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Summary

Many diseases show dichotomous phenotypic variation but do not follow a simple Mendelian
pattern of inheritance. Variances of these binary diseases are presumably controlled by multiple loci
and environmental variants. A least-squares method has been developed for mapping such complex
disease loci by treating the binary phenotypes (0 and 1) as if they were continuous. However, the
least-squares method is not recommended because of its ad hoc nature. Maximum Likelihood (ML)
and Bayesian methods have also been developed for binary disease mapping by incorporating the
discrete nature of the phenotypic distribution. In the ML analysis, the likelihood function is usually
maximized using some complicated maximization algorithms (e.g. the Newton–Raphson or the
simplex algorithm). Under the threshold model of binary disease, we develop an Expectation
Maximization (EM) algorithm to solve for the maximum likelihood estimates (MLEs). The new EM
algorithm is developed by treating both the unobserved genotype and the disease liability as missing
values. As a result, the EM iteration equations have the same form as the normal equation system in
linear regression. The EM algorithm is further modified to take into account sexual dimorphism in
the linkage maps. Applying the EM-implemented ML method to a four-way-cross mouse family,
we detected two regions on the fourth chromosome that have evidence of QTLs controlling the
segregation of fibrosarcoma, a form of connective tissue cancer. The two QTLs explain 50–60%
of the variance in the disease liability. We also applied a Bayesian method previously developed
(modified to take into account sex-specific maps) to this data set and detected one additional QTL
on chromosome 13 that explains another 26% of the variance of the disease liability. All the
QTLs detected primarily show dominance effects.

1. Introduction

The specific disease that leads to death in any individ-
ual often reflects complex interactions between genetic
and non-genetic factors. Many diseases are influenced
by polymorphic loci but the inheritance patterns are
typically non-Mendelian because of the polygenic
influences on their risk, interactions between alleles
and environmental variants and the complications of

competing risks from other potentially lethal illnesses.
Mapping loci that modulate risk of specific diseases
is more difficult than mapping simple Mendelian
loci. One could take a quantitative trait locus (QTL)
mapping approach by treating disease phenotype as
a quantitative trait (Visscher et al., 1996). However,
many disease phenotypes are measured as binary traits
(i.e. disease presence or absence) rather than as con-
tinuous quantitative traits. From a theoretical point
of view, standard QTL mapping cannot be applied
to discrete trait mapping. Non-parametric methods
might be used for disease mapping (Kruglyak &
Lander, 1995b). However, with the non-parametric
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method, it is impossible to quantify the disease pen-
etrance and the proportion of disease variance ex-
plained by the genes identified.

McIntyre et al. (2001) recently developed a prob-
ability model particularly suitable for binary disease
mapping. They treated the probabilities of disease
incidence conditional on genotypes (called the pen-
etrance) as parameters of interest. Ignoring the mix-
ture distribution of the unobserved genotype, they
were able to estimate and test the disease penetrance
difference between alternative genotypes. This method
explicitly incorporates disease penetrances into the
model, which is a great improvement over the sim-
ple regression and the non-parametric analyses. The
estimation and test are accomplished many times
faster than using the generalized linearmodel (Hackett
& Weller, 1995; Xu & Atchley, 1996), which is an
ML-based method with solutions achieved using a
numerical optimization algorithm. Unfortunately,
the high speed of McIntyre et al. (2001) comes at the
cost of generality, because it cannot incorporate
any non-genetic effects (e.g. age or location) into the
probability model. By contrast, the generalized linear
model is an excellent framework for postulating an
unobserved continuous quantitative trait that deter-
mines the disease status. This underlying variable is
called the liability. Mapping disease traits can now
be formulated as mapping disease liability. As a re-
sult, the discrete trait is transformed into a continuous
liability and disease mapping can be achieved using
all statistical techniques applied to QTL mapping.

Early work of the generalized linear model applied
to categorical trait mapping can be traced back to
Hackett andWeller (1995) andXu andAtchley (1996),
both of which used line-crossing data. Applying the
generalized linear model approach, Xu et al. (1998)
successfully detected loci responsible for Merick
disease in chicken. Rao and Xu (1998) extended
the method to four-way crosses. All these methods use
some special optimization algorithms, such as the
simplex algorithm of Nelder and Mead (1965). More
recently, Yi and Xu (2000a) explored the Bayesian
method implemented via the MCMC algorithm,
which is a computationally intensive sampling-
based method. Yi and Xu (2000b) also extended the
Bayesian method to outbred populations under the
random model framework.

In this study, we adopt the same generalized linear
model as Xu & Atchley (1996), but treat the underly-
ing disease liability as a missing value. This has the
effect of allowing a formulation of the problem that
can be solved using an EM algorithm. In fact, in this
case, the EM iteration equations arising from the
liability function are identical to the normal equation
system in multiple linear regression. This EM algor-
ithm has the advantage of being more intuitive and
easier to program than the simplex algorithm (Nelder

& Mead, 1965). The EM algorithm also provides
an intuitive way to facilitate calculation of the in-
formation matrix, and thus the variance–covariance
matrix of the estimated parameters. We apply this
algorithm to a four-way-cross experiment in labora-
tory mice. Therefore, the model is described in the
context of a four-way-cross design. Although four-
way-cross models have been developed by many
workers (Knott et al., 1997; Rao & Xu, 1998; Xu,
1996, 1998) based on the linear contrasts of genotypic
values, no formal definitions and derivations of the
linear contrasts are given by these authors. The linear
contrasts are simply linear combinations of the orig-
inal genetic effects, but they provide a convenient
way to perform hypothesis tests. We think that it is
essential to provide such information to interested
researchers and students in the field.

2. Theory and Methods

(i) Four-way cross and the threshold model
of binary diseases

The general linear model for genetic mapping of a
quantitative trait is

yj=Xjb+Zju+ej, (1)

where yj (8j=1,…, n) is the continuous phenotypic
value of the jth individual in a mapping population of
size n, b is a vector of fixed non-genetic effects (e.g.
year, location), Xj is the design matrix for the non-
genetic effects, u is a vector of fixed genetic effects, Zj

is the design matrix for the genetic effects and ej is the
residual error, assumed to be N(0, s2).

If we assume that the four-way-cross family under
investigation was initiated from (L1rL2)r(L3rL4),
where Li (8i=1,…, 4) represents the ith inbred line.
The four-way-cross family contains four possible
genotypes with three estimable genetic effects (Xu,
1996, 1998). These three effects are the allelic substi-
tution between L1 and L2, denoted a1, the allelic sub-
stitution between L3 and L4, denoted a3, and the
dominance effect denoted d13. The genotypic value for
individual j may be denoted gj=Zju, where the vector
of genetic effects is u=[a1 a3 d13]

T. Let us denote the
four ordered genotypes as L1L3, L1L4, L2L3 and L2L4.
The corresponding genotypic values for the four geno-
types may be denoted by a vector g=[g13 g14 g23 g24]

T.
The design matrix is defined as Zj=Hi for i=1,…, 4,
where Hi is the ith row of the following matrix :

H=

1 1 1
1 x1 x1

x1 1 x1
x1 x1 1

2
664

3
775:

Notice that each row of matrix H corresponds to
one of the four possible genotypes. If individual j
takes genotype L1L3 then its genotypic value will be
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g13 and the design matrix will be Zj=H1=[1 1 1]. If
individual j takes genotypei L2L3 then its genotypic
value will be g23 and the design matrix will be Zj=
H3=[x1 1x1]. The H notation of defining geno-
types is a convenient way for deriving the EM algor-
ithm (see Appendix A for the expectation step of the
EM algorithm). Estimation of the genetic effects and
hypothesis test are conducted using the EM algorithm
and the likelihood ratio test statistic.

For binary disease traits, the phenotype is defined as
a discrete Bernoulli variable (w) rather than as a con-
tinuous quantitative trait (y). For individual j, we de-
fine wj=1 if j is affected and wj=0 if j is normal. The
threshold model serves as a link between the binary
disease phenotype and a hypothetical underlying
quantitative trait, denoted yj. The actual connection
between w and y is through the following threshold
model :wj=1(yj>0) (i.e.wj=1 if yj>0, otherwisewj=0).
The binary disease phenotype and the liability have
a one-to-one relationship. Mapping genes for w is now
converted into a problem of mapping genes for y. As
a result, we can take full advantage of the well devel-
oped QTL mapping procedures (Lander & Botstein,
1989). It should be emphasized that the residual vari-
ance of the liability cannot be estimated because of the
unobserved nature of y and thus we are forced to make
an assumption of ejyN(0, 1). Models of QTL map-
ping can be directly adopted here for disease mapping
owing to the one-to-one relationship between w and y.

We denote the parameters of the generalized linear
model given in Eqn 1 by a vector h={b, u}. We now
have the following probit model for the disease trait :

Pr(wj=1jZj, h)=Pr( yj>0jZj, h)=1xW(Xjb+Zju),

(2)

where W(Xjb+Zju) is the standardized normal distri-
bution function. The probability of wj is described
by the Bernoulli distribution

Pr(wjjZj, h)=[1xW(Xjb+Zju)]
wj [W(Xjb+Zju)]

1xwj :

(3)

Notice that Zj is missing, because we cannot nor-
mally observe the genotype of the disease locus for
individual j. However, the probability pj|i=Pr(Zj=
Hi|IM) for i=1,…, 4 is available, where IM represents
the marker information. This probability is calculated
using the multipoint method (Rao & Xu, 1998), which
is a special situation of the hidden Markov model for
sib analysis when themarker linkage phases are known
(Kruglyak & Lander, 1995a). The actual probability
function for the jth individual is a mixture of four
distributions

Pr(wjjh)=
X4

i=1

pjji[W(Xjb+Hiu)]
1xwj

r[1xW(Xjb+Hiu)]
wj : (4)

The overall likelihood for the entire mapping
population is

L(h)=
Yn
j=1

Pr(wjjh): (5)

Notice that the above likelihood function is con-
ditional on a fixed position (l) of the QTL in question.
The maximum likelihood estimate of l takes the
maximum value after we scan the entire genome.

(ii) EM algorithm for parameter estimation

Finding the solution of the above likelihood function
is not straightforward. Therefore, we developed an
EM algorithm that has an attractive iterative form.
The EM algorithm is derived from the normal equa-
tion system, in which both Zj and yj are assumed to be
observed. Under this assumption, the MLE of h is

b̂b

ûu

" #
=

Pn
j=1

XT
j Xj

Pn
j=1

XT
j Zj

Pn
j=1

ZT
j Xj

Pn
j=1

ZT
j Zj

2
6664

3
7775
x1 Pn

j=1
XT

j yj

Pn
j=1

ZT
j yj

2
6664

3
7775: (6)

When y is observed but Z is not, as in the usual
QTL mapping studies, we can replace all terms in-
volving Z by the expectations conditional on y and h :

b̂b

ûu

" #
=

Pn
j=1

XT
j Xj

Pn
j=1

XT
j E(Zj)

Pn
j=1

E(ZT
j )Xj

Pn
j=1

E(ZT
j Zj)

2
6664

3
7775
x1 Pn

j=1
XT

j yj

Pn
j=1

E(ZT
j )yj

2
6664

3
7775:
(7)

When both Z and y are missing (the situation we
are currently dealing with), we replace all terms in-
volving Z and y by the expectations conditional on w

and h :

b̂b

ûu

" #
=

Pn
j=1

XT
j Xj

Pn
j=1

XT
j E(Zj)

Pn
j=1

E(ZT
j )Xj

Pn
j=1

E(ZT
j Zj)

2
6664

3
7775
x1 Pn

j=1
XT

j E(yj)

Pn
j=1

E(ZT
j yj)

2
6664

3
7775,
(8)

where

E(yj)=E
Z
[ E
y
(yjjZj, wj, h)],

E(ZT
j yj)=E

Z
[ZT

j Ey
(yjjZj, wj, h)]

and

E
y
(yjjZj, wj, h)=

Xjb+Zju+(2wjx1)
w(Xjb+Zju)

W[(1x2wj)(Xjb+Zju)]
: (9)
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Eqn 9 is the expectation of a truncated normal vari-
able given by Cohen (1991). Eqn 8 is the maximiz-
ation step of the EM algorithm. The expectation step
consists of evaluation of all the expectation terms. De-
tailed expressions of the various expectations involved
in the normal equation are given in Appendix B.

Unlike most other statistical methods for parameter
estimation, theEM-implementedMLmethod does not
provide a straightforward way to calculate the vari-
ance–covariance matrix of the estimated parameters.
The information-basedmethod of Louis (1982) is com-
monly used in EM estimation and has been applied to
QTL mapping by Kao and Zeng (1997) and Luo et al.
(2003). We extended the method of Luo et al. (2003)
to the binary disease mapping here in this study
to calculate the information matrix. The variance–
covariance matrix of the estimated parameters is
then approximated by the inverse of the information
matrix. The derivation of the information matrix is
given in Appendix C.

3. Mapping genes for fibrosarcoma in the mouse

(i) Experimental design

Fibrosarcoma is a form of neoplasm of the fibroblasts
that form connective tissue. In humans, it occurs
rarely with an incidence of less than 1%. It also oc-
curs in animals such as mice, cats and dogs. In the
four-way-cross mouse population bred as the progeny
of (BALB/crC57BL/6) F1 females and (C3H/Her
DBA/2) F1 males, it is diagnosed as the cause of death
in 17% of virgin female mice and 5% of virgin male
mice. The difference between males and females sug-
gests that, in these mice, the incidence of fibrosarcoma
might be influenced by hormone levels and, in fact, the
incidence of fibrosarcoma as a cause of death drops
to 9% in non-virgin females that have born multiple
litters in their first six months of life.

The mice studied were generated from a four-way
cross-breeding scheme. These animals were previously
described in an analysis of QTL mapping for age-
sensitive T-cell subset levels (Jackson et al., 1999).
Each of the 267 progeny was subjected to a compre-
hensive necropsy with histopathology at time of death.
All mice were followed until death (n=267). 76% of
the females died of some form of neoplasia (princi-
pally lymphoma, fibrosarcoma or mammary adeno-
carcinoma), and 42% of the males died of neoplasia
(principally hepatocarcinoma, pulmonary adenocar-
cinoma, lymphoma or fibrosarcoma). We present here
an analysis of the genetic influences on fibrosarcoma
incidence as an example to demonstrate the utilities of
the proposed method. Results of the analyses of other
diseases will be reported elsewhere in the future.

The data set contains 96 co-dominant markers dis-
tributed among 20 chromosomes for the 267 progeny

of the four-way-cross family, designated LAG1. The
goal of the QTL analysis was to map loci that influ-
enced the risk of lethal fibrosarcoma. The LAG1
family was derived from the crosses of four inbred
lines : BALB/c, C57BL/6, C3H/He and DBA/2, with
two rounds of crosses. In the first round, BALB/c was
crossed with C57BL/6 to generate a set of F1 (BALB/
crC57BL/6) females. All the F1 individuals were gen-
etically identical. Meanwhile, C3H/He was crossed
with DBA/2 to generate a set of F1 (C3H/HerDBA/
2) males. Notice that the two sets of F1 mice might
contain different sets of genes. In the second round of
crosses, the female F1 (BALB/crC57BL/6) mice were
crossed with the male F1 (C3H/HerDBA/2) mice
to generate the four-way-cross F2 progeny (BALB/
crC57BL/6)r(C3H/HerDBA/2). The four-way-
cross progeny contained a maximum of four alleles at
any given locus, which is identical to an outbred full-
sib family except that the linkage phases of markers
were uniquely identified in the four-way cross.

(ii) Method of analysis

The data were analysed with the ML method devel-
oped in this study. The non-genetic effects in the
model include the population mean (b1) and the effect
of sex (b2). The design matrix for the non-genetic ef-
fects is coded as Xj=[1 0] for females and Xj=[1 1] for
males. For comparison, we also analysed the data
using the reversible jump Bayesian method of Yi and
Xu (2000a), which we modified to incorporate differ-
ences in sex-specific recombination fractions (details
not shown). Unlike ML, Bayesian mapping does not
provide a significance test or power analysis. There-
fore, results generated from a Bayesian analysis
should be interpreted in a slightly different way.

Most of the genotyped markers are fully informa-
tive (i.e. there are four unique alleles in the family).
Some loci, however, are not fully informative: they
segregate either in the male parents or in the female
parents, but not both. Some progenies have missing
genotypes. To handle these partially informative and
missing markers properly when inferring the prob-
ability of disease genotype, we used the multipoint
method (using all markers) of Rao and Xu (1998),
which has been modified to take into account the sex-
ual difference in recombination fractions (Wu et al.,
2002).

We used the maternal map as reference and wrote
the paternal map over the maternal map by shrinking
or expanding the paternal map distances proportion-
ally. We only evaluate the QTL position along the
maternal map. The corresponding position at the pa-
ternal map is translated from the maternal map using
the procedure shown in the following three-locus ex-
ample. If the maternal map shows the three loci at
0 cM, 10 cM and 25 cM positions, and the paternal
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map shows the three loci at 0 cM, 15 cM and 21 cM
positions, we know that 15 cM on the paternal map
corresponds to 10 cM on the maternal map, and
21 cM on the paternal map corresponds to 25 cM on
the maternal map. When we evaluate position 4 cM
of thematernalmap, the corresponding position on the
paternal map is 0+[(15x0)/(10x0)]r(4x0)=6 cM.
This is called map expanding. By contrast, when we
evaluate position 20 cM on the maternal map, the
corresponding position on the paternal map is 15+
[(21x15)/(25x10)]r(20x15)=17 cM. This is called
map shrinking. If we want to infer the QTL genotype
probability at position 4 cM of the maternal map
(6 cM of the paternal map) using the marker at pos-
ition 0 cM as the left flanking marker (marker M)
and the marker at position 10 cM (marker N) as the
right flanking marker, the recombination fractions
between the QTL and the left hand side markers are
cdM=0.5r{1xexp[x2r|4x0|}100]}=0.0384 for
the dam and csM=0.5r{1xexp[x2r|6x0|}100]}=
0.0565 for the sire. The recombination fractions be-
tween the QTL and the right hand side marker are
cdN=0.5r{1xexp[x2r|4x10|}100]}=0.0565 for
the dam and csN=0.5r{1xexp[x2r|6x15|}
100]}=0.0824 for the sire. The multipoint method
requires a 4r4 transition matrix, which is constructed
using the recombination fractions of both sexes (i.e.
T=Ts�Td), where

Ts= 1xcs cs

cs 1xcs

� �
,

and

Td= 1xcd cd

cd 1xcd

� �
:

This transition matrix can be found in Wu et al.
(2002).

(iii) Results

In the ML analysis, the model only includes a single
QTL. So, the entire genome was searched from one
position to another with an increment of 1 cM. This
type of one-dimensional grid searching has been
found to be effective for locating multiple QTLs
(Jannick & Jansen, 2001). Most chromosomes show
very flat likelihood ratio test statistic profiles (data not
shown). The only chromosome that shows evidence
of a QTL is chromosome four (Fig. 1a). Two peaks
appear in this profile, one at 11 cM and the other at
92 cM (end of the chromosome). The first peak has
a likelihood ratio test statistic value of 11 and the se-
cond peak has a value of 10, corresponding to p values
of 0.0117 and 0.0186, respectively. The QTL effect
profiles are depicted in Fig. 1b and the estimated QTL
effects are given in Table 1. The first QTL is mainly
caused by the dominance effect followed by the

paternal effect. The proportion of the total variance of
the liability explained by the QTL is 34%. The second
QTL is a result of equal contributions of the paternal
and dominance effects, together explaining y30% of
the variance of liability. The negative estimate of the
sex effect reflects the higher incidence of lethal fibro-
sarcoma in females than in males.

The Bayesian analysis identified two chromosomes
with evidence of QTLs. The QTL intensity profiles
(Sillanpaa & Arjas, 1998) and the QTL effects plotted
against the chromosomal position are shown in Fig. 2
for chromosome four and in Fig. 3 for chromosome
13. The major peak on chromosome four overlaps
with that identified by the ML method, showing the
consistency between ML and Bayesian analyses. The
second peak of the QTL intensity on chromosome
four is close to that of the ML analysis (with a 3 cM
deviation). However, the peak is much lower than
the first peak. The Bayesian analysis identified an
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Marker position (cM)

Chromosome 4

Maternal allelic effect
Paternal allelic effect
Dominance effect

0.5

0

–0.5

–1.0

Fig. 1. Likelihood ratio test statistic profile (a) and
the QTL effect profiles (b) along chromosome 4 using
the maximum likelihood method. (b) The solid line is the
estimated effect of allelic substitution from the dam,
the dotted line is the estimated effect of allelic substitution
from the sire, and the dashed line represents the estimate
of the dominance effect. Labels of the horizontal axis
indicate the marker positions measured in centiMorgans
(cM) counted from the left-hand end of the chromosome.
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additional QTL on chromosome 13 (Fig. 3) which was
not detected in the ML analysis. The estimated QTL
parameters are listed in Table 1. Similar to that in
the ML analysis, the first QTL identified with the
Bayesian analysis is mainly caused by the dominance
effect. However, the estimated dominance effect is less
than that of the ML analysis. The proportion of dis-
ease variance explained by this QTL is 25% com-
pared with the 34% estimated with the ML analysis.
The second QTL identified by the Bayesian analysis
is the result of both the dominance effect and the
paternal effect, jointly explaining 21% of the variance
of the liability. The third QTL identified is on chro-
mosome 13, explaining 27% of the disease variance.

The probability of being affected by the disease
conditional on the genotype is called the penetrance.
In our model, the penetrance of the ith genotype is
defined asW(b1+Hiu) for females andW(b1+b2+Hiu)
for males. The estimated penetrances for the four
genotypes for each of the two sexes are given in
Table 2. There is a large effect of sex apparent in the
difference between the estimates of the male and fe-
male mice. Consider the penetrances of QTL1 de-
tected by the ML method in the female mice. The
penetrance of genotype L2L3 is 0.5253 in the female
mice, but 0.2399 in the male mice. The effect of the sex
of the mouse upon the disease penetrance estimates
varies between genotypes and loci.

4. Discussion

One complication in the four-way-cross mapping
comes from the sexual differences in the marker map.
For the set of markers used in the analysis, the marker
orders are the same for both sexes, but the recombi-
nation fractions between markers are quite different
for the different sexes. Although methods have been
developed to construct consensus maps from different
sexes or different families (Beavis & Grant, 1991;
Bucther & Moran, 2000; Butcher et al., 2002), if the
sexual difference in the map is real and not due to
sampling errors, the consensus map (also called the

sex average map) might not be useful to QTL map-
ping. We actually analysed the data using a consensus
map and did not find any evidence of QTLs at all
(data not shown). In the four-way-cross experiment of
mice, the recombination fractions between markers
were estimated separately for different sexes, and thus
we have two sex-specific marker maps. There has
been no attempt in QTL mapping to incorporate sex-
specific maps. The method of Haley et al. (1994) was
designed to handle situations in which the male and
female parents have different marker genotypes, but
the recombination fractions between markers must be
the same for the male and female parents. Wu et al.
(2002) and Fann and Ott (1995) developed a method
to estimate recombination fractions simultaneously
for different sexes. Although these methods are not
for QTL mapping, we adopted the method of Wu
et al. (2002) by using a heterogeneous transition
matrix to take into account the sexual dimorphism in
the marker map.

Many complex traits show a binary or categorical
phenotypic distribution. Mapping loci of such traits
requires methods that specifically take into account
these phenotypic distributions. The key difference
comes from the difference in the conditional distri-
butions under investigation. In traditional disease
mapping, the conditional distribution of interest is the
distribution of the genotype of putative locus con-
ditional on the disease phenotype. If the genotypic
distribution of the ‘affected’ population is different
from that of the ‘normal ’ population, the locus under
investigation might be responsible for the variation
of the disease trait. In QTL mapping, however, the
conditional distribution of interest is the distribution
of the phenotype conditional on the genotype of the
locus under study. If the phenotypic distribution
varies between different genotypes, the locus might be
associated with the trait. The difference in the way
that the conditional distribution is formulated leads
to different level of generality of the methods. The
‘conditional phenotype given genotype’ model is the
quantitative genetics model, and it is more general

Table 1. Estimated genetic effects and locations of the identified QTLs. For the QTL positions, in each case the
first number represents the chromosome and the second the position within that chromosome (e.g. ‘4/11 cM ’
means position 11 cM on chromosome 4). For QTL effects, the standard deviations of the maximum likelihood
estimates and posterior standard deviations of the Bayesian estimates are given in parentheses

QTL parameter

Maximum likelihood Bayesian

QTL1 QTL2 QTL1 QTL2 QTL3

Position (l̂l) 4/11 cM 4/92 cM 4/11 cM 4/89 cM 13/24 cM
Paternal (â1) 0.1599 (0.2120) 0.4202 (0.1543) 0.0896 (0.2229) 0.3069 (0.1822) x0.0032 (0.1928)
Maternal (â3) 0.2949 (0.1954) x0.1199 (0.2001) 0.2664 (0.2025) x0.0868 (0.2114) 0.2249 (0.2088)
Dominance (d̂d13) x0.6285 (0.2242) x0.4853 (0.2518) x0.3597 (0.2508) x0.3258 (0.2439) x0.4746 (0.2322)
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and flexible in terms of handling multiple loci, non-
genetic effects, genotype by environment interaction
and so on. The ‘conditional genotype given pheno-
type’ model is the disease genetics model and it is
not as general as the quantitative genetics model. The
generalized linear model of disease trait analysis in-
vestigated in this study uses the ‘conditional pheno-
type given genotype’ model but for disease traits. It
bears the attractive flexibility and generality of QTL
mapping.

Under the generalized linear model, a disease trait
is formulated as a disease liability, which is not much
different from a regular quantitative trait except that
the liability is simply unobservable. Under the liability
model, all quantitative genetics theory can be applied
to disease genetics. The unobservable nature of the
liability is a typical missing value problem. The EM

algorithm of Dempster et al. (1977) was specifically
designed to solve such a problem, and we took ad-
vantage of this particular nature of missing value and
formulated the EM algorithm for disease mapping.
The linear model given in Eqn 1 provides the theor-
etical foundation for all genetic mapping. In mar-
ker analysis or any typical linear regression analysis,
both X and Z are observable. In QTL mapping,
however, Z is no longer observable, but the EM al-
gorithm has incorporated the distribution of Z into
the model by treating Z as a missing value so that
the usual linear model analysis applies. For disease
mapping as we formulated it in this study, in addition
to Z, the dependent variable y is also not observable.
There is no reason that we cannot also treat y as a
missing value. When y is indeed treated as a missing
value, as shown in this study, the MLE can be ob-
tained using an EM iteration system just as neat as
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Fig. 2. QTL intensity profile (a) and the QTL effect
profiles (b) along chromosome 4 using the Bayesian
method. One QTL was supported in this chromosome with
highest posterior probability of 0.61. The corresponding
posterior probability of two QTLs was 0.25. (b) The solid
line is the estimated effect of allelic substitution from the
dam, the dotted line is the estimated effect of allelic
substitution from the sire, and the dashed line represents
the estimate of the dominance effect. Labels of the
horizontal axis indicate the marker positions measured
in centiMorgans (cM) counted from the left end of the
chromosome.
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Fig. 3. QTL intensity profile (a) and the QTL effect
profiles (b) along chromosome 13 using the Bayesian
method. The method supported one QTL with a posterior
probability of 0.43. The corresponding probability of two
QTLs was 0.31. (b) The solid line is the estimated effect of
allelic substitution from the dam, the dotted line is the
estimated effect of allelic substitution from the sire, and
the dashed line represents the estimate of the dominance
effect. Labels of the horizontal axis indicate the marker
positions measured in centiMorgans (cM) counted from
the left end of the chromosome.
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that of the QTL mapping. Interestingly, we have
shown that we can conduct a linear regression analy-
sis with no direct observation on both the indepen-
dent and dependent variables. The partial information
for Z is obtained from markers and the partial infor-
mation for y is obtained from the binary disease
phenotype.

Bayesian mapping for binary disease traits is also
formulated as problem of missing y, but y was re-
covered from random sampling (Yi & Xu, 2000a).
Given the fact that only the expectation of y con-
ditional on the disease phenotype is required in the
EM and the expectation has an explicit form, the EM
algorithm is many times faster than the MCMC-
implemented Bayesian method. TheML and Bayesian
analyses should coexist because there are many un-
shared characteristics of the two methods. As well as
computing speed, ML analysis allows a significance
test, whereas Bayesian analysis does not provide an
easy way for significance testing. In the mouse data
analysis, the Bayesian analysis appears to identify one
additional QTL, indicating that Bayesian mapping
might be superior to ML. However, the significance of
this putative locus is hard to assess. If this additional
QTL is real, the high efficiency of Bayesian analysis
must be due to the ability to fit multiple QTLs simul-
taneously. Although ML can also handle multiple
QTLs (Kao et al., 1999), there has been no attempt to
do so in four-way-cross experiments. Such a multiple
QTL model for four-way crosses will certainly be a
welcome project in the future.

Yi and Xu (1999) developed an ML method for
binary trait mapping. The method of Rao and Xu
(1998) is also ML based. The difference between these
methods and the one proposed here is that they ig-
nored the mixture distribution of the QTL genotype
and replaced the mixture distribution by a hetero-
geneous residual variance. They can be classed as
quasi-likelihood methods. As a result, they were able
to use the Fisher scoring method to find the MLE. A
similar Fisher scoring method cannot be used if the

mixture distribution is taken into account. The orig-
inal binary trait mapping procedure developed by
Xu and Atchley (1996) was implemented via the sim-
plex algorithm, which directly searches for the MLE.
The simplex algorithm, however, is complicated, and
users might have to download an existing subroutine
without understanding its operation. The EM algor-
ithm developed in this study is visible to users with
only preliminary background in linear regression
analysis.

The data we analysed happen to be collected from a
four-way-cross family. Therefore, the statistical model
is described in the context of a four-way cross. A four-
way-cross family is similar to a full-sib family derived
from the mating of two outbred parents. The only
difference between the two different families is that
marker linkage phases are usually given in the four-
way cross, whereas, in the full-sib family, the linkage
phases must be inferred from the data. A full-sib
family is the simplest form of an outbred pedigree.
Therefore, the method described here has a strong
implication in genetic mapping for outbred species
(e.g. forest trees and large animals). Compared with
the F2 design derived from the cross of two inbred
lines, the four-way cross allows the estimation of one
more additive genetic effect. This property might help
to harvest more QTLs because those QTLs that do
not segregate in one cross but do segregate in the
other might still be detected in the four-way cross.
The four-way-cross design is also relevant to genetic
mapping in multiple line crossing experiments. The
diallel crossing design of Rebai and Goffinet (1993) is
one form of the multiple line cross. The four-way-
cross design differs from the diallel design in that not
all the six (C4

2=4r3}2=6) possible combinations of
the four inbred lines are used in mapping. In fact, only
two combinations (two F1 plants each from a different
cross) are used in the four-way cross. In addition, the
two F1s from different crosses are further crossed to
generate an F2 family for mapping. If resources per-
mit, one should pursue the diallel cross because

Table 2. Estimated disease penetrances of the four genotypes for the
identified QTLs

Sex Genotype

Maximum likelihood Bayesian

QTL1 QTL2 QTL1 QTL2 QTL3

Female L1L3 0.1911 0.1881 0.1966 0.1696 0.1350
L1L4 0.4182 0.6276 0.2523 0.4481 0.2731
L2L3 0.5253 0.2251 0.3769 0.1793 0.4414
L2L4 0.03726 0.0686 0.0587 0.0814 0.0610

Male L1L3 0.0501 0.0489 0.0654 0.0534 0.0392
L1L4 0.1644 0.3283 0.0927 0.2155 0.1036
L2L3 0.2399 0.0636 0.1659 0.0576 0.2105
L2L4 0.0053 0.0120 0.0131 0.0200 0.0138
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it allows more allelic substitution effects to be de-
tected. Current methods for genetic mapping in diallel
crosses have only been explored under the least-
squares framework (Rebai & Goffinet, 1993). They
should be investigated under the ML framework also,
and the EM algorithm proposed here provides a clue
for the extension. If a crossing experiment involves
multiple inbred lines, Bayesian methods have been
suggested by Yi and Xu (2002) and Bink et al. (2002).
The Bayesian methods can handle arbitrarily com-
plicated mating designs but, again, the price is the
expensive computing time.

The ML analysis detected two regions with evi-
dence of QTLs and the Bayesian analysis detected one
additional QTL on a different chromosome. All the
QTLs detected show major contribution from allelic
interaction (dominance). This discovery contrasts with
the common belief that additive effects usually play a
major role in quantitative trait variation. However,
the disease trait itself is not a quantitative trait but is
formulated as controlled by an underlying quantitat-
ive trait. It is possible that most disease traits show
the same behaviour of large contribution by domi-
nance effects. More examples are needed to make such
a conclusion. These dominance effects would not be
detected if the analyses had been done separately for
different sexes. This clearly demonstrates the ad-
vantage of the four-way crosses over the backcross
analyses. The success of mapping genes with domi-
nance effects depends on the lines selected to initiate
the crosses. Using four-way crosses for QTL mapping
is certainly an efficient way to increase the number
of interactions and thus to improve the power of
detecting dominance effects.

A commonly used method for disease mapping in
human is the transmission disequilibrium test (TDT)
method (Monks et al., 1998; Spielman et al., 1993).
This method involves a family based association study
that is designed to separate the confounding effects
between the linkage disequilibrium caused by true
linkage and that caused by population mixture or
stratifications. The four-way-cross method described
here differs from the TDT in the following ways: (1)
TDT is an association study whereas the four-way-
cross analysis is a linkage-mapping study; (2) TDT
deals with multiple censored families (with affected
parents and sibs) whereas the four-way-cross analysis
deals with a single family with all progeny included in
the analysis ; (3) TDT uses the conditional distri-
bution of the genotype given the phenotype whereas
the four-way cross uses the conditional distribution of
the phenotype given the genotype.

De Koning et al. (2002) developed a method for
mapping imprinted QTLs using F2 like full-sib fam-
ilies. The four-way-cross family described in this study
cannot be used for this purpose. Genomic imprinting
is defined as a phenomenon in which the gene ex-

pression of progeny depends on the parental origin of
the alleles. If the genotypic value of the ordered het-
erozygote Aa is different from that of aA, the locus is
said to be imprinted. These two heterozygotes cannot
be separated in classical F2 mapping. However, they
can be separated if the male and female parents have
different genotypes in markers (Haley et al., 1994). In
a four-way-cross family, the two parents do have a
chance to have different marker genotypes. However,
there is no reason to assume that the two parents also
have the same QTL genotype. Therefore, it is im-
possible to detect imprinted QTLs using four-way
crosses. The full-sib family investigated by Haley et al.
(1994) is special because both parents are F1 hybrids
of two outbred populations. There is good reason
to assume that QTLs are fixed for the two outbred
populations because of divergent selection, although
markers might segregate within each population.

The threshold model is an example of the general
latent class model. There are other latent class models
that can be equally applied here. These models include
the logit and log–linear models. We adopted the pro-
bit analysis because it has some nice properties. With
the probit transformation from the latent variable
to the dichotomous phenotype, the latent variable has
a normal distribution and, as a result, a QTL map-
ping approach can be directly adopted here on the
latent variable. The other nice property of the probit
model is that an EM algorithm can be used to search
for the ML solutions, as demonstrated in this study.
With the other latent models, alternative non-EM
methods must be considered (Galecki et al., 2001;
Molenberghs & Goetghebeur, 1997).

Appendix

(A) Derivation of the four-way-cross model

The four possible genotypes generated from the four-
way cross (L1rL2)r(L3rL4) are L1L3, L1L4, L2L3

and L2L4. If we denote the genotypic values of the
four genotypes in the above order by a vector
g=[g13 g23 g14 g24]

T. Each genotypic effect can be de-
composed into the sum of the two allelic effects plus a
deviation reflecting the interaction between the two
alleles, called dominance effect. Assume that the F1

derived from (L1rL2) serves as the male parent (sire)
and the F1 derived from (L3rL4) serves as the female
parent (dam). Let us further define the allelic values of
L1, L2, L3 and L4 by a1, a2, a3 and a4, respectively. The
genotypic value is expressed as

gpq=ap+aq+dpq (8p=1, 2; q=3, 4), (A1)

where dpq is the dominance effect. The four-way-cross
model (A1) is a special case of the general set-up for
association studies developed by Nielsen and Weir
(1999). Notice that there are four possible genotypes
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in the progeny but, after the decomposition, we have
eight parameters. Therefore, we must impose some
restrictions on the parameter space to make the model
estimable. We take the restrictions identical to those
used in a 2r2 factorial design (Steel & Torrie, 1980) ;
that is, a2=xa1, a4=xa3, and d13=d24=xd14=
xd23. We now have only three independent par-
ameters : a1, a3 and d13. Substituting for a2 with xa1,
for a4 withxa3 and all dpqs by d13 in Eqn A1, we have

g13

g14

g23

g24

2
664

3
775=

a1+a3+d13

a1xa3xd13

xa1+a3xd13

xa1xa3+d13

2
664

3
775: (A2)

Define u=[a1 a3 d13]
T and

H=

1 1 1
1 x1 x1

x1 1 x1
x1 x1 1

2
664

3
775:

Eqn A2 can thus be expressed as g=Hu.

(B) Derivation of the expectation terms in the
EM equations

If we denote the posterior probability of Zj=Hi con-
ditional on both the phenotype and the parameters
by pj|i*, which is different from pj|i and is derived as
follows. Let

Pr(wjjHi, h)=[1xW(Xjb+Hiu)]
wj [W(Xjb+Hiu)]

1xwj :

(B1)

The posterior probability is obtained based on the
following Bayes’ theorem,

pjji*=
pjji Pr(wjjHi, h)P4

k=1 pjjk Pr(wjjHk, h)
: (B2)

The expectations involving Z and y are

E(Zj)=
X4

i=1

pjji*Hi, (B3)

E(ZT
j Zj)=

X4

i=1

pjji*H
T
i Hi, (B4)

E( yj)=
X4

i=1

pjji* E
y
(yjjHi,wj, h), (B5)

E(ZT
j yj)=

X4

i=1

pjji*H
T
i Ey

(yjjHi,wj, h), (B6)

E
y
(yjjHi,wj, h)=E

y
(yjjZj=Hi,wj, h)

=Xjb+Hiu+(2wjx1)
w(Xjb+Hiu)

W[(1x2wj)(Xjb+Hiu)]
,

(B7)

where w(Xjb+Hiu) and W(Xjb+Hiu) are the stan-
dardized normal density and probability functions,
respectively.

(C) Variance–covariance matrix of the
EM estimates

Louis’s information matrix (Louis, 1982) requires the
first and second partial derivatives of the complete
data log-likelihood function with respect to the par-
ameters. The complete data likelihood in binary dis-
ease mapping is the one when both Z and y are
assumed to be known. In this case, the (negative) first
partial derivative (expressed as a vector) is

S(h,Z, y)=

Pn
j=1

XT
j Xj

Pn
j=1

XT
j ZjPn

j=1
ZT

j Xj

Pn
j=1

ZT
j Zj

2
664

3
775x

Pn
j=1

XT
j yjPn

j=1
ZT

j yj

2
664

3
775,

(C1)

and the (negative) second partial derivative (expressed
as a symmetric matrix) is

B(h,Z, y)=

Pn
j=1

XT
j Xj

Pn
j=1

XT
j Zj

Pn
j=1

ZT
j Xj

Pn
j=1

ZT
j Zj

2
664

3
775: (C2)

The observed information matrix (Louis, 1982)
evaluated at ĥh (the MLE of h) is

I(ĥh)=E{B(ĥh,Z, y)}xE{S(ĥh,Z, y)ST(ĥh,Z, y)}: (C3)

The expectations are taken with respect to Z and y

conditional on w and h=ĥh. The variance covariance
matrix of ĥh may be approximated by Var(ĥh)BC 1(ĥh).

Notice that E{B(ĥh, Z, y)} is not difficult to evalu-
ate, but evaluation of E{S(ĥh, Z, y)ST(ĥh, Z, y)} is
complicated. When y is observed, as in the usual QTL
mapping studies, Kao and Zeng (1997) provided
explicit expression for E{S(ĥh, Z, y)ST(ĥh, Z, y)},
although the formula is lengthy and complicated. Luo
et al. (2003) proposed to evaluate this expectation by
taking advantage of the Monte Carlo technique. They
simulated a large number of Z values and used the
Monte Carlo sample mean as the approximate of this
expectation. The Monte Carlo method is invoked
only after the EM algorithm has converged and only
at the positions where QTLs have been detected.
Therefore, it does not add significant computational
burden to the existing EM algorithm.

The method of Luo et al. (2003) is directly
adopted in this study by simulating not only Z but
also y for the Monte Carlo approximation of
E{S(ĥh, Z, y)ST(ĥh, Z, y)}. The liability for the jth in-
dividual, yj, is simulated from a truncated normal
distribution. We adopt the inverse transformation
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method that has an acceptance rate of 100% (Rubin-
stein, 1981). With this method, we first simulated
a variable u from U(0, 1). We then defined v=
1xW(Xjb+Zju). Finally, we took the inverse function
of the standardized normal distribution to obtain

yj=wjW
x1[v+u(1xv)]+(1xwj)W

x1(uv): (C4)

Intrinsic functions for both W(.) and Wx1(.) are
available in many computer software packages. For
example, in the SAS package (SAS Institute, 1999),
W(x) is coded as W(x)=probnorm(x) and Wx1(u) is
coded as Wx1(u)=probit(u).
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