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ON (n,fc,/,A)-SYSTEMS
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The paper is devoted to studying one generalization of Steiner systems S(n, k, I) closely related to packings and
coverings of /-tuples by fc-tuples of an n-set. One necessary and one sufficient condition for the existence of
such designs are obtained.
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1. Introduction

We consider (n, k, I, A)-systems which are the generalization of Steiner systems S(n, k, I).

Definition. A system P of /c-tuples of an n element set S is called an (n, k, /, A)-system
iff every /-tuple of S is contained in at most one fc-tuple from P and every (/—A)-tuple of
S is contained in at least one /c-tuple from P

Obviously, every (n, k, 1,0)-system is a Steiner system S(n, k, /), i.e. a system of fe-tuples
of an n-element set such that every /-tuple is contained in exactly one /c-tuple from the
system. It is well known that the problem of finding the values (n, k, I) such that Steiner
systems S(n,/c,Q exist is a very difficult problem. Until now such values n>k>l>5 are
still unknown. Only for 1 = 2, 1=3 are infinite sequences of Steiner systems known (see[6,
16, 20, 21, 22, 4, 9-11, 17, 8]).

On the other hand (n, k, /, A)-systems are also related to packings and coverings of 1-
tuples of an n-set by its /c-tuples [6]. Recall that a system Q of fc-tuples of an n-element
set S is called an (n, k, /)-packing iff every /-tuple of S is contained in at most one /c-tuple
from Q, and a system P of /c-tuples of an n element set S is called an (n, k, /)-covering iff
every /-tuple of S is contained in at least one /c-tuple from P. By definition an (n, k, I, A)-
system is simultaneously an (n,k,/)-packing and an (n,k,l—A)-covering.

There are well-known simple inequalities which restrict the domain of values k — l for
which Steiner systems can exist: for example, if / — 2 and n > k then

( * - / + l ) ( * - / + 2 ) ^ n - / + l (1.1)

and a generalized Fisher's inequality holds (see, for example, [16]). To prove (1.1) we
can fix /—I elements of an n element set and consider all /c-tuples from the Steiner
system that contain these /—I elements. If we delete from such /c-tuples these /—I
elements we obtain the partition of the (n—l+ l)-set into (k — l+ l)-subsets. We consider
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now the fe-tuple from the Steiner system that intersects our /—I elements at 1—2
elements. The inequality (1.1) follows now from the fact that this /c-tuple must intersect
each (k — 1+ l)-subset of partition in at most one element.

From (1.1) it immediately follows that non-trivial Steiner systems S(n,k,l) can exist
only if

f (1.2)
holds.

The (n, k, I—A)-systems seem a much wider class of combinatorial objects than the
Steiner systems S(n,k, /). However, as we show in this paper, for (n, k, I, A)-systems a
necessary condition similar to (1.1) also holds. As we noted above it is very difficult to
obtain sufficient conditions for the existence of (n, k, I,0)-systems for arbitrary values /
because («, k, 1,0)-systems are simply Steiner systems S(n,k,l). Using a result of
S. D. Cohen on the number of solutions of one algebraic system over a finite field we
obtain a sufficient condition for the existence of (n, k, I, A)-systems for A ^ 2.

The paper is organized as follows. In Section 2 we prove the necessary condition for
the existence of (n, k, I, A)-systems. In Section 3 we give the sufficient conditions for the
existence of (n, k, I, A)-systems for A = 2 and A ^ 3 . For the sake of completeness in
Section 4 we give the brief description of S. D. Cohen's algebraical result which is the
key to obtain these sufficient conditions.

2. Necessary condition for the existence of (n, k, I, A)-systems

Here and in the sequel we suppose that n>k>l^A + 2. In this section the following
necessary condition will be formulated and proved.

T h e o r e m 1. / / the inequality
( k l A 2 ) ( k l l ) ( A l ) ( l A l ) (2.1)

holds, then (n, k, I, A)-systems do not exist.

Proof. We can use now the fact that an (n, k, I, A)-system is a packing of /-tuples of
an n element set by its /c-tuples. For the maximal cardinality m(n,k,t) of an (n,k,t)-
packing Johnson's bound [14] holds. So

Hn,k,t)l ,, * * ; ' + ? „ (2.2)
n(k —1+ l) — k(n — k)

provided the denominator is positive; that is k2>(t— l)n.
Now we will show that (n, k, I, A)-systems do not exist if (2.1) holds. This is a corollary

from the inequality (2.2) and the recurrent inequality [14]:

m(n,k,[)^-m(n-l,k-l,l-l).
k
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Actually this inequality immediately imples

n-l + A + 2,k-l + A + 2,A + 2). (2.3)

We apply (2.2) to the last term of (2.3), i.e. to m(n-l + A + 2,k-l + A + 2,A + 2). The
denominator is positive if

(2.4)

holds or equivalently

If this inequality does not hold then nothing need be proved. So assume that (2.4) holds.
Under this condition we can derive the following:

m(n-l + A + 2,k-

< ^-

W-/ + 2 + A
(A+l)(n-/c) k-l + 2 + A'

( * /

From this inequality and (2.3) we can derive the following inequality:

I-A-I

On the other hand any («, k, I, A)-system is an (n, k, I — A)-covering. This implies that
the cardinality of an (n, k, I, A)-system is at least ((-A)/(I-A)

 a n d f°r t n e existence of such
systems (see 2.5) the inequality
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n

k \ i
) (

/ k \

[l-A-l)

must hold. But this implies that

(A+l)(n-k) ^k-
(kll)(kl A 2) =

and after routine simplifications we obtain the inequality

Combining this inequality with (2.4) we obtain the desired bound. The proof is
complete.

To compare this result with (1.2) we can use the rougher estimate:

Corollary. / / (n, k, I, A)-systems exist then

(2.6)

This inequality is a direct generalization of the necessary condition (1.2).

3. Sufficient conditions for the existence of (n, k, I, A)-systems

In Section 2 we noted that if A=0 then it is very difficult to obtain sufficient
conditions for the existence of (n, k, I, A)-systems for arbitrary values / because (n, k, I, A)-
systems are simply Steiner systems S(n, k, I) in this case. In this section we give sufficient
conditions for the existence of (n, k, I, A)-systems for A ^ 3 and A = 2. Let s = k — l.

Theorem 2. Let k^cn/(s + 3) and s^Ci logn/loglogn for some constants c<\ and
c1 < 1/2. Then for all A ^ 3 and sufficiently large n there exist (n,k,l,A)-systems.

Proof. Let l = k — s. We consider as fe-tuples of an {n,k,k—s,A)-system for A ^ 3 all
solutions of the system of equations:

k

£ x'i = a, modp, t=l,..,s. (3.1)

where x^Xj, Xj6{0,l , . . . ,« — 1}, l ^ i < jf^k and p is the minimal prime such that p ^ n .
It is not difficult to see that the fc-tuples corresponding to all the solutions of such a
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system form an (n,k, k—s)-packing (see, for example, [7, 15]). One /c-tuple corresponds
to k\ solutions because all functions in our system are symmetric. Our goal now is to
prove that it is an (n,k,k—s — 3)-covering. Let us fix the first k—s — 3 variables in the
system (3.1), say x,= j h i=l,...,k—s — 3. We obtain a system of s equations with s + 3
variables. The number of possibilities to fix the first k — s — 3 variables such that

x,#Xj, x,e{0, l,...,n— 1}, 1 ^i<j^k — s — 3

is {n)k-s-3 = n(n — 1)•••(« — k + s + 4). We wish to estimate now the number of solutions
of the system (3.1) under fixed values Ji,...,Jk-s-3 of the first k — s—3 variables and the
conditions:

x,#x,-, iVyand Xi4{ju...,jk.s-3}, i = k-s-2,...,k

for some fixed set {jl,---,jk-s-3}-
In order to do this we use the result of S. D. Cohen (see [2,3] and the next section)

which shows that for the number T of solutions of the system (3.1) without the
restrictions X;e{0, \,...,n — 1} for k — s = 2 or 3 the following inequality holds:

\T-pk-s\^-k\pk-s-112. (3.2)

If k—s^4, at worst the right side of (3.2) needs to be doubled. Using this result for
k = s + 3 we obtain that for this case the number of solutions is p3+(c(s + 3)/2)(s + 3)!p5/2

for some constant c, | c | < l . So the total number of solutions with the first k — s—3
variables arbitrarily fixed can be represented in the form

(3.3)

In order to obtain only solutions with restrictions:

xt^Xj, l^i<j^k and x,-e{0, l,...,n—

we must subtract from the value (3.3) two terms corresponding to the following cases:
(1) the number of solutions satisfying the condition x1-e{j1,...,7t_5_3} for some

ie{k-s-2,...,k) and fixed set {;„..., j 4 _ , _ 3 } .
This number is at most

(3.4)
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(2) the number of solutions satisfying the condition x,e{n,...,p — 1} for some
ie{*-s-2,...,fc}.

This number is at most

(s + 3)(p - n)(p2 + ̂  (s + 2)!p3'2\ (3.5)

So if the sum of the last two terms ((3.4 and (3.5)) is smaller than (3.3) then there
exists at least one solution of (3.1) such that x^Xj, l^i<j^k and x,e{l,...,n} for
l^i^fc. Because known results on the difference between consecutive primes (see, for
example, [13]), imply that p — n^nc for some constant c<\, it is not difficult to check
that this inequality holds under the conditions of Theorem 2.

This means that the set of fc-tuples corresponding to all the solutions of such a system
is an (n, k, k — s—3)-covering and so it is an (n, k, I, A)-system for A ̂ 3 . The proof of
Theorem 2 is complete.

For the case A = 2 we can prove the sufficient condition in the following form.

Theorem 3. Let k^cn/(s + 2)\ and s^ctlogn/loglogn for some constants c<\ and
cy < 1/2. Then for A = 2 and all sufficiently large n there exist (n,k,l,A)-systems.

The proof is quite similar to the proof of Theorem 2 with one difference: we fix values
not of k — s — 3 but of the first k — s—2 variables and for the system of s equations with
s+1 indeterminates we use the trivial upper bound p(s+l)\ for the number of its
solutions.

Remark 1. The assertions of Theorems 2 and 3 can be easily reformulated as
sufficient conditions not for sufficiently large n only but for all n. The form of these
conditions can be derived from the proof of Theorem 2.

Remark 2. For A=l in [15] it was shown that (n,k,k, — l,A)-systems exist if

4. Bounds for the number of solutions of one algebraic system

For the sake of completeness we give in this section a brief description of the result of
5. D. Cohen on the number of solutions of one system of algebraic equations over a
finite field. As it was shown above this result is the key to obtain the sufficient
conditions for the existence of («, k, I, A)-systems for the case A ̂  2.

Let Fp = GF(p), p prime. Let k, s be positive integers with 1 ^ s ̂  k ̂  p. Let l = k — s and
assume / ̂  2. Write N(k, s) for the number of solutions of the system:

k

YJx\ = a,modp,t=l,...,s, (4.1)
i = i

where x , # x r \^i<j^k.
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We shall give a brief description of the following result of S. . Cohen ([2, 3]).

Theorem 4. Letl = k-s^2. Then

\N(k,s)-pl\Z(k/2)k\p'-112,

except perhaps i / / ^ 4 and k2/2<p112<k2, in which case the right hand side should be
doubled.

Proof. We give only a sketch of the proof which should be read along with [2], [3].
Fairly trivial estimates suffice unless k<pil4 which can therefore be assumed. Let Sj be
the jth symmetric function of x1 ; . . . ,x t . Then the set of all solutions of (4.1) (with
distinct components) is the subset of Fp comprising those x with distinct components
such that ( —l)JSj has a prescribed value bj for j=l,...,s. Here bi = —al, b2 =

f
Let

where bl,...,bs are the prescribed values and b = {bs+u...,bk-1)eFp~
1 is arbitrary. Then

N(k,s) = k\ £ M(b) (4.2)

where M(b) denotes the number of a in Fp such that f(x) + a splits completely into a
product of k distinct linear factors over Fp.

Rather than estimate M(b) in every case, we restrict ourselves to those b in the set

B={beFp"1: / ' has k — 1 distinct roots in Fp all giving rise to distinct values}.

Here Fp is the algebraic closure of Fp.
By Lemma 5 of [2], [B^p1'1—cp'~2, where c = c(k,s) is independent of p. The

arguments of Lemmas 6 and 7 of [2] show that none of the polynomial equations
which arise are identities and we can routinely bound their number of solutions. More
specifically, but briefly, as regards Lemma 6 of [2], the relevant polynomials can be
totally composite only if they are polynomials in xd for some d > 1 and this excludes at
most lp'~2 elements ((/—l)-tuples) of B. On the other hand, solutions of (5.4) and (5.6)
exclude, between them, for each j (with \^j^l— 1) at most 3kp'~2 elements, and so a
total of at most 3lkp'~2 elements. Further, using the bound in Bezout's theorem, for
each j^l—l, (5.8) of [2] excludes (k + j-3)(k-l) elements from B and so
( / - l)(k- l)(k + //2-3) altogether. This gives the following lemma;

Lemma. The size of B satisfies
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where
c(k,2) =

c(k,3) =

Now for beB, M(b) can be interpreted as the number of a in Fp such that t + a is
unramified and splits completely into first degree primes in E, the splitting field of
f(x) +1 over F/r). Since the Galois group of f(x) +1 over Fp(t) is Sk [1] and so has
order k\ we conclude that k\M(b) is exactly the number of first degree prime divisors of
E which divide a finite unramified first degree prime t + a of Fp(t). On the other hand, by
Weil's theorem (which applies since Fp is algebraically closed in £), the total number of
first degree prime divisors of E differs from p by at most 2g^/p, where g is the genus of
E. So we obtain for b e B

\k\M(b) + T-p\^2gJp~, (4.3)

where T is the number of first degree prime divisors in E which are infinite or ramified.
Moreover, by Proposition 5.15 of [5], the ramification index of every finite ramified

prime in £ is 2 and the ramification index of the infinite prime is k. Using the definition
of B, this means that the relative different of E over Fp(t) has degree

( f e 1 ) / c ! l ) ! . (4.4)

Let g be the genus of E. By the Hurwitz formula and (4.4)

2g-2= -2k\ + d=^k2 -3k-2)(k-\)\

From the above there are at most ((k—l)k\/2) finite ramified first degree prime
divisors of E and at most (k— 1)! infinite first degree prime divisors of E. Thus

and from (4.3)

\ & 3 /~ U2 l)\, (4.5)
where for the upper bound for k\M(b), we can disregard the last term.

For b $ B we can use "almost" trivial estimate

which is arrived at by assuming, in the worst case, that (all but one of) the members of
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Fp can be grouped in classes of size fc, all giving the same value to / Combining this
bound with (4.5) and the lemma we can obtain the result of Theorem 4.

5. Resume

For (n, k, I, A)-systems the notion of A is similar to the notion of a covering radius of a
code with given distance (or packing radius) [12, 16, 18, 19]. It is known that for BCH-
codes the covering radius is roughly speaking twice the packing radius [12, 18, 19]. In
contrast with these results, for our case the covering radius (i.e. the value of k — I + A) is
equal to the packing radius plus a constant (2 or 3).

One interesting question arises if we compare the necessary condition with the
sufficient one. Roughly speaking the necessary condition is: k — /<V/«(A+ 1) but the
sufficient one is: k — / < c log n/log log n (with some additional restriction on the size k).
It is not difficult to see that the bound for k — l is determined by the value of coefficient
K in S. D. Cohen's bound (5.1) (see Theorem 4) for the number of solutions of the
above system with k indeterminates and s equations (in S. D. Cohen's formula
K = (k/2)k\):

s-112. (5.1)

From the necessary condition (Theorem 1) it is not difficult to prove that K>ck. If
anybody can decrease the value of K in (5.1) then we can increase the upper bound for
k — I in our sufficient condition.
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