

Directly or indirectly, malnutrition has been responsible for
60% of the 10-9 million deaths among children annually®.
Barker et al.* has associated low birth weight with diseases
related to the metabolic syndrome (obesity, diabetes and
hypertension) in adulthood. Additionally, our group has
showed that adverse situations during lactation, such as

This association has been denominated metabolic program-
ming, which is defined as a biological phenomenon that deter-
mines the relationship between physical and chemical stimuli
in critical periods of early life, such as gestation and lactation,
with future functional status >,

During lactation, maternal energy restriction programmes
for overweight without altering food intake™”, and leptin
resistance to its anorexigenic effect in adult offspring™®.
In lactating rats, undernutrition is associated with a failure in
milk production®”’
the inhibition of the last 3d of lactation through maternal

caused by hypoprolactinaemia®®”. Also,

Abbreviations: EW, early weaning; IRI, insulin resistance index; JAK2, janus tyrosine kinase 2; PRL, prolactin; SOCS3, suppressor of cytokine signalling 3;
STAT3, signal transducer and activator of transcription 3; VFM, visceral fat mass.

*Corresponding author: Dr P. C. Lisboa, fax +55 21 25876129, email patricialisboa@pq.cnpq.br

ssaud Ans1anun abprquie) Ag auljuo paystignd #905000L5 L L£000S/£L0L 0 L/BI010p//:sd1y


https://doi.org/10.1017/S0007114510005064

NS British Journal of Nutrition

1406 N. d. S. Lima er al.

treatment with bromocriptine (a prolactin (PRL) inhibitor)
caused milk production inhibition, neonatal malnutrition
evidenced by lower body weight of weaned pups“®
as programmed for obesity, hyperleptinaemia, central leptin
resistance®”, higher TAG and cholesterol in adulthood®?,
and secondary hypothyroiclism(23). However, in this model,
it is difficult to separate the effects of maternal hypoprolacti-
naemia from those of decrease in milk ingestion. On the
other hand, recently, it has been observed that maternal
moderate energy restriction during lactation was associated
with beneficial effects in their offspring, such as lower body-
weight gain and fat accumulation under a high-fat diet*?.
Leptin, a hormone mainly produced by adipocytes, acts
through leptin receptors (OB-R) to inhibit food intake and
stimulate energy expenditure by specific hypothalamic signals,
and only its long form OB-Rb is capable of active intracellular
signalling®®. Leptin binding to OB-Rb initiates tyrosine phos-
phorylation by janus tyrosine kinase 2 (JAK2). Phosphorylated
JAK?2 recruits signal transducer and activator of transcription 3
(STAT3) proteins, which are activated through phosphoryl-
ation. Activated STAT3 dimerises and translocates to the
nucleus, where it stimulates gene transcription. The JAK2/
STAT3 pathway stimulates the transcription of suppressor
of cytokine signalling 3 (SOCS3), a leptin-inducible inhibitor
of the leptin signalling patllway(26’27). In obese individuals,
hyperleptinaemia does not cause satiety and increases
energy expenditure, as expected. This is explained by leptin

resistance, caused by the down-regulation of OB-R®**” by
(30,31
; or

as well

an impairment of the intracellular signalling pathway
by a reduced blood—brain barrier transport3*3%,

Then, in order to know whether precocious weaning can
programme for endocrine and metabolic dysfunctions, the
present study was designed to evaluate the immediate and
late repercussion of lactation interruption without the use of
pharmacological substances or maternal separation upon
food intake, body length and composition, lipid profile,
leptin, insulin and adiponectin levels, expression of proteins
of the leptin signalling pathway in the hypothalamus and
glucose homeostasis in rat offspring.

Experimental methods

The use of the animals according to our experimental design
was approved by the Animal Care and Use Committee of
the Biology Institute of the State University of Rio de Janeiro
(CEA/017/2009), which based its analysis on the principles
adopted and promulgated by Brazilian Law (no. 11.794/
2008). Experiments were conducted to minimise the number
of animals and the suffering caused by the procedures
following the ethical doctrine of the three ‘R’s’ — reduction,
refinement and replacement®*>

Wistar rats were kept in a temperature-controlled room
(23/24°C) with artificial dark-light cycles (lights on 07.00
hours and lights off 19.00 hours), Virgin female rats, 3
months old, were caged with male rats at a proportion of
3:1. After mating, each female was placed in an individual
cage with free access to water and food until delivery. We
used only the dams whose litter size was ten pups in order

to avoid the influence of litter size in the programming
effect. At birth, to maximise lactation performance(m, litters
were adjusted to six male pups/dam.

Experimental model of early weaning

After birth, twelve lactating rats were randomly separated
into two groups: early weaning (EW, 7 6) — dams were lightly
anaesthetised with thiopental (0-06mg/ml per 100g) and
wrapped with a bandage to interrupt the lactation in the last
3d of lactation; control (7 6) — dams whose pups had
standard lactation period, i.e. weaning occurred at 21d of
lactation. Both groups received food directly into the cage,
and the pups had easy access to a drinking-water bottle.

During lactation, body weight and the naso-anal length of
pups were daily monitored. After weaning, EW and control
offspring had free access to water and a standard diet, and
their body weight, food intake and body length were
recorded. Relative food intake was measured by dividing
food intake by body weight. We used two offspring from
each dam, which were killed at 21 or 180d after 12h of
fasting. The killing occurred by quick decapitation, with no
prior anaesthesia (because anaesthesia affects hormone and
lipid metabolism), to collect blood, carcass, visceral fat mass
(VFM) and hypothalamus.

Body composition evaluation. On the day of killing, VFM
was excised (mesenteric, epididymal and retroperitoneal
white adipose tissue) and immediately weighed for evaluation
of central adiposity. Total body fat and protein contents were
determined by carcass analysis®®3”. P
the carcass was weighed, autoclaved for 1 h and homogenised

ups were eviscerated,;

on distilled water (1:1). The homogenates were stored at 4°C
for analysis.

The homogenate (3g) was used to determine fat content
gravimetrically. Samples were hydrolysed on a shaking
water-bath at 70°C for 2h with 30% KOH and ethanol. Total
fatty acids and non-esterified cholesterol were removed with
three successive washing with petroleum ether. After drying,
overnight in vacuum, tubes were weighed, and data are
expressed as g of fat/100 g of carcass.

Protein content was determined in 1g of the homogenate.
Tubes were centrifuged at 2000g for 10min. Total protein
concentrations were determined by the Lowry method®®.
Data are expressed as g of protein/100g of carcass.

Western blot analysis. To obtain cell extracts, the
hypothalamus was homogenised in ice-cold lysis buffer
(50 mM-HEPES, 1mmM-MgCl,, 10mm-EDTA and 1% Triton
X-100, pH 6-4) containing the following protease inhibitors:
aprotinin (10 pg/pD), leupeptin (10 pg/pD, pepstatin (2 pg/nh
and 1mm-phenylmethylsulphonyl fluoride (Sigma-Aldrich,
St Louis, MO, USA). After centrifugation (7500 g for 5 min), the
homogenates were stored at —20°C. OB-R (a leptin receptor),
JAK2, STAT3, phosphorylated STAT3 and SOCS3 contents
were analysed by Western blot as described previously?,
using actin as the internal control.

Briefly, protein concentrations were determined by the
bicinchoninic acid Protein Assay Kit (Thermo Scientific,
Rockford, IL, USA). Samples (30 pg of total protein) were
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separated by 10% SDS-PAGE according to the molecular
weight of each protein, and transferred to nitrocellulose
membranes (Hybond ECL; Amersham Pharmacia Biotech,
Amersham, London, UK). Rainbow standard markers
(Amersham Biosciences, Uppsala, Sweden) were run in paral-
lel to estimate molecular weights. The membranes were
blocked with 5% non-fat milk in Tween-Tris-buffered saline
(20 mM-Tris—HCI, pH 7-5, 500 mmM-NaCl and 0-1% Tween-20)
for 1 h. Specific primary antibodies (Santa Cruz Biotechnology,
Inc., Santa Cruz, CA, USA) used were anti-OB-R, anti-JAK2,
anti-STAT3, anti-phosphorylated STAT3, anti-SOCS3 and
anti-actin. The membranes were incubated with primary anti-
bodies at 1:500 dilution in Tween-Tris-buffered saline buffer
for 1h, with an appropriate secondary antibody (1:10 000,
peroxidase-conjugated IgG; Santa Cruz Biotechnology) for
1h and then with streptavidin (1:10000; Zymed, San
Francisco, CA, USA) for 1 h. The targeted proteins were detected
by enhanced chemiluminescence (Amersham Pharmacia
Biotech, Piscataway, NJ, USA) and then exposed to X-ray film
for 10s to 30 min. The images were scanned, and the bands
were quantified by densitometry using Image J 1.34 s software
(Wayne Rasband National Institute of Health, MA, USA).

Hormonal determination by RIA. Blood samples were
centrifuged (1500g for 20min at 4°C) to obtain serum,
which was frozen (—20°C) until analysis. All measurements
were performed in one assay. Leptin was measured with a
specific RIA kit (Linco Research, Inc., St Charles, MO, USA),
which measures both rat and mouse leptin with a range of
detection from 05 to 50ng/ml; intra-assay variation was
2:9%. Insulin concentration was determined using an RIA kit
(ICN Pharmaceuticals, Inc., Orangeburg, NY, USA), with an
assay sensitivity of 0-1ng/ml and an intra-assay variation of
41%. Adiponectin was measured with a specific RIA kit
(Linco Research), with an assay sensitivity of 0-5ng/ml and
an intra-assay variation of 7-1%. PRL was determined by a
specific RIA using reagents supplied by the National Institute
of Health (MD, USA). Data are reported in ng from the refer-
ence preparation RP-3 with an assay sensitivity of 0-3 ng/ml
and an intra-assay coefficient of 8%.

Insulin sensitivity. Fasting blood glucose was determined
from the tail vein of fasting rats using a glucosimeter (ACCU-
CHEK®™ Advantage; Roche Diagnostics, Mannheim, Germany).
To determine the insulin sensitivity of adult animals, we used
the insulin resistance index (IRD): fasting glycaemia (mg/D) X
fasting insulinaemia (WIU/ml).

Lipid profile analysis. Serum levels of total cholesterol,
TAG and HDL-cholesterol were analysed using Biosystem
commercial test kits with an automated A15 spectropho-
tometer (Biosystems S.A., Barcelona, Spain). LDL-cholesterol
and VLDL-cholesterol were calculated according to the
equation of Friedwald:

VLDL-cholesterol = TAG/5.

LDL-cholesterol = (total cholesterol — HDL-C-TAG)/5.

Statistical analysis. Results are reported as means with
their standard errors. Statistical analyses and graphics were

performed using the GraphPad Prism 4 (GraphPad Software,
Inc., La Jolla, CA, USA) program. Leptin signalling was ana-
lysed by the non-parametric Mann—Whitney U test. Other
experimental data were analysed by Student’s unpaired ¢ test,
with the level of significance set at P<0-05.

Results

At 21d, EW pups presented lower body weight (—10%,
P<0:05) and naso-anal length (—4%, P<0-05) compared
with the group normally weaned, as shown in Fig. 1. At
180d, EW offspring showed higher body weight (489%,
P<0-05), higher body length (+3 %, P<0-05) as well as per-
sistent hyperphagia, as shown in Fig. 2.

As depicted in Table 1, the 21-d-old EW pups had lower
total body fat (=297%, P<0-05), lower VFM (—409%,
P<0-05), but higher total protein content (440%, P<0-05).
In adulthood, these animals showed higher total fat mass
(+36%, P<0-05), higher VFM (+84%, P<0-05) and lower
body protein mass (—22-5%, P<0:05). Juvenile EW offspring
presented hypoleptinaemia (—73%, P<0:05), but adult
EW offspring showed hyperleptinaemia (+185%, P<0:05).
At 180d, the leptin:body fat ratio was lower in the
EW group (—41%, control: 0-123 (sem 0-016), EW: 0-072
(sem 0-011), P<0:05).
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Fig. 1. (a) Body weight and (b) length during lactation of pups that were nor-
mally breast-fed for 21d (control, [J) and early weaned (A). Values are
means with of twelve rats/group, with standard errors represented by vertical
bars. *Mean values were significantly different compared with those of the
control group (P<0-05).
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Fig. 2. (a) Body weight, (b) length, (c) food intake and (d) food intake/weight
after weaning until pups of 180d old were normally breast-fed for 21d
(control, OJ) and early weaned (A). Values are means of twelve rats/group
with standard errors represented by vertical bars. * Mean values were signifi-
cantly different compared with those of the control group (P<0-05).

Table 2 shows the lipid profile of EW offspring in adult life.
Serum TAG were higher in the EW group (4+96%, P<0-05)
compared with the control group. However, total cholesterol,
HDL-cholesterol, LDL-cholesterol or VLDL-cholesterol did not
change significantly between the groups.

Protein levels of leptin signalling pathway components in
the hypothalamus of adult EW rats are shown in Fig. 3. At
180d, EW offspring presented lower JAK2 (— 43 %; Fig. 3(b)),

lower phosphorylated STAT3 (—32% P<005; Fig. 3(d)),
lower phosphorylated STAT3:STAT3 ratio (—24%, P<0-05,
data not shown) and higher SOCS3 (+97%, P<0-05;
Fig. 3(e)) expressions compared to the controls, but no
change in OB-R (Fig. 3(a)) and STAT3 (Fig. 3(c)) levels.
Concerning the glucose homeostasis of 21-d-old EW pups
(Fig. 4), we observed lower glycaemia and insulinaemia
(=10 and —20%, P<0-05; Fig. 4(@) and (b), respectively)
with unchanged adiponectin levels. In addition, IRI was
lower (—30%, P<0-05; Fig. 4(d)), suggesting that these
animals were more sensitive to insulin. In adulthood, despite
the normal serum insulin levels, EW rats displayed higher
serum glucose (+15%, P<0-05; Fig. 5(a)), higher IRI
(+29%, P<0-05; Fig. 5(d)) with lower serum adiponectin
and PRL levels (—59, and —38%, P<0:05; Fig. 5(0);
Fig. 5(e), respectively), which suggest an insulin resistance.

Discussion

The importance of mother—infant relationships in develop-
ment, including the role of nutrition and physical contact,
has been characterised from endocrine and neurochemical
perspectives®>*”. Milk is an important source of leptin that
has been proposed to be required during a neonatal critical
period for a normal postnatal development of hypothalamic
pathways in the arcuate nucleus, which are involved in
leptin signalling®”. In mice, EW has been shown to affect
the neuroendocrine response to stress*?. As during lactation
important cognitive and neurological development occurs,
adverse environmental changes in this critical period of
life can predispose the development of some diseases in
adulthood*%®  Nowadays, the time period dedicated to
breast-feeding has decreased gradually, mainly because
women are increasingly participating in the labour market.
The metabolic syndrome is defined as a set of at least
three risk factors to CVD, such as central obesity, higher
blood pressure, hypertriacylglycerolaemia, HDL-cholesterol
reduction and insulin resistance™. The present study
analysed the consequences of precocious weaning with no
maternal separation or using pharmacological substances
upon the programming of the body adiposity, glucose homeo-
stasis, and hormone and lipid profiles in juvenile and adult

Table 1. Body composition and leptinaemia of control (C) and
early-weaned (EW) offspring at 21 and 180d

(Mean values with their standard errors, n 12)

21dold 180d old
Groups Mean SEM Mean SEM
Total body (¢} 9-657 0-5274 11.24 0-9766
fat (%) EW 6-790* 0-5118 15.28* 1-109
Visceral fat C 0-3952 0-04196  10-83 1.256
mass (g) EW 0-2349*  0-01151 19-94* 2.788
Total body C 12.03 0-5553 8-036 0-6522
protein (%) EW 16-86* 1.028 6-236*  0-4613
Leptin (ng/ml) C 2.372 0-2314 1.926 0-2466
EW 0-6343*  0-1092 5.490* 1.296

*Mean values were significantly different from those of the control group (P<0-05).
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Table 2. Lipid profile of adult control (C) and
early-weaned (EW) offspring
(Mean values with their standard errors, n 12)
180d old
Groups Mean SEM
Total cholesterol (mg/l) C 773-3 28-0
EW 793-6 18-2
HDL-cholesterol (mg/l) C 200-8 4.0
EW 220-0 88
LDL-cholesterol (mg/l) C 454.2 25.2
EW 406-7 25-3
TAG (mg/l) C 396-9 25.2
EW 7777 75-5
VLDL-cholesterol (mg/l) Cc 1154 9.0
EW 156-2 15.2

*Mean value was significantly different from those of the control

group (P<0-05)

rats, in order to investigate the possible changes in some
parameters directly associated with the metabolic syndrome.

At 21d, we showed that EW caused lower body weight,
length, VFM, total body fat, hypoglycaemia and hypoinsuli-
naemia, all changes linked to malnutrition status. When the
bandage was introduced to interrupt lactation, solid food
was provided inside the cage, and the animals were already
able to drink water in the bottle. This reinforces the import-

ance of milk ingestion even at the last 3d of lactation. In this

1409

moment, EW offspring seems to have normal insulin sensitivity
since the IRI was lower. However, at 180 d, those animals dis-
played overweight, higher total and visceral adiposity, higher
serum levels of TAG and glucose as well as a higher IRI, which
are components of the metabolic syndrome. Serum insulin
levels were inappropriately unchanged, also suggesting a pan-
creatic B-cell failure. Some studies show that malnutrition
caused by a large litter (eighteen pups) during all the suckling
period reduces body-weight gain and adiposity®, and
increases circulating adiponectin in adulthood“®. However,
in the present study, EW programmed for overweight and
insulin resistance; it is possible that these contradictory find-
ings were due to the intensity of undernutrition. In those
studies, authors used an experimental model of moderate
undernutrition, because despite increasing the competition
among the pups, they still drank maternal milk, the opposite
of our experimental model that is characterised by a severe
malnutrition, because the pups did not drink maternal milk
in the last 3d of lactation.

At 21d, EW offspring showed lower serum leptin concen-
tration, and this could imprint those animals for central
leptin resistance and obesity. Previously, we showed that
both maternal energy malnutrition during lactation and
hypoprolactinaemia caused by bromocriptine
administration at the end of lactation (an EW experimental
model) cause malnutrition of the pups at weaning(m'w) , and

maternal
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Fig. 3. Homogenates of the hypothalamus from the control (C) and early-weaned (EW) groups at 180d were obtained, and (a) OB-R (n 6), (b) janus tyrosine
kinase 2 (JAK2) (n 6), (c) signal transducer and activator of transcription 3 (STAT3) (n 6), (d) phosphorylated STAT (pSTAT) (n 6) and (e) suppressor of cytokine
signalling 3 (SOCS3) (n 6) detections were performed by Western blotting. OB-R, JAK2, STAT3, pSTAT and SOCS3 contents were quantified by scanning densi-

tometry of bands and are expressed as relative (%) to the control group. Actin content was used as the control loading. A representative experiment is shown

from two independent experiments. Values are means with standard errors, represented by vertical bars. * Mean values were significantly different from those of

the control group (P<0-05).
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showed that the offspring is also programmed for obesity
and leptin resistance. Thus, it seems that the correct leptin
serum concentration and also the nutritional status during lac-
tation are necessary for a normal leptin action and
adipogenesis.

As early-weaned rats presented hyperphagia, higher
adiposity and serum leptin levels in adult life, we decided to
analyse the leptin signalling pathway in the hypothalamus. In
fact, despite normal OB-R and STAT3 contents being detected,
those animals exhibited lower JAK2, lower pSTAT and higher
SOCS3 levels, which indicate a development of hypothalamic
leptin resistance. Additionally, postnatal overfeeding caused
by litter size reduction leads to the same mechanism in adult
animals (lower JAK2 and pSTAT and higher SOCS3 expression),
also suggesting central leptin resistance®”. Thus, an adequate
milk supply is an important factor responsible for a normal
leptin action at the hypothalamic level.

Recently, it has been demonstrated that serum leptin
adjusted for body fat in humans can be another criterion to
evaluate the metabolic syndrome®". Tt seems that leptin pro-
duction by adipose tissue is decreased in obese subjects,
suggesting a relative leptin deficiency associated with
advanced stages of the metabolic syndrome. In the present
study, this relative deficiency was observed in adult EW rats
since they showed a lower leptin:body fat ratio, corroborating
the hypothesis that adipose tissue in obesity is dysfunctional.

Some studies have shown that higher body visceral fat is a
risk factor to insulin resistance and other metabolic disorders
©25% and rodents®*>>. On the other hand, adipo-

nectin levels have been associated with higher insulin sensi-
58

in humans

5657 "and its level is inverse to total body adiposity

tivity
So, it is possible that hyperglycaemia and hypoadiponectinae-
mia found in 180-d-old EW offspring, even with a normal
serum insulin, may be due to its higher body fat and could
be the beginning of insulin resistance. Changes in glucose
homeostasis in adult life, such as lower insulin secretion® %,
changes in insulin sensitivity(]z'm), higher glucogenolysis®®?,
lower B-cell quantity and pancreatic content of insulin®®
are associated with protein malnutrition in critical periods of
life. Moreover, PRL modulates the proliferation of pancreatic
B-cells and the consequent lowering of glycaemia®?. The
fact that programmed EW rats had lower serum PRL could

explain why they have an inappropriate response of insulin
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Fig. 4. (a) Serum glucose, (b) insulin, (c) adiponectin levels and (d) insulin
resistance index (IRI) of 21-d-old offspring that were normally breast-fed for
21d (control; C) and early weaned (EW). Values are means of twelve
rats/group with standard errors represented by vertical bars. *Mean values
were significantly different compared with those of the control group
(P<0-05).

programme for higher body-weight gain and central leptin
resistance’’?”. In both models, there seems to be a higher
transfer of leptin from the mothers to the pups through the
milk"?%” On the other hand, oral leptin treatment of suckling
pups, equivalent to five times the amount of leptin normally
ingested from maternal milk, was related to the prevention
of later overweight/obesity*”. In addition, Attig et al.“”,
using an antagonist to a leptin receptor during lactation,

to hyperglycaemia have shown were adults, perhaps because
they have an impairment on the development of pancreatic
B-cells, Recently, we have shown that maternal hypoprolacti-
naemia for the last 3d of lactation programmes for insulin
resistance and lower serum PRL in their adult offspring®?.
Concerning the lipid profile, besides no important change
in total cholesterol, HDL-cholesterol, LDL-cholesterol or
VLDL cholesterol, the hypertriacylglycerolaemia of adult
EW offspring may indicate higher atherogenesis risk©>|
which suggests a higher risk of developing CVD. In fact,
there is an association of low birth weight with dyslipidaemia
and hypertension in adulthood®®. In the present model,
persistent hyperphagia could contribute to the high TAG
levels. Previously, we showed that neonatal hyperleptinaemia
programmed for higher food intake and hypemiacylglycerols(m).
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Fig. 5. (a) Glycaemia, (b) insulinaemia, (c) adiponectinaemia, (d) insulin
resistance index (IRI) and (e) prolactinaemia of 180-d-old offspring that were
normally breast-fed for 21d (control; C) and early weaned (EW). Values are
means of twelve rats/group with standard errors represented by vertical bars.
*Mean values were significantly different compared with those of the control
group (P<0-05).

Despite some similarities (higher total and visceral fat, hyper-
triacylglycerolaemia), EW differs from the PRL inhibition
model in relation to cholesterol and HDL-cholesterol levels.
It seems that PRL suppression is more deleterious for the
lipid profile than the EW.

In summary, the amount of our data provides evidence that
EW leads to the late development of the metabolic syndrome
as well as central leptin resistance. Our experimental model
reinforces the idea that postnatal malnutrition caused by short-
ening lactation is important for the metabolic programming of
future diseases, even when no pharmacological treatment is
used.
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