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A Note on Noncommutative Interpolation

T. Constantinescu and J. L. Johnson

Abstract. In this paper we formulate and solve Nevanlinna-Pick and Carathéodory type problems for

tensor algebras with data given on the N-dimensional operator unit ball of a Hilbert space. We develop

an approach based on the displacement structure theory.

1 Introduction

Interpolation problems for bounded analytic functions were studied quite intensively

due to their many applications, for instance to the wave propagation in layered me-

dia, circuit synthesis, and robust control. On the mathematical side, they are strongly

related to dilation theory and selfadjoint extensions of symmetric operators. Accord-

ingly, there was some interest in generalizing the framework in which similar prob-

lems could be formulated. In this paper we deal with interpolation problems for

tensor algebras. Problems of this type were already considered in the literature [2],

[9], [13]. Several methods were developed in these and other papers, each of them

being of a specific interest. Here we consider similar formulations for data on the

N-dimensional unit ball

BN (E) =

{

Z =
[
Z1 · · · ZN

]
∈ L(E)N

∣
∣
∣

N∑

k=1

Z∗
k Zk < IE

}

,

where E is a Hilbert space. When considering this framework, we need to introduce

an evaluation of an element of the tensor algebra at a point of BN (E), as well as

appropriate derivations on the algebra. The goal of this paper is to define all these

elements and formulate and solve Nevanlinna-Pick and Carathéodory type problems

on BN (E). All of these are done by using the approach based on the displacement

structure theory, as suggested in [7]. This approach turns out to be quite elementary

and has other benefits, some of which are presented in our companion paper [6].

The paper is organized as follows. In Section 2 we introduce a Szegö type kernel

for BN (E) and some additional notation. Section 3 contains the description of our

approach to interpolation on BN (E) which is then illustrated by an application to

a Nevanlinna-Pick type problem. The last section introduces some natural deriva-

tions on the tensor algebra and the formulation and solution of a Carathéodory type

problem. Another consequence of this paper is that noncommutative interpolation

problems can be dealt with as special interpolation problems in the upper triangular

algebra.
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2 Szegö Kernels

Let E be a Hilbert space and let L(E) denote the set of all bounded linear operators

on E. If N is a positive integer and Z =
[
Z1 · · · ZN

]
, W =

[
W1 · · · WN

]
are

two elements in L(E)N , then we define

(Z|W ) =

N∑

k=1

Z∗
k Wk,

and

BN (E) =
{

Z =
[
Z1 · · · ZN

]
∈ L(E)N

∣
∣ (Z|Z) < IE

}
,

where IE denotes the identity operator on E.

We introduce a Szegö type kernel on BN (E) by using some simple ideas from

displacement structure theory (and which, in the case N = 1 and E = C, would give

the classical Szegö kernel K(z, w) =
1

1−zw
). Let Z1, . . . , Zn be elements in BN (E) and

consider

(2.1) Fk =

n⊕

l=1

Z∗
l,k, k = 1, . . . N,

the diagonal matrix with the diagonal made of the k-th components of Z∗
1 , . . . , Z∗

n .

Also, define

(2.2) U = [IE · · · IE
︸ ︷︷ ︸

n terms

]∗.

It is easily seen that the so-called displacement equation

(2.3) A −

N∑

k=1

FkAF∗
k = UU∗,

admits a unique positive solution A. In fact, it is simple to write the explicit form of

the solution. Thus, let F
+
N be the unital free semigroup with N generators 1, . . . , N .

The empty word is the identity element of F
+
N . The length of the word σ is denoted by

|σ| and we consider the lexicographic order on F
+
N . We associate new Hilbert spaces

to a Hilbert space E by the following recursion: E0 = E and for k ≥ 1,

(2.4) Ek = Ek−1 ⊕ · · · ⊕ Ek−1
︸ ︷︷ ︸

N terms

= E
⊕N
k−1.

Then Uk = [FσU ]|σ|=k gives a bounded operator from Ek into E, where Fσ is a no-

tation for the operator Fi1
· · · Fik

provided that σ = i1 · · · ik (we set F∅ = IE). One

easily checks that U ∗
∞ = [Uk]∞k=0 is a bounded operator from

⊕∞
k=0 Ek into E and

the solution of (2.3) is given by the formula A = U ∗
∞U∞. We introduce the notation

Z∗
σ = Z∗

i1
· · ·Z∗

ik
for σ = i1 · · · ik; Z∗

σ should be distinguished from (Zσ)∗, the adjoint

https://doi.org/10.4153/CMB-2003-006-4 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2003-006-4


A Note on Noncommutative Interpolation 61

of Zσ . Also define L(Z) = [Z∗
σ ]∞|σ|=0 for Z in BN (E). Then the solution of (2.3) can

be written in the form

A = [L(Z j )L(Zk)∗]n
j,k=1.

It was suggested by one referee to mention that this formula is just a form of a

Neumann series: the map Φ(A) =
∑N

k=1 FkAF∗
k is a completely positive map with

Φ(I) < I, so ‖Φ‖cb < 1 (see [12]). Therefore, (Id −Φ)−1
=

∑

k≥0 Φ
k, which gives

the previous formula for A.

This formula for A suggests to introduce the positive definite kernel

(2.5) K(Z,W ) = L(Z)L(W )∗, Z,W ∈ BN (E),

as another generalization of the classical Szegö kernel. Also, when E = C and N > 1,

we obtain that

(2.6) K(Z,W ) =
(

1 − (Z|W )
)−1

,

which is a positive definite kernel on the unit ball in the complex N-dimensional

space C
N that was studied quite intensively in recent years [13], [3]. Most notably, the

kernel (2.6) has a universality property with respect to the Nevanlinna-Pick problem,

as explained in [1]. Note that for dim E > 1, the kernel (2.6) is no longer positive

definite.

3 Nevanlinna-Pick Interpolation

In this section we formulate and solve a Nevanlinna-Pick interpolation problem for

the noncommutative analytic Toeplitz algebras as discussed in [13]. These algebras

represent a multidimensional generalization of the classical Toeplitz algebra associ-

ated to the Hardy space H∞. One reason for their study is that they are Banach alge-

bras containing the tensor algebra. The associative tensor algebra T(H) generated by

the complex vector space H = C
N is defined by the algebraic direct sum

T(H) =

⊕

k≥0

H⊗k,

where H⊗k
= H ⊗ · · · ⊗ H

︸ ︷︷ ︸

k factors

is the k-fold algebraic tensor product of H with itself.

Also, the Hilbert direct sum

F(H) =

⊕

k≥0

H⊗k

is the full Fock space associated to H (on each H⊗k, k > 1, we consider the tensor

Hilbert space structure induced by the Euclidean norm on H = C
N ; also H⊗0

=

C and H⊗1
= H—see [12] for more details on Fock space constructions). The

noncommutative Toeplitz algebra, [13], can be identified with the set of those φ ∈
F(H) such that

sup{‖φ ⊗ p‖F(H) | p ∈ T(H), ‖p‖F(H) ≤ 1} < ∞.

https://doi.org/10.4153/CMB-2003-006-4 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2003-006-4


62 T. Constantinescu and J. L. Johnson

We notice that each H⊗k can be identified with the Hilbert space Hk defined

by (2.4) with E = C, and the noncommutative Toeplitz algebra is isometrically

isomorphic to the algebra UT(H) of upper triangular operators T = [Ti j]
∞
i, j=0 ∈

L(
⊕∞

k=0 Hk) with the property that for i ≤ j and i, j ≥ 1,

(3.1) Ti j = T⊕N
i−1, j−1,

where for an operator T, T⊕N
= T ⊕ · · · ⊕ T

︸ ︷︷ ︸

N terms

. This is just a matricial way to say

that T commutes with IE0
⊗ R, where R is the right regular representation on the

Fock space. It allows us to work within the upper triangular algebra. We also use

the notation diag[T] for the direct sum of a certain number (or ∞) of copies of

T. Denote by S(H) the Schur class of all contractions in UT(H). Given a Hilbert

space E, we can introduce the algebra UT(H, E) to be the set of all T = [Ti j]
∞
i, j=0 ∈

L(
⊕∞

k=0 Ek) satisfying (3.1). The corresponding Schur class of all contractions in

UT(H, E) is denoted by S(H, E). Note that Ek can be identified with Hk ⊗ E, which

justifies our notation.

Since the noncommutative Toeplitz algebras were viewed as generalizations of the

classical Toeplitz algebra, it was quite natural to study bounded interpolation prob-

lems in this setting. To that end, a ”point evaluation” was introduced and studied in

[3], [9], [13] and references therein. At about the same time, bounded interpolation

problems were studied for the algebra of upper triangular operators in [4], [10], [14]

(see [5] for details and other related references) and a point evaluation was intro-

duced in this setting too. Since UT(H, E) is an algebra of upper triangular operators

we can use the later approach as follows: for T ∈ UT(H, E) and Z ∈ BN (E) define

the operator

(3.2) T(Z) = PETL(Z)∗,

where PE denotes the orthogonal projection of
⊕∞

k=0 Ek onto E (= E0). The basic

property that qualifies this operator as a point evaluation is given by the following

result.

Lemma 3.1 If T ∈ UT(H, E), then TL(Z)∗ = diag[T(Z)]L(Z)∗ .

Proof We write L(Z) =
[
I Z̃∗

1 Z̃∗
2 · · ·

]
, where Z̃∗

k =
[
Z∗

σ

]

|σ|=k
. Due to the

properties of the lexicographic order we deduce that Z̃∗
k =

[
Z∗

1 Z̃∗
k−1 · · · Z∗

N Z̃∗
k−1

]
.

Therefore the k-th block entry of TL(Z)∗ is

∞∑

l=0

Tk,k+lZ̃k+l =

∞∑

l=0

T⊕N
k−1,k+l−1






Z̃k−1Z1

...

Z̃k−1ZN






=






∑∞
l=0 Tk−1,k+l−1Z̃k−1Z1

...
∑∞

l=0 Tk−1,k+l−1Z̃k−1ZN




 .
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This formula can be used in an inductive argument in order to conclude the proof.

We can now formulate the following Nevanlinna-Pick type problem:

Problem 3.2 Determine for which Z1, . . . , Zn in BN (E) and B1, . . . , Bn in L(E)

there is a T ∈ S(H, E) such that T(Zk) = Bk, k = 1, . . . , n.

This problem can be solved by using the methods in [13], but here we indicate

an elementary approach based on the displacement structure theory. More precisely,

we use a result announced in [7] and proved in detail in [6] that gives the solution

of a so-called scattering experiment associated to the data of the Nevanlinna-Pick

problem. We will show that this data can be encoded by a displacement equation of

the following type:

(3.3) A −

N∑

k=1

FkAF∗
k = G JG∗,

where Fk ∈ L(G), k = 1, . . . , N , are given contractions on the Hilbert space G.

Also G =
[
U V

]
∈ L(E2, G) and J =

[
IE 0
0 −IE

]
. The wave operators associated

to (3.3) are introduced by the formulae: U ∗
∞ = [Uk]∞k=0, V ∗

∞ = [Vk]∞k=0, where

Uk = [FσU ]|σ|=k : Ek → G, Vk = [FσV ]|σ|=k : Ek → G, and H = C
N . We will

assume that both U∞ and V∞ are bounded and also that limk→∞

∑

|σ|=k ‖F∗
σg‖ = 0

for all g ∈ G. Under these assumptions we deduce that (3.3) has a unique solution

given by

(3.4) A = U ∗
∞U∞ −V ∗

∞V∞.

Theorem 3.3 The solution (3.4) of the displacement equation (3.3) is positive if and

only if there exists T ∈ S(H, E) such that V∞ = TU∞.

Proof For the sake of completeness we indicate the main ideas of the proof. This

will also show that our approach is quite elementary.

Assume A = U ∗
∞U∞ −V ∗

∞V∞ ≥ 0 and let A = LL∗ be a factorization of A with

L ∈ L(F, G) for some Hilbert space F. From (3.3) we deduce that

LL∗ + VV ∗
=

N∑

k=1

FkLL∗F∗
k + UU∗.

In matrix form,

(3.5)
[
L V

]
[

L∗

V ∗

]

=
[
F1L · · · FN L U

]








L∗F∗
1

...

L∗F∗
N

U∗








.
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Defining A∗
=

[
L V

]
and B∗

=
[
F1L · · · FN L U

]
, we deduce from (3.5) that

there exists a unitary operator θ0 ∈ L
(
R(B), R(A)

)
such that A = θ0B. It follows

that there exist Hilbert spaces R1, R2, and a unitary extension θ ∈ L(F⊕N ⊕ E ⊕
R1, F ⊕ E ⊕ R2) of θ0, hence this extension satisfies the relation

(3.6)

[
A

0R2

]

= θ

[
B

0R1

]

.

Let θi j , i ∈ {1, 2, 3}, j ∈ {1, 2, . . . , N + 2}, be the matrix coefficients of θ. It is

convenient to rename some of these coefficients. Thus, we set

Xk = θ1k, k = 1, . . . , N, Z = θ1,N+1,

Yk = θ2k, k = 1, . . . , N, W = θ2,N+1.

From (3.6) we deduce that

L∗
=

N∑

k=1

XkL∗F∗
k + ZU∗

and

V ∗
=

N∑

k=1

YkL∗F∗
k + WV ∗.

By induction we deduce that

(3.7) V ∗
= WU∗ +

N∑

k=1

n∑

|σ|=0

YkXσZU∗F∗
kσ +

∑

|τ |=n+1

Qτ L∗F∗
τ ,

where Qτ are monomials of length |τ | in the variables X1, . . . , XN , Y1, . . . ,YN . Since

θ is unitary it follows that all Qτ are contractions.

We define T00 = W and for j > 0,

T0 j = [YkXσZ]|σ|= j−1;k=1,...,N .

Then we define Ti j , i > 0, j ≥ i, by the formula (3.1) and Ti j = 0 for i > j. It can be

checked that T = [Ti j]
∞
i, j=0 belongs to S(H, E). Also, since limk→∞

∑

|σ|=k ‖F∗
σg‖ =

0 for all g ∈ G, we deduce from (3.7) that V∞ = TU∞.

We can now give a solution to Problem (3.2).

Theorem 3.4 Let Z1, . . . , Zn be distinct elements in BN (E) and B1, . . . , Bn in L(E).

Then there is a T ∈ S(H, E) such that T(Zk) = Bk, k = 1, . . . , n, if and only if the Pick

matrix

P =
[
L(Z j) diag[I − B∗

j Bk]L(Zk)∗
]n

j,k=1

is positive.
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Proof First assume that P is positive. Define the operators Fk, k = 1, . . . , N , by the

formula (2.1). Let V =
[
B1 · · · Bn

]∗
and set G =

[
U V

]
, where U was defined

by (2.2). Then the unique solution of the displacement equation

A −

N∑

k=1

FkAF∗
k = G JG∗

is P, which is positive. By Theorem 3.3, there is T ∈ S(H, E) such that V∞ = TU∞.

We can check that

U∞ =
[
L(Z1)∗ · · · L(Zn)∗

]
,

V∞ =
[
diag[B1]L(Z1)∗ · · · diag[Bn]L(Zn)∗

]
.

From V∞ = TU∞ we deduce that TL(Zk)∗ = diag[Bk]L(Zk)∗, k = 1, . . . , n. By

Lemma 3.1 we deduce that diag[Bk]L(Zk)∗ = diag[T(Zk)]L(Zk)∗, which implies that

T(Zk) = Bk, k = 1, . . . , n.

Conversely, assume that there is a T ∈ S(H, E) such that T(Zk) = Bk, k =

1, . . . , n. Then, with the previous notation, we deduce that V∞ = TU∞ and so,

P = U∗
∞U∞ −V ∗

∞V∞ = U∗
∞(I − T∗T)U∞ ≥ 0

since T is a contraction.

If Zk = diag[zk] for some zk ∈ C, k = 1, . . . , n, then Problem 3.2 reduces to the

Nevanlinna-Pick type problem formulated in [2], [9] and [13]. In this case, The-

orem 3.4 reduces to the results given in [2], [9] and [13] for the solution of this

problem.

4 Differentiation on UT(H,E)

We introduce several derivations on UT(H, E). This might be of interest in itself and

also it allows us to formulate interpolation problems involving higher derivatives.

The motivation for the definition comes from similar constructions for the algebra

of upper triangular operators given in [10] and [14] (see [5] for more details and

additional references).

Let Z ∈ BN (E), Z =
[
Z1 · · · ZN

]
. Let E∗

k = [δ jkIE]N
j=1. For l ≥ 1, we

introduce the lower triangular operators F(l)
k = [Xi j] ∈ L(

⊕l
k=0 Ek) with X00 = Z∗

k ,

X10 = Ek, Xi0 = 0 for i > 1, and otherwise Xi j = X⊕N
i−1, j−1. Also define

(4.1)
U = [IE 0 · · · 0

︸ ︷︷ ︸

N+···+N l terms

]∗.

Then define U ∗
∞ = [F(l)

σ U ]∞|σ|=0 and notice that

U∞ =
[
L(Z)∗ [L(σ, Z)]∗

]l

|σ|=1
,
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where L(σ, Z) are well-defined operators whose form follows from the previous rela-

tion. We define the partial derivatives of T ∈ UT(H, E) at Z by the formula

(4.2) DσTZ = PETL(σ, Z)∗, |σ| = 1, . . . , l ;

also set D∅TZ = T(Z).

This definition coincides with the usual differentiation in the case N = 1, E =

C, up to a constant factor. However, we formulate the next version of the classical

Carathéodory problem in a way that does not require that factor. This simplifies

some calculations.

Problem 4.1 Given Z ∈ BN (E) and l a positive integer, determine for which Bk ∈
L(Ek, E), 0 ≤ k ≤ l, there is a T ∈ S(H, E) such that [DσTZ]|σ|=k = Bk for k =

0, . . . , l.

The solution of Problem 4.1 can be obtained by a construction similar to the one

involved in the proof of Theorem 3.4. Thus, let V =
[
B0 · · · Bl

]∗
and set G =

[
U V

]
, where U is defined by (4.1). Then the unique solution of the displacement

equation

A −
N∑

k=1

F(l)
k A(F(l)

k )∗ = G JG∗

is A = U ∗
∞U∞ − V ∗

∞V∞, where we use the notation involved in the statement of

Theorem 3.3. We obtain the following result.

Theorem 4.2 Let Z ∈ BN (E) and Bk ∈ L(Ek, E), 0 ≤ k ≤ l be given. Then there

is a T ∈ S(H, E) such that [DσTZ]|σ|=k = Bk, k = 0, . . . , l, if and only if the matrix

U∗
∞U∞ −V ∗

∞V∞ is positive.

Proof We first notice that the relation V∞ = TU∞ for some T ∈ S(H, E) is equiv-

alent to [DσTZ]|σ|=k = Bk, k = 0, . . . , l. Thus, we show by induction that

(4.3) F(l)
σ =












P0(σ) 0 0 · · · 0

P1(σ)
(

P0(σ)
)⊕N

0 · · · 0

P2(σ)
(

P1(σ)
)⊕N (

P0(σ)
)⊕N2

· · · 0
...

. . .
...

Pl(σ) · · ·
(

P0(σ)
)⊕N l












,

where Pk(σ) are column matrices with Nk entries given by polynomials in the vari-

ables Z1, Z2, . . . , ZN . These polynomials can be obtained by using the recursions:

P0(σ) = Z∗
σ , σ ∈ F+

N ,

P j(∅) = 0, j ≥ 1,

https://doi.org/10.4153/CMB-2003-006-4 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2003-006-4


A Note on Noncommutative Interpolation 67

and for k = 1, . . . , N , σ ∈ F+
N , and j = 1, . . . , N ,

(4.4) P j(kσ) = E⊕N j−1

k P j−1(σ) + (Z∗
k )⊕N j

P j(σ).

For T = [Ti j]
∞
i, j=0 ∈ S(E, H) we set T0 j = [Cσ]|σ|= j . Then the relation V∞ =

TU∞ means that

(4.5)

∞∑

|τ |=0

Pk(στ )C∗
τ =

l∑

j=0

(
Pk− j(σ)

)⊕N j

B∗
j ,

for all σ ∈ F+
N and k = 1, . . . , l. In particular,

B∗
k =

∞∑

|σ|=k

Pk(σ)C∗
σ = [DσTZ]∗|σ|=k, k = 0, . . . , l,

so that V∞ = TU∞ implies [DσTZ]|σ|=k = Bk, k = 0, . . . , l.

Conversely, assume [DσTZ]|σ|=k = Bk for k = 0, . . . , l. This can be rewritten in

the form B∗
k =

∑∞
|σ|=k Pk(σ)C∗

σ for k = 0, . . . , l. We deduce from these relations that

in order to have the relation V∞ = TU∞, we must prove

(4.6) Pk(στ ) =

k∑

j=0

(
Pk− j(σ)

)⊕Nk

P j(τ ).

But we notice that (4.6) is just a consequence of the relation F(l)
στ = F(l)

σ F(l)
τ . Our claim

is proved, and the proof of the theorem can be now concluded by an application of

Theorem 3.3.

We notice that for Z = 0 we deduce Corollary 5.2 in [13]. A more explicit form

for U∗
∞U∞ −V ∗

∞V∞ can be obtained but that is only a notational matter.

We conclude this section by introducing another possible formulation of a Cara-

théodory type problem in this setting. Thus, we can introduce a total derivative of

order k at Z by the formula:

(4.7) DkTZ =

∑

|σ|=k

DσTZ , k = 1, 2, . . . ,

and by convention D0TZ = T(Z). A corresponding Carathéodory type problem can

be formulated as follows.

Problem 4.3 Given Z ∈ BN (E) and l a positive integer, determine for which Bk ∈
L(E), 0 ≤ k ≤ l, there is a T ∈ S(H, E) such that DkTZ = Bk for k = 0, . . . , l.
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We can show that this problem can be also solved by using the displacement struc-

ture approach. Thus, let l be a positive integer and Z ∈ BN (E), Z =
[
Z1 · · · ZN

]
.

Then, for 1 ≤ k ≤ N ,

TF(l)
k =










Z∗
k 0 0 · · ·

IE Z∗
k 0 · · ·

0 IE Z∗
k · · ·

...
. . .

. . .

0 0 · · · IE Z∗
k










and

(4.8)
U = [IE 0 · · · 0

︸ ︷︷ ︸

l terms

]∗.

The associated U ∗
∞ = [TF(l)

σ U ]∞|σ|=0 can be written in the form

U∞ =
[
L(Z) M1(Z) · · · Ml(Z)

]
,

for some operators Mk(Z), k = 1, . . . , l.

Lemma 4.4

DkTZ = PETMk(Z).

Proof We prove by induction that

TF(l)
σ =










Q0(σ) 0 0 · · ·
Q1(σ) Q0(σ) 0 · · ·
Q2(σ) Q1(σ) Q0(σ) · · ·

...
. . .

Ql(σ) · · · Q1(σ) Q0(σ)










,

where Q0(σ) = Z∗
σ , Q j(∅) = 0 for j ≥ 1, and for k = 1, . . . , N , σ ∈ F

+
N and

j = 1, . . . , l, we have the recursion:

(4.9) Q j(kσ) = Q j−1(σ) + Z∗
k Q j(σ).

Now, each P j(σ) in (4.4) is a column matrix with N j entries Ps
j(σ). From (4.4) and

(4.9) it follows that
N j

∑

s=1

Ps
j(σ) = Q j(σ)

and this implies the required formula.
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This remark allows us to solve Problem 4.3 in the same way we solved Problem 4.1.

Thus, define V =
[
B0 · · · Bl

]∗
and set G =

[
U V

]
, where U is defined by (4.8).

Then the unique solution of the displacement equation

A −

N∑

k=1

TF(l)
k A(TF(l)

k )∗ = G JG∗

is A = U ∗
∞U∞ −V ∗

∞V∞, where again we use the notation involved in the statement

of Theorem 3.3. With the same proof as that of Theorem 4.2 we obtain the following

result.

Theorem 4.5 Let Z ∈ BN (E) and Bk ∈ L(E), 0 ≤ k ≤ l be given. Then there is a

T ∈ S(H, E) such that DkTZ = Bk, k = 0, . . . , l, if and only if the matrix U ∗
∞U∞ −

V ∗
∞V∞ is positive.

Again, the explicit form of U ∗
∞U∞ −V ∗

∞V∞ is just a matter of notation. Still, for

Z = 0 we notice that Theorem 4.6 gives that the Toeplitz matrix








B0 B1 · · · Bl

0 B0 · · · Bl−1

. . .

0 0 B0








must be a contraction, which is the classical criterion for the solvability of a one-

dimensional Carathéodory problem. One can check directly that indeed, both Prob-

lem 4.2 and Problem 4.4 for Z = 0 are equivalent to some one-dimensional, mul-

tivalued Carathéodory problems. However, it might be useful to know that these

problems have a natural interpretation related to the tensor algebra.
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